JPS58211952A - Deceleration sensing type hydraulic control valve - Google Patents

Deceleration sensing type hydraulic control valve

Info

Publication number
JPS58211952A
JPS58211952A JP9402982A JP9402982A JPS58211952A JP S58211952 A JPS58211952 A JP S58211952A JP 9402982 A JP9402982 A JP 9402982A JP 9402982 A JP9402982 A JP 9402982A JP S58211952 A JPS58211952 A JP S58211952A
Authority
JP
Japan
Prior art keywords
hydraulic pressure
spring
pressure
piston
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9402982A
Other languages
Japanese (ja)
Other versions
JPH0333540B2 (en
Inventor
Hitoshi Kubota
仁 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9402982A priority Critical patent/JPS58211952A/en
Priority to EP83105392A priority patent/EP0096346B1/en
Priority to DE8383105392T priority patent/DE3374053D1/en
Priority to US06/499,849 priority patent/US4502735A/en
Publication of JPS58211952A publication Critical patent/JPS58211952A/en
Publication of JPH0333540B2 publication Critical patent/JPH0333540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/26Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force characterised by producing differential braking between front and rear wheels

Abstract

PURPOSE:To optimize the cirtical hydraulic pressure during sudden braking when a car is idled and loaded by providing piston that receives the force of large and small two springs in an enclosure room that receives the pressure corresponding to a loaded load. CONSTITUTION:A solenoid 31 is operated by a deceleration sensor 35 and encloses the pressure that corresponds to a loaded load in an enclosure room 22 and a stepped room 9 by permitting a plunger 30 to close a path 1j. A piston 21 is provided in the enclosure room 22 and receives the force of a relatively weak spring 25 and then engages with a relatively strong spring 27 by its regression. A hydraulic control plunger 2 controls the hydraluic pressure of a rear wheel brake 41 by the pressure of the stepped room 9 and a rear wheel brake 40 interlocks with the rear wheel brake 41 through a valve 4. Since the piston 21 that receives spring force in the enclosure room 2 like this, optimum hydraulic pressure control can be performed without varying the critical hydraulic pressure during sudden braking.

Description

【発明の詳細な説明】 本発明は自動車の液圧ブレーキ装置等に用いられ、入口
液圧(マスターシリンダ液圧)の上昇に対し出口液圧(
後輪ブレーキ液圧)の上昇を制限するための液圧制御弁
、特にこの制限の仕方が、(車両重量毎に)最適rlも
のとなるよう変化する減速度感知型液圧制御弁に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used in hydraulic brake systems of automobiles, etc., and is used to increase outlet hydraulic pressure (master cylinder hydraulic pressure) in response to an increase in inlet hydraulic pressure (master cylinder hydraulic pressure).
This is a hydraulic pressure control valve for restricting the increase in rear wheel brake fluid pressure, especially a deceleration-sensing hydraulic pressure control valve whose method of restriction changes to the optimum value (for each vehicle weight). be.

自動車の液圧制動装置においては5前後輪を同時に制動
するが、この際後輪が元にロックすると、自動車はスキ
ッドと称せらnる尻振現a!を生し、前輪が先にロック
した場合に較べ頗る危険である。
A car's hydraulic braking system brakes all five front and rear wheels at the same time, but if the rear wheels lock at the same time, the car skids, causing the car to tremble. This is more dangerous than if the front wheels locked up first.

そこで、制動時は車体荷重が前方に移動するため後輪荷
車が減少することから、前輪より後輪の方がロックし易
くなる事実も考慮し、前輪ブレーキ液圧(マスターシリ
ンタ゛液圧)の上昇に対し、後輪ブレーキ液圧の上昇を
制限する液圧制御弁が後輪フレーキ系には挿入されてい
る。
Therefore, considering the fact that the rear wheels are more likely to lock up than the front wheels, since the weight of the rear wheels decreases as the vehicle load moves forward during braking, the front wheel brake fluid pressure (master cylinder fluid pressure) is increased. On the other hand, a hydraulic pressure control valve that limits the increase in rear wheel brake fluid pressure is inserted into the rear wheel brake system.

この棟液圧制御弁としては、はねにジしして入口液圧に
応動し、この入口液圧を制限しつつ出口液圧と/A、す
グロポーショニングバルブとか、リミッティングバルブ
等のバルブが知られているが、いずれのバルブも後輪ブ
レーキ液圧の上昇を制限し始める時の液圧(臨界液圧)
が不変であり、前後輪ブレーキ力配分特性が一定である
。しかるに。
This hydraulic pressure control valve can be used as a global portioning valve, a limiting valve, etc., which responds to the inlet hydraulic pressure and controls the outlet hydraulic pressure while limiting the inlet hydraulic pressure. These valves are known as the hydraulic pressure (critical hydraulic pressure) when any valve starts to limit the increase in rear wheel brake fluid pressure.
remains unchanged, and the front and rear wheel brake force distribution characteristics are constant. However.

前後輪が同時にロックするようtよ理想の前後輪ブレー
キ力配分特性は、車両重量が変るにつれて変化し、上記
臨界液圧は車両重量の増加に伴い上昇させる必要がある
。この意味合いにおいて、上記のバルブは、空車時と積
車時とで車両重量が大きく変化するトラック等には不向
きである。
The ideal front and rear wheel brake force distribution characteristics that allow the front and rear wheels to lock simultaneously change as the vehicle weight changes, and the critical hydraulic pressure needs to be increased as the vehicle weight increases. In this sense, the above-mentioned valve is unsuitable for trucks and the like where the vehicle weight changes greatly between when the vehicle is empty and when it is loaded.

このため、一定以上の減速度に応動口で該一定減速度に
対応した封じ込め圧(車両重量の増加につれ高く7よる
)によりピストンを介し前記ばねを圧縮するバルブ(通
常Gバルブと杯せらnる)を上記バルブと組合せ、これ
により上記臨界液圧を車両重量の増加に応じ高め得るよ
うにした減速度感知型液圧制御弁が提案されている。
For this reason, when the deceleration exceeds a certain level, a valve (usually a G valve and a closed valve) compresses the spring via a piston using a containment pressure corresponding to the certain deceleration (which increases as the weight of the vehicle increases) at the reaction port. ) has been proposed in combination with the above-mentioned valve, thereby making it possible to increase the above-mentioned critical hydraulic pressure in accordance with an increase in vehicle weight.

この種液圧制御弁は、前後輪ブレーキ力(液圧)配分特
性が空車時第2図にa−b−cで示す如くになり、成る
積車状態で同図中a−d−eの如くになって、いかなる
車両重量のもとでも前後輪ブレーキ力配分が理想に近い
ものとなるよう゛、後輪ブレーキ液圧を制御することを
狙ったものであもしかし、空車状態でブレーキペダルを
急速に踏込む制動時は、車両減速度の発生が遅れ気味と
rlす、この減速度に応動するGバルブも応答遅れを生
ずるため、前記刺し込め圧が車iiIiliMIitに
対応せず、高くなり過ぎる。従って、このような空車状
態では、前記ピストンが移動せず、本来前記はねのセッ
ト荷重で決まる点ゆで臨界液圧P6□を生じなければな
らない処、臨界液圧が点fへと上昇してし1い、前後輪
ブレーキカ配分特牲が理想に近し、a−b−cからa’
−f−gへとすれてしまう。
This type of hydraulic pressure control valve has front and rear wheel brake force (hydraulic pressure) distribution characteristics as shown in a-b-c in Fig. 2 when the car is empty, and as shown in a-d-e in the figure when the car is loaded. The idea was to control the rear wheel brake fluid pressure so that the distribution of brake force between the front and rear wheels would be close to ideal under any vehicle weight. When braking is performed by rapidly stepping on the brake pedal, the occurrence of vehicle deceleration tends to be delayed.The G valve that responds to this deceleration also has a delay in response, so the stabilization pressure does not correspond to the vehicle iiiilliMIit and becomes high. Pass. Therefore, in such an empty state, the piston does not move, and the critical fluid pressure rises to point f, where the critical fluid pressure P6□ should originally be generated at the point determined by the set load of the spring. First, the front and rear wheel brake force distribution characteristics are close to ideal, and from a-b-c to a'
-f-g.

これがため従来、Gバルブに回い前記封じ込め圧の源と
ljる液圧(通常マスターシリンダ液圧)の通路中にオ
リフィスを設け、これにより急制動時も封じ込め圧が高
(/、Cり逍ぎないようにする工夫がなされていたが、
この場合積車状態での急制動時当該オリフィスが封じ込
め圧の透やカリ2昇圧を妨け、その間にGバルブが車両
減速度に応動して閉じることから、封じ込め圧が車両重
量に対応せず、低くなり過ぎる。従って、この場合上記
ピストンの移動ItL(上記ばねの圧縮量)が不足し、
本来点dで臨界液圧”sstを生じなければならない処
、臨界液圧が点りで生じてしまい、前後輪ブレーキ力配
分特性が理想に近いa−d−eからa−h−1へとすれ
てしまう。
For this reason, conventionally, an orifice is provided in the passage for the hydraulic pressure (usually master cylinder hydraulic pressure) that goes to the G valve and is the source of the confinement pressure. Efforts were made to prevent this from happening, but
In this case, during sudden braking with a loaded vehicle, the orifice prevents the containment pressure from passing through and increasing the potash 2 pressure, and during this time the G valve closes in response to vehicle deceleration, so the containment pressure does not correspond to the weight of the vehicle. , too low. Therefore, in this case, the movement ItL of the piston (the amount of compression of the spring) is insufficient,
Normally, critical fluid pressure "sst" should be generated at point d, but critical fluid pressure is generated at point d, and the front and rear wheel brake force distribution characteristics change from a-de-e, which is close to the ideal, to a-h-1. It will fade.

本発明は、封じ込め液圧に応動するピストンを設け、こ
のピストンを、比較的はね定数の低いはねで常時押圧T
ると共に、該ピストンが封じ込め液圧により所定以上押
圧されたときに比較的はね定数の高いばねに係合し、該
ばねによっても押圧するように形成し、封じ込め呈が入
口液圧が遮断された後の封じ込め液圧を、液圧制御ツー
ランジャの閉弁方間への移動により該ピストンの作動と
連動して増圧するようにすることにより、前記オリフィ
スを用いずとも、空車時は該ピストンを比較的はね定数
の低いばねのみで制御して、急制動時といえども臨界液
圧が高くなり過ぎるのを防止でき、又、横車時は該ピス
トンを比較的はね定数の高いはねと前記比較的はね定数
の低いばねとの両者で制御して、急制動時といえども臨
界液圧が低く7;cり過ぎるのを防止でき、いかなる車
両![量のもとでも、又いかなる制動速度のもとでも理
想に近い前後輪ブレーキ力配分特性が得られるよう後輪
ブレーキ液圧を制御できて、上述の問題を解決できると
の観点から、この理想を具体化した減速度感知型液圧制
御弁を提供しようとするものである0 萱た、本発明は、上記ピストンを押圧する比較、的はね
定数の高いはねに所定のセットfJ貞’e与えることに
より、空車時の臨界液圧と、横車時の臨界液圧との間に
上記セット07i′菫分の差を設け、槓車時の後輪ブレ
ーキ液圧を増加させ、更に車両の理想に近い前後輪ブレ
ーキ力配分特性により合致させた特性を得ることができ
る減速度感知型液圧制御弁を提供しようとするものであ
る。
The present invention provides a piston that responds to containment hydraulic pressure, and constantly presses the piston with a spring having a relatively low spring constant.
At the same time, when the piston is pressed by a predetermined amount or more by the containment liquid pressure, it engages with a spring having a relatively high spring constant and is also pressed by the spring, so that the containment effect is such that the inlet liquid pressure is cut off. By moving the hydraulic pressure control two plunger to the valve-closing direction and increasing the containment hydraulic pressure after the piston is operated, the piston can be operated when the vehicle is empty without using the orifice. By controlling only the spring with a relatively low spring constant, it is possible to prevent the critical fluid pressure from becoming too high even during sudden braking, and when driving sideways, the piston can be controlled by the spring with a relatively high spring constant. By controlling both the above-mentioned spring with a relatively low spring constant, the critical hydraulic pressure is low even during sudden braking, and it is possible to prevent excessive rotation, making it suitable for any vehicle! [From the viewpoint that the rear wheel brake fluid pressure can be controlled so as to obtain close to ideal front and rear brake force distribution characteristics under any braking speed and any braking speed, the above problem can be solved. It is an object of the present invention to provide a deceleration sensing type hydraulic control valve that embodies the ideal. By giving 'e, a difference corresponding to the above set 07i' is created between the critical hydraulic pressure when the vehicle is empty and the critical hydraulic pressure when the vehicle is sideways, increasing the rear wheel brake fluid pressure when the vehicle is ramming, and further The present invention aims to provide a deceleration sensing type hydraulic pressure control valve that can obtain characteristics that more closely match front and rear wheel brake force distribution characteristics that are close to ideal for a vehicle.

以下、図示の実施例に基づき本発明の詳細な説明するっ 第1図は本発明減速度感知型液圧制御弁を2系統配官用
に構成した一例構成で、弁本体lに、小径の孔1a、中
径の孔1c+および大径の孔1cよりなる段付貫通孔と
、該段付貫通孔に対し略々平行位置において、小径の孔
1(1および大径の孔leよりなる段付孔とを形成する
Hereinafter, the present invention will be described in detail based on the illustrated embodiments. Figure 1 shows an example configuration in which the deceleration sensing type hydraulic pressure control valve of the present invention is configured for use in two systems. A stepped through hole consisting of a hole 1a, a medium diameter hole 1c+, and a large diameter hole 1c, and a stepped through hole consisting of a small diameter hole 1 (1) and a large diameter hole le at a position approximately parallel to the stepped through hole. A hole is formed.

段付貫通孔の中径の孔lb内に1ランジヤ2を摺動自在
に嵌合し、更に孔lc内にバルブホルダ4を摺動自在に
嵌合して)゛ランジャ2とバルブホルダ4との間に室6
を画成する。
(1) The langeer 2 is slidably fitted into the medium diameter hole lb of the stepped through hole, and the valve holder 4 is also slidably fitted into the hole lc. room 6 between
Define.

また、小径の孔laに嵌入する1ランジヤ2の部分は、
小径部2aに形成され、この小径部2aは、該小径の孔
1aに外周が嵌合したリング8の内周面に摺動自在に嵌
合して1ランジヤ2と弁本体lの孔1a、lbとの間に
段付室9を画成する。
In addition, the part of 1 langier 2 that fits into the small diameter hole la is
This small diameter portion 2a is formed in a small diameter portion 2a, and this small diameter portion 2a is slidably fitted into the inner peripheral surface of a ring 8 whose outer periphery is fitted into the small diameter hole 1a. A stepped chamber 9 is defined between lb and lb.

ifc、孔1aのH口端2よび孔ICの開口端を夫々プ
ラグ7.8により閉塞し、プラグ7およびプランジャ2
間に室5を画成する。
ifc, the H port end 2 of the hole 1a and the open end of the hole IC are each closed by a plug 7.8, and the plug 7 and the plunger 2 are closed.
A chamber 5 is defined therebetween.

室5に臨むプランジャ2の端面より室6側に臨む1ラン
ジヤ2の端面1で延びた貫通孔2bを設け、上記貫通孔
2b内に弁ステムlla′fr:有し、ツーラグ7に着
座したはね10で閉弁方間へ付勢されたポペット弁体l
l′5:配置し、この弁体11に対する弁座12を室5
に臨むツーランジャ2の端面に嵌着する。
A through hole 2b extending from the end surface of the plunger 2 facing the chamber 5 to the end surface 1 of the plunger 2 facing the chamber 6 side is provided. The poppet valve l is biased towards valve closing by screw 10.
l'5: The valve seat 12 for this valve body 11 is placed in the chamber 5.
It fits onto the end face of the two-runger 2 facing the front.

弁体11の弁ステムllaとは遠い端部を7ラグ7に摺
動自在に嵌入して弁体11を案内すると共に、該プラグ
7と該弁座12との間にはね18を縮設する。
The end of the valve body 11 far from the valve stem lla is slidably fitted into the lug 7 to guide the valve body 11, and a spring 18 is compressed between the plug 7 and the valve seat 12. do.

バルブホルダー4に、ポペット弁体11の弁ステムll
aを押し込んで弁体11を開弁位置と7Zすフリーピス
トン14を摺動自在に嵌合してi15を画成し、この室
に開口する盲孔4aをバルブホルダー4に形成する。
Attach the valve stem ll of the poppet valve body 11 to the valve holder 4.
a to move the valve body 11 to the open position 7Z.The free piston 14 is slidably fitted to define i15, and a blind hole 4a opening into this chamber is formed in the valve holder 4.

直孔4a内には、はね10.ポペット弁体ll及び弁座
12と同僚のはねI O’のポペット弁体lx’および
弁座12′を配置し、ポペット弁体11’の弁ステムl
laを弁体11から遠いフリーピストン14の端面に突
当てて、弁体11’を開弁位置とはすO プラグ8に近いバルブホルダー4の小径端部4bをプラ
グ8に摺動自在に嵌入して室16を画成し、この室に盲
孔4aの底部内を通じさせる孔4cをバルブホルダー4
に設ける。
Inside the straight hole 4a is a spring 10. Place the poppet valve body 11 and the valve seat 12 and the poppet valve body lx' and the valve seat 12' of the spring I O', and the valve stem l of the poppet valve body 11'.
1a against the end face of the free piston 14 far from the valve body 11 to set the valve body 11' to the open position O. Fit the small diameter end 4b of the valve holder 4, which is close to the plug 8, into the plug 8 so that it can slide freely. A hole 4c is formed in the valve holder 4 to define a chamber 16, and the bottom of the blind hole 4a communicates with this chamber.
Provided for.

プラグ8には更に、室16に通ずる液′圧入ロポート1
7″fr:形成し、弁本体1には更に室5に通路xfを
介して通ずる液圧入口ポー)18と、室15に通ずる液
圧出口ポー)19と、室6に通ずる液圧出口ボート20
とを形成する。
The plug 8 further includes a liquid press port 1 communicating with the chamber 16.
7"fr: formed, the valve body 1 further includes a hydraulic inlet port) 18 communicating with the chamber 5 via a passage xf, a hydraulic outlet port ) 19 communicating with the chamber 15, and a hydraulic outlet port communicating with the chamber 6. 20
to form.

萱た、段付孔側において、小径の孔xdにピストン21
を摺動自在に嵌着させて室22を形成すると共に、大径
の孔leに露出するピストン21の軸部21aを小径部
21bとすることにより形成した段付部210にワッシ
ャ28を嵌合し、大径の孔1eの開口端を閉塞するプラ
グ24と該ワッシャ28との間に比較的弱いはね25を
縮設すると共に、上記ツーラグ24と大径の孔1eの底
部に着座したワッシャ26との間に比較的強いばね27
 f縮feし、ピストン21のプラグ24側への移動を
比較的弱いばね25で常時規制すると共に、ピストンの
所定以上の移動に際し、ピストン21と軸部21aとの
段付部21dにワッシャ26を保合させ、比較的強いは
ね27によってもピストン21の移動を規制するように
作用させる。従って、封じ込め圧P。とはね荷重Fとの
関係は、第8図において、o−p−q−r−sの特性と
なる〇室22を、通路11により段付室9に連通させる
と共に1通路ljにより通wJlfの中途部に連通きせ
る。上記中途部には、また、別の孔lkが開口し、法孔
lkにはソレノイドプランジャ30が挿入されて、ソレ
ノイドコイル81により、ソレノイドプランジャ80が
突出するとき、通h tjを通Mlfから遮断できるも
のとする。
Insert the piston 21 into the small diameter hole xd on the stepped hole side.
is slidably fitted to form the chamber 22, and the washer 28 is fitted to the stepped part 210 formed by making the shaft part 21a of the piston 21 exposed in the large diameter hole le into the small diameter part 21b. A relatively weak spring 25 is installed between the plug 24 that closes the open end of the large diameter hole 1e and the washer 28, and a washer 25 is installed between the two lug 24 and the bottom of the large diameter hole 1e. 26 and a relatively strong spring 27
The movement of the piston 21 toward the plug 24 side is constantly restricted by a relatively weak spring 25, and when the piston moves more than a predetermined amount, a washer 26 is attached to the stepped portion 21d between the piston 21 and the shaft portion 21a. The movement of the piston 21 is also controlled by the relatively strong spring 27. Therefore, the confinement pressure P. The relationship between this and the splash load F is shown in Fig. 8, where the 〇 chamber 22, which has the characteristics of op-q-r-s, is communicated with the stepped chamber 9 through the passage 11, and the passage wJlf is connected through one passage lj. Connect to the middle part of. Another hole lk is opened in the middle part, and the solenoid plunger 30 is inserted into the hole lk, and when the solenoid plunger 80 protrudes by the solenoid coil 81, the passage h tj is cut off from the passage Mlf. It shall be possible.

そして、ソレノイドコイル31をリレー32の常開接点
82aを経て%LLaB5接続すると共に、リレー32
のコイル82bkトランジスタ84のコレクターエミン
タ通路を経て電源88に接続Tる。また、トランジスタ
34のベースは車両減速度を検出して閉じる減速度検出
センサー85を介して電源88に接続する。
Then, the solenoid coil 31 is connected to %LLaB5 through the normally open contact 82a of the relay 32, and the relay 32
The coil 82bk of the transistor 84 is connected to the power supply 88 through the collector emitter path. Further, the base of the transistor 34 is connected to a power source 88 via a deceleration detection sensor 85 that detects vehicle deceleration and closes.

上述の構成になる本発明減速度感知型液圧制御弁ハ、入
口ボート17を左前輪のホイールシリンダ37と共にタ
ンデムマスターシリンダ88の一方の液圧出口に、入口
ボー)18を右前輪のホイールシリンダ89と共にタン
デムマスターシリンダ88の他方の液圧出口に、又出口
ボート19を右後輪のホイ−ルシリンダ40に、更に出
口ポート20を左後輪のホイールシリンダ41に接続し
て本液圧制御弁は実用可能であり以下の如くに作用する
The deceleration sensing type hydraulic pressure control valve of the present invention having the above-mentioned configuration, the inlet boat 17 is connected to one hydraulic outlet of the tandem master cylinder 88 together with the wheel cylinder 37 of the left front wheel, and the inlet boat 18 is connected to the wheel cylinder of the right front wheel. 89 and the other hydraulic pressure outlet of the tandem master cylinder 88, the outlet boat 19 is connected to the wheel cylinder 40 of the right rear wheel, and the outlet port 20 is connected to the wheel cylinder 41 of the left rear wheel. is practical and works as follows.

通常、減速度検出センサー85は開放状態を保ち、トラ
ンジスタ84のベースに電源88の電圧が印加されず、
トランジスタ84はオフ状I!を保ち、リレーコイル8
2bが附勢されず、リレー接点82aは開いている。こ
れがため、ソレノイドコイル31は附勢されることが2
よく、ソレノイドツーランジャ30は引込位置にあり、
通hlコを1幀Ifに連通させている。
Normally, the deceleration detection sensor 85 is kept open, and the voltage of the power supply 88 is not applied to the base of the transistor 84.
Transistor 84 is in the off state I! and relay coil 8
2b is not energized and relay contact 82a is open. Therefore, the solenoid coil 31 is energized only once.
Often, the solenoid two plunger 30 is in the retracted position,
Connecting HL to 1 If.

ここで、ブレーキペダル42の踏込みによりマスターシ
リンダ88を作動させると、該マスターシリンダの両液
圧出0力)ら同時に同じ値のマスターシリンダ液圧Pm
が出力される。これらマスターシリンダ液圧Pmtlf
lJ輪ホイールシリンダ87.89には常時その1″1
、又後輪ホイールシリンダ4゜にはボート17よりil
 6.孔4C%1ii孔4a、弁体11′および弁座1
2′間の隙間、室15及びボート19′ft経て当初そ
のまま、更に後輪ホイールシリンダ41には、ボート1
8より通Mlf、g5、弁体11および弁座12間の隙
間、貫通孔2bと弁ステムllaとの隙間、室6および
ボー)20を経て当初その′1″!供給される。従って
、後輪ホイールシリンダ40.41に向う後輪ブレーキ
液圧Pry当初マスターシリンダ液圧(前輪ブレーキ液
圧) Pmに等しく、第2図にa−bで示す特性を持っ
て上昇する。ところで、ボート18からのマスターシリ
ンダ液圧pmは、通klf、1j−X−介して室22に
達し、更に通−11を介して段付至9にも達している。
Here, when the master cylinder 88 is actuated by depressing the brake pedal 42, both hydraulic pressures of the master cylinder (0 force) are simultaneously changed to the same value of the master cylinder hydraulic pressure Pm.
is output. These master cylinder hydraulic pressures Pmtlf
lJ wheel cylinder 87.89 always has 1"1
, and the rear wheel cylinder 4° has an il from the boat 17.
6. Hole 4C%1ii Hole 4a, valve body 11' and valve seat 1
2' gap, the chamber 15 and the boat 19'ft as originally, and the rear wheel cylinder 41 has the boat 1
8 through Mlf, g5, the gap between the valve body 11 and the valve seat 12, the gap between the through hole 2b and the valve stem lla, the chamber 6 and the bow) 20, and is initially supplied with that '1''. The rear wheel brake fluid pressure toward the wheel cylinders 40 and 41 is equal to the initial master cylinder fluid pressure (front wheel brake fluid pressure) Pm, and increases with the characteristics shown by a-b in FIG. 2. By the way, from the boat 18 The master cylinder hydraulic pressure pm reaches the chamber 22 through the passages klf and 1j-X-, and further reaches the stage 9 through the passage -11.

而して、この時のプランジャ2に作用する力の釣合式は
、段付貫通孔の中径の孔1bと嵌合する1ランジヤ2の
断面積2A□、プランジャ2の小径部2aの断面積をA
2、はね1δのはね力をF1段付室9内の液圧(後述す
る封じ込め圧)をPo (上記状態ではPo−Pm)と
すると、次式で表わされる。
Therefore, the balance equation of the force acting on the plunger 2 at this time is: the cross-sectional area 2A□ of one plunger 2 that fits into the medium-diameter hole 1b of the stepped through-hole, the cross-sectional area of the small diameter portion 2a of the plunger 2 A
2. The spring force of the spring 1δ is expressed by the following equation, assuming that the hydraulic pressure (containment pressure to be described later) in the stepped chamber 9 is Po (Po−Pm in the above state).

PO・(A□−A2)+f>PIn・(A□−A、)・
・・・・・・・・・・・(1)ブレーキペダル42の一
層の踏込みでマスターシリンダ液圧pmが上昇しても、
PO−pmであれは、1ランシヤ2ははね18により図
中上方に位置している。
PO・(A□−A2)+f>PIN・(A□−A,)・
・・・・・・・・・・・・(1) Even if the master cylinder hydraulic pressure pm increases due to further depression of the brake pedal 42,
In the case of PO-pm, one lancia 2 is positioned upward in the figure by the spring 18.

そして、上記制動中、車両減速度が一定値以上になると
、これを検知して減速度検出センサー85が閉状態とl
よる結果、トランジスタ84のベースリレーコイル32
1)の附勢によりリレー接点82aカ、1閉っ、。、、
)、ッ9ツィ 、1.イー8 □。1源、8により附勢
されてソレノイド1ランジヤ8oを突出させ、1酌1j
を通路xfより遮断する。かくて、室221通鵜1i、
段付室9に上記一定値の車両減速度を生じた時のマスタ
ーシリンダ液圧が封じ込められ、この封じ込め圧poは
1ランジヤ2の受圧面積(A、 −12)との槓で表わ
される力によりプランジャ2を第1図中上方へばね18
と共に押動しようとする。同時に、上記封じ込め液圧p
oは、ピストン21をも上方へ押動しようと働く。
During the above-mentioned braking, when the vehicle deceleration exceeds a certain value, this is detected and the deceleration detection sensor 85 is closed.
As a result, the base relay coil 32 of the transistor 84
1), relay contact 82a closes. ,,
), t9tsi, 1. E8 □. 1 source, 8 is energized to project solenoid 1 lunge 8o, 1 cup 1j
is cut off from passage xf. Thus, room 221-dori cormorant 1i,
The master cylinder hydraulic pressure when the vehicle deceleration of the above-mentioned constant value occurs is contained in the stepped chamber 9, and this containment pressure po is determined by the force expressed by the pressure receiving area (A, -12) of the 1 langeer 2. Spring 18 moves the plunger 2 upward in FIG.
Trying to move along with it. At the same time, the containment hydraulic pressure p
o acts to push the piston 21 upward as well.

ところで、同じ減速度と発生するにも、そのためのブレ
ーキペダル踏力(マスターシリンダ液圧Pm)は、車両
重量が重い程大きく、従って上記封じ込め圧PoFi車
両重量に対応する。
Incidentally, even though the same deceleration occurs, the brake pedal depression force (master cylinder hydraulic pressure Pm) for this purpose increases as the vehicle weight becomes heavier, and therefore corresponds to the above-mentioned containment pressure PoFi vehicle weight.

しかし、空車時のように車両重量が軽い状態では、室2
2内の封じ込め圧がピストン21F比較的強いはね27
に仇して図中上昇させる程高くないpo□にあり、比較
的弱いはね25を押し縮めるo−p@Jのばね何重F(
、)を与んられ、ピストン21の軸部21aの段付部2
11に着座しているワッシャ28をワッシャ26より若
干離す程度の位置にとど着る。
However, when the vehicle weight is light, such as when the vehicle is empty, the interior
The confinement pressure inside the piston 21F is relatively strong.
How many times F(
), and the stepped portion 2 of the shaft portion 21a of the piston 21
The washer 28 seated on the washer 11 is placed at a position slightly apart from the washer 26.

この時点より、ブレーキペダル42を更に踏込み、マス
ターシリンダ液圧Pmが上昇すると、前記(1)式中有
頂の値が大きりiヨってゆき5フ”ランジャ2はばね1
3に仇し図中下方に移動し、遂には弁体11が弁座12
に着座することにより自閉する。
From this point on, when the brake pedal 42 is further depressed and the master cylinder hydraulic pressure Pm increases, the value of the eclipse in the equation (1) increases, and as it moves forward, the spring 1
3, the valve body 11 moves downward in the figure, and finally the valve body 11 touches the valve seat 12.
Self-closes by sitting on.

このツーランジャ2の図中下方移動は、段付室9内の液
を圧縮する如く作用し、段付室9内の封じ込め液を通路
1ユを介して室22に送り、ピストン21を上昇作動さ
せる(第8図中amで示す0′−pI−q/−rI−6
は1ランジャ作動時のはね荷重特性2示す)が、ピスト
ン21軸部21aの段付部21Cを押圧しているはね2
5は比較的低いはね定数のものを用いているためにlt
2荷fiFはF、−1i’□の差に相当する部分しか上
昇し/jいからほとんど上昇し・よいといえる。
This downward movement of the two plunger 2 in the figure acts to compress the liquid in the stepped chamber 9, sends the containment liquid in the stepped chamber 9 to the chamber 22 through the passage 1, and moves the piston 21 upward. (0'-pI-q/-rI-6 indicated by am in Figure 8)
1 shows the spring load characteristic 2 when the plunger is activated) is the spring 2 that presses the stepped portion 21C of the shaft portion 21a of the piston 21.
5 uses one with a relatively low spring constant, so it is
Since the second load fiF rises only by a portion corresponding to the difference between F and -1i'□, it can be said that it almost rises.

而して、この時点よりホイールシリンダ41に問う後輪
ブレーキ液圧prは以下の如くに上昇を制限されるが、
この時の液圧、即ち臨界液圧Ps (第2図参照)は上
記(1)式の五石項が等しくなると共に、同式中Pmに
ps工を代入して、次式で表わされるO ここでAH、ピストン21の断面積 かかるポペット弁体11の自閉時、マスターシリンダ液
圧Pm!、室5内において、 PmA、の力で1ランジ
ヤ2を逆向き、つまり図中上向きに押すようになり、室
6内の後輪ブレーキ液圧prが1ランジヤ2に及ぼす図
中下向きの力PrA1と対向するOここで、Pm2Ps
□と7jるようブレーキペダル42を更に踏込むと、マ
スターシリンダ液[EPmによる力がはね18のはね力
F等と共に1ランジヤ2を図中上昇させ、弁体11を再
び開く。これによりホイールシリンダ41に問う後輪ブ
レーキ液圧prはマスターシリンダ液圧Pmの補充を受
けて増加するが、弁体11が開くことでマスターシリン
ダ液圧Pmが再度ツーランジャ2を図中下向きに押工よ
うに7よる結果、弁体11は直ちに自閉するO力)かる
作用の繰返しにより当該後輪ブレーキ液圧Pr Hマス
ターシリンダ液圧Pmの上昇に対して制限されつつ上昇
する。
From this point on, the rear wheel brake fluid pressure PR applied to the wheel cylinder 41 is restricted from increasing as shown below.
The hydraulic pressure at this time, that is, the critical hydraulic pressure Ps (see Figure 2), can be expressed as O Here, AH is the master cylinder hydraulic pressure Pm when the poppet valve body 11 self-closes by the cross-sectional area of the piston 21! , in the chamber 5, the force PmA pushes the first lange 2 in the opposite direction, that is, upward in the figure, and the rear wheel brake fluid pressure pr in the chamber 6 exerts a downward force PrA1 on the first lange 2 in the figure. Opposed to O where Pm2Ps
When the brake pedal 42 is further depressed so that □ and 7j are pressed, the force of the master cylinder fluid [EPm, together with the spring force F of the splash 18, etc., causes the 1-lunger 2 to rise in the figure, and the valve body 11 is opened again. As a result, the rear wheel brake fluid pressure pr applied to the wheel cylinder 41 increases as the master cylinder fluid pressure Pm is replenished, but as the valve body 11 opens, the master cylinder fluid pressure Pm again pushes the two plunger 2 downward in the figure. As a result of operation 7, the valve body 11 immediately closes itself (O force) By repeating this action, the rear wheel brake hydraulic pressure PrH increases while being limited with respect to the increase in the master cylinder hydraulic pressure Pm.

この間、即ちprn> ps□の間、1ランジヤ2に作
用する力の釣合い式を求めると、上述した処から明らか
なように、 と1より、この式からホイールシリンダ41に向う後輪
ブレーキ液圧Prは次式で表わされる。
During this period, that is, during prn > ps□, the balance equation of the force acting on the 1 plunger 2 is found.As is clear from the above, from this equation, the rear wheel brake fluid pressure toward the wheel cylinder 41 is Pr is expressed by the following formula.

この式から明らかなようにpm = ps□で当該後輪
ホイールシリンダ液圧Prは第2図にJ−にで示す如く
、これ筐で(第2図中a−b)の上昇勾配lよができる
As is clear from this equation, when pm = ps□, the rear wheel cylinder hydraulic pressure Pr has an upward slope l of (a-b in Fig. 2) in this case, as shown by J- in Fig. 2. can.

一方、プランジャ2の上記作動による弁体11の開閉は
、フリーピストン14F介し弁体11’にその1で伝達
され、この弁体11’も同時且つ同様に開閉する。従っ
て、ホイールシリンダ40に向う後輪ブレーキ液圧Pr
もホイールシリンダ41に囲う後輪ブレーキ液圧と同僚
に制御される。
On the other hand, the opening and closing of the valve body 11 due to the above-mentioned operation of the plunger 2 is transmitted to the valve body 11' via the free piston 14F, and this valve body 11' also opens and closes simultaneously and in the same manner. Therefore, the rear wheel brake fluid pressure Pr toward the wheel cylinder 40
It is also controlled by the rear wheel brake fluid pressure surrounding the wheel cylinder 41.

従って、両後輪ブレーキ液圧Prは上記作用により、前
後輪ブレーキ力配分特性が空車時の理想特性に近似して
第2図中a−J−にとなるように制御され、後輪が先に
ロックする危険を防止することができる。
Therefore, the brake fluid pressure Pr of both rear wheels is controlled by the above-mentioned action so that the front and rear wheel brake force distribution characteristics approximate the ideal characteristics when the car is empty and become a-J- in Fig. 2, so that the rear wheels are placed first. It can prevent the danger of locking.

一方、積車により車両重量が重くなり、それにつれ室2
2.p内の封じ込め圧が高くなると、この封じ込め圧が
ピストン21を比較的強いはね27を除々に大きく圧縮
するよう移動し、はね25゜27のばね力Fは車両重量
の増大につれ太きく lXる0例えは、第3図中封じ込
め圧Pogviね何重F8で室22,9内に液圧が封じ
込1れたとすると、1ランジヤ2の図中下向への移動に
よる閉弁時、室9内の封し込め液が呈22内に流入し、
ビストン21を更に図中上方に押動し、第3図中はね何
框F4で決定される更に高い封じ込め圧を得る0これに
より、はね荷重F4で前記(2)式の如く求まる臨界液
圧は更に上昇し、成る横車状態で第2図中Ps。
On the other hand, the weight of the vehicle increases due to the loading of vehicles, and as a result
2. As the confinement pressure in p increases, this confinement pressure moves the piston 21 to gradually compress the relatively strong spring 27, and the spring force F of the spring 25 and 27 increases as the vehicle weight increases. For example, if fluid pressure is confined in the chambers 22 and 9 at F8, then when the valve is closed due to the downward movement of the plunger 2 in the figure, the chamber The sealing liquid in 9 flows into the container 22,
The piston 21 is further pushed upward in the figure to obtain an even higher confinement pressure determined by the splash frame F4 in FIG. The pressure increases further, and a horizontal vehicle state occurs at Ps in Fig. 2.

からPs2に遜すると共に、同じくはね荷iFで前記(
4)式の如くに求着る後輪ブレーキ液圧prは第2図中
/−mで示すように制御されて、当該積車状態で前後輪
ブレーキ力配分特性を理想の特性に近い第2図中a−7
−mで示すものとなすことができ、後輪が先にロックす
る危険を防止しえる。
It is inferior to Ps2 from , and also the above-mentioned (
4) The rear wheel brake fluid pressure pr determined as shown in the equation is controlled as shown by /-m in Figure 2, and the front and rear brake force distribution characteristics in the loaded state are close to ideal characteristics as shown in Figure 2. Middle a-7
- m can be used to prevent the rear wheels from locking first.

伺上記実施例゛においては、プランジャ2には、當には
ね18のばねを開弁方向に加えるようにしているが、こ
のはね181’i、7ランジヤ2を単に位置決めするた
めのものであり、はね定数、セット荷重の非常に小さい
もので足り、場合によっては不要とすることができる。
In the above-mentioned embodiment, the spring 18 is applied to the plunger 2 in the valve opening direction, but this spring 181'i is simply for positioning the plunger 2. Yes, a very small spring constant and set load is sufficient, and in some cases it may be unnecessary.

また、上記実施例においては、減速度検出部の構成を、
減速度検出センサー85を用いるものにより説明したが
特公昭47−46297に見られる球体を用いこの球体
を用いこの球体の移動により閉弁するバルブにより封し
込め室を人口液圧から遮断し、封じ込め室入口に固定オ
リフィスを持つ減速度感知型液圧制御弁にも適用でき、
この場合には、第2図において、空車時a−j−に、積
車時a −l’−m’の各特性を得ることができる。即
ち、空車時の点b−コ間、積車時のh−z’間の圧力分
が増圧された部分である。
Furthermore, in the above embodiment, the configuration of the deceleration detection section is as follows:
Although the explanation was given using a deceleration detection sensor 85, a sphere as seen in Japanese Patent Publication No. 47-46297 was used to isolate the containment chamber from artificial fluid pressure by using this sphere and a valve that closed when the sphere moved. It can also be applied to deceleration sensing type hydraulic control valves with a fixed orifice at the chamber inlet.
In this case, in FIG. 2, the characteristics of a-j- when the car is empty and a-l'-m' when the car is loaded can be obtained. That is, the pressure between points b and co when the car is empty and between points h and z' when the car is loaded is the part where the pressure is increased.

以上説明した如く、本発明においては、封じ込め室内の
液圧に応動するピストンを設け、該ピストンを、封じ込
め室側へ比較的低いはね定数を。
As explained above, in the present invention, a piston is provided that responds to the hydraulic pressure within the containment chamber, and the piston is directed toward the containment chamber with a relatively low spring constant.

持つばねで押圧すると共に、該ピストンが封じ込め室内
液圧により所定以上押圧されたときに比較的高いはね定
数のばねに係合し、該ばねによっても押圧するようにし
、封し込め室が入口液圧から遮断された後の封じ込め液
圧2、液圧制御1ランジヤの開弁方向への移動により増
圧するようにしたから、空車時該ピストンを比較的低い
はね定数を持つはねのみで制御して、急制動時臨界液圧
が高くなりすぎるのを防止できると共に、横車時該ピス
トンを比較的高いはね定数を持つはねによっても制御し
て、急制動時臨界液圧がなく ix、りすき゛るのを防
止できる。更に不発明においては、上記比較的高いにね
定数のはねにセット荷重を与えることにより、積車時の
臨界液圧をより高くできる。
At the same time, when the piston is pressed by a predetermined amount or more due to the liquid pressure in the containment chamber, it engages a spring with a relatively high spring constant and is also pressed by the spring, so that the containment chamber is closed to the entrance. After being cut off from the hydraulic pressure, the pressure is increased by moving the containment hydraulic pressure 2 and the hydraulic pressure control 1 plunger in the valve opening direction, so when the piston is empty, the piston can be moved only by a spring with a relatively low spring constant. The piston can be controlled to prevent the critical hydraulic pressure from becoming too high during sudden braking, and the piston can also be controlled by a spring with a relatively high splash constant when the vehicle is sideways, so that the critical hydraulic pressure does not increase during sudden braking. ix, it can prevent it from slipping. Furthermore, in the present invention, by applying a set load to the springs having a relatively high spring constant, the critical hydraulic pressure at the time of loading a vehicle can be made higher.

従って、本発明の減速度感知型液圧制御弁はいかなる制
動速度のもとでも前記作用を正確に遂行し、車両重量毎
に理想に近い前後輪ブレーキ力配分特性が得られるよう
後輪ブレーキ液圧を制御することができる。
Therefore, the deceleration-sensing hydraulic pressure control valve of the present invention can accurately perform the above-mentioned action under any braking speed, and the rear wheel brake fluid can be adjusted to provide nearly ideal front and rear brake force distribution characteristics for each vehicle weight. Pressure can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明減速度感知型液圧制御弁を2系統配官用
に構成した例を自動車のX配官式液圧ブレーキ装置に実
用する状態で示す縦断側面図、第2図は同液圧制御弁の
液圧制御特性を従来の液圧制御弁による特性と比較して
示す線図、第8図は本発明の弁における封じ込め液圧と
、ばね荷重との関係を示T線図である。 l・・・弁本体        2・・・液圧制御プラ
ンジャ4・・・バルブホルダー   7.8.21.2
4・・・1ラグ9・・・段付室       10 、
10・・・はね11、ill’・・ポペット弁体  1
2 、12’・・・弁座14・・・フゞリーピストン 
  17 、18・・・入口ボート19 、20・・・
出口ボート   21・・ピストン22−=室    
     9.22・・・封じ込め室25・・比較的低
いはね定数を持つはね271.・比較的高いはね定数を
持つはね30・・・ソレノイド1ランジヤ 31・・・ソレノイドコイル   82・・・リレー8
8・・・電源        34・・・トランジスタ
35・・・減速度検出センサ  80〜85・・・減速
度検出部87 、89・・・前輪ホイールシリンダ38
・・・タンデムマスターシリンダ 40 、41・・・後輪ホイールシリンダ42・・・ブ
レーキペダル。 釦−1図 第2図 第3図 判期封(゛込め庄(PO〕
Fig. 1 is a vertical cross-sectional side view showing an example of the deceleration sensing type hydraulic pressure control valve of the present invention configured for two-system distribution, in a state in which it is put into practical use in an X-distribution type hydraulic brake system for an automobile. A diagram showing the fluid pressure control characteristics of the fluid pressure control valve in comparison with the characteristics of a conventional fluid pressure control valve. FIG. 8 is a T diagram showing the relationship between the containment fluid pressure and the spring load in the valve of the present invention. It is. l... Valve body 2... Hydraulic pressure control plunger 4... Valve holder 7.8.21.2
4...1 lug 9...stepped room 10,
10... Splash 11, ill'... Poppet valve body 1
2, 12'...Valve seat 14...Feley piston
17, 18... Entrance boat 19, 20...
Outlet boat 21...Piston 22-=chamber
9.22... Containment chamber 25... Splash 271 with a relatively low spring constant.・Spring 30 with a relatively high spring constant... Solenoid 1 Langeer 31... Solenoid coil 82... Relay 8
8... Power supply 34... Transistor 35... Deceleration detection sensor 80-85... Deceleration detection section 87, 89... Front wheel cylinder 38
...Tandem master cylinders 40, 41...Rear wheel cylinder 42...Brake pedal. Button-1 Figure 2 Figure 3 Date seal (PO)

Claims (1)

【特許請求の範囲】 L 入口液圧に応動し、この入口液圧ご制限しつつ出口
液圧となす液圧制御1ジンジヤと、制動された車両の所
定の減速度を検出する減速度検出部と、 上記液圧開運1ランジャを閉弁方向に押圧するよう配置
され、減速度検知部の減速度検知の際、入口液圧から遮
断される封じ込め室と2備えた減速度感知型液圧制御弁
にお、いて、封゛じ込め室内の液圧に応動するピストン
号設け、 該ピストンと、封じ込め室側へ比較的はね定数の低いは
ねで押圧すると共に、該ピストンが封じ込め室内液圧に
より所定以上押圧された時に比較的はね定数の高いばね
に糸合し、該ばねによっても押圧するように形成し、封
じ込め室が入口液圧が遮断された後の封じ込め液圧を、
上記液圧側$7う/ジャの閉弁方向への移動により増圧
して、液圧制御1ランジヤの作動液圧を槓載荷菫に対応
して変1しさせるようにしたことを特徴とする減速度感
知型液圧制御弁0 区 前記比較的はね定数の高いはねは、所定のセット荷
重を与えられている特許請求の範囲第1項記載の減速度
感知型液圧制御弁。
[Scope of Claims] L: A hydraulic pressure control gear that responds to the inlet hydraulic pressure and limits the inlet hydraulic pressure while controlling the outlet hydraulic pressure, and a deceleration detection unit that detects a predetermined deceleration of a braked vehicle. and a deceleration sensing type hydraulic control comprising a containment chamber which is arranged to push the plunger in the valve closing direction and is isolated from the inlet hydraulic pressure when the deceleration detection section detects deceleration. The valve is provided with a piston that responds to the hydraulic pressure in the containment chamber, and the piston presses toward the containment chamber with a spring having a relatively low spring constant, and the piston responds to the hydraulic pressure in the containment chamber. When pressed by a predetermined amount or more, the thread is connected to a spring with a relatively high spring constant, and the containment chamber is formed so that it is also pressed by the spring, so that the containment chamber absorbs the containment liquid pressure after the inlet liquid pressure is cut off.
The pressure reduction mechanism is characterized in that the pressure is increased by the movement of the hydraulic pressure side 7/jar in the valve closing direction, and the working hydraulic pressure of the hydraulic pressure control 1 langeer is changed 1 in accordance with the turret loading. Speed sensing type hydraulic pressure control valve 0 Section The deceleration sensing type hydraulic pressure control valve according to claim 1, wherein the spring having a relatively high spring constant is given a predetermined set load.
JP9402982A 1982-06-03 1982-06-03 Deceleration sensing type hydraulic control valve Granted JPS58211952A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9402982A JPS58211952A (en) 1982-06-03 1982-06-03 Deceleration sensing type hydraulic control valve
EP83105392A EP0096346B1 (en) 1982-06-03 1983-05-31 Deceleration-sensitive type hydraulic brake pressure control valve for automotive vehicle
DE8383105392T DE3374053D1 (en) 1982-06-03 1983-05-31 Deceleration-sensitive type hydraulic brake pressure control valve for automotive vehicle
US06/499,849 US4502735A (en) 1982-06-03 1983-06-01 Deceleration-sensitive type hydraulic brake pressure control valve for automotive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9402982A JPS58211952A (en) 1982-06-03 1982-06-03 Deceleration sensing type hydraulic control valve

Publications (2)

Publication Number Publication Date
JPS58211952A true JPS58211952A (en) 1983-12-09
JPH0333540B2 JPH0333540B2 (en) 1991-05-17

Family

ID=14099133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9402982A Granted JPS58211952A (en) 1982-06-03 1982-06-03 Deceleration sensing type hydraulic control valve

Country Status (1)

Country Link
JP (1) JPS58211952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261562A (en) * 1986-05-07 1987-11-13 Nippon Air Brake Co Ltd Deceleration response liquid pressure control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073072A (en) * 1973-11-05 1975-06-17
JPS5779057U (en) * 1980-11-01 1982-05-15

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073072A (en) * 1973-11-05 1975-06-17
JPS5779057U (en) * 1980-11-01 1982-05-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62261562A (en) * 1986-05-07 1987-11-13 Nippon Air Brake Co Ltd Deceleration response liquid pressure control device

Also Published As

Publication number Publication date
JPH0333540B2 (en) 1991-05-17

Similar Documents

Publication Publication Date Title
US6206484B1 (en) Brake system having a pilot-operated boost valve
AU690479B2 (en) Brake control apparatus for a vehicle
US3907379A (en) Control valve for anti-skid air braking system
KR0178520B1 (en) Anti-lock brake system
US4636010A (en) Antiskid apparatus for vehicles
US5947566A (en) Brake booster system
EP0392815A1 (en) Improvements in fluid pressure-operated braking systems for vehicles
US20040183367A1 (en) Hydraulic brake apparatus for a vehicle
JPS58211952A (en) Deceleration sensing type hydraulic control valve
JPS60236861A (en) Hydraulic brake system
US4502735A (en) Deceleration-sensitive type hydraulic brake pressure control valve for automotive vehicle
US5141086A (en) Controller for rear brakes
US5306075A (en) Hydraulic braking pressure control system having an on-off valve responsive to an output hydraulic pressure
JP2683352B2 (en) Anti-skid brake device
GB2230576A (en) Hydraulic braking system
JPH0212131Y2 (en)
JPS6140614Y2 (en)
EP0560197A1 (en) Brake fluid pressure control apparatus for antiskid brakes
US3966268A (en) Inertia load sensing brake valve
JPH01240352A (en) Brake liquid pressure control valve
JP5747876B2 (en) Hydraulic brake system
JP2704758B2 (en) Braking hydraulic control device
JPS58214450A (en) Deceleration speed sensitive type hydraulic control valve
JPH0137964Y2 (en)
JPH0230378Y2 (en)