JPS58211671A - Inspecting device for internal trouble of winding of transformer - Google Patents

Inspecting device for internal trouble of winding of transformer

Info

Publication number
JPS58211671A
JPS58211671A JP57094098A JP9409882A JPS58211671A JP S58211671 A JPS58211671 A JP S58211671A JP 57094098 A JP57094098 A JP 57094098A JP 9409882 A JP9409882 A JP 9409882A JP S58211671 A JPS58211671 A JP S58211671A
Authority
JP
Japan
Prior art keywords
transformer
winding
current
voltage
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57094098A
Other languages
Japanese (ja)
Inventor
Yoshito Ebisawa
海老沢 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57094098A priority Critical patent/JPS58211671A/en
Publication of JPS58211671A publication Critical patent/JPS58211671A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Protection Of Transformers (AREA)

Abstract

PURPOSE:To enable the early detection of a short-circuit trouble occurring inside a coil, by arranging a current transformer on the neutral point side of each of windings connected in parallel, and detecting and comparing simultaneously a current flowing through each winding. CONSTITUTION:The figure shows that a plurality of current transformers are arranged in a constitution of windings of a UHV transformer having high-voltage windings 3a- 3f and medium-voltage windings 4a-4f, and the current transformers 20a-20f are arranged at the positions of lead wires on the neutral point sides of the medium-voltage windings 4a-4f, respectively. The output signal leads of the current transformers 20a- 20f, which are not shown in the figure, are connected to control devices in a transformer control chamber, which are arranged separately from a group of transformers, and a circuit is constituted so that the outputs from the current transformers are compared with each other and that, when the values thereof are different from each other, a trip signal of the transformer is delivered as occasion calls. Such a constitution enables the quick detection of a short-circuit trouble between winding turns, etc., and the immediate specification of a unit transformer wherein the trouble occurs.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、UHV変圧器などの並列接続巻線の多い変圧
器に係9、変圧器コイル内ターン間短絡事故の検出を行
う変圧器巻線内部事故検出装置に関する。
[Detailed Description of the Invention] <Technical Field of the Invention> The present invention relates to a transformer having many windings connected in parallel, such as a UHV transformer. Regarding an internal accident detection device.

〈発明の技術的背景〉 電力需要の増加(伴い、現在、UHV送凧が計画され各
種U HV送電機器の開発が進められている。変圧器は
、これらのU HV送電機器の中で、重要な役割を果す
機器であるが、従来の変圧器に比べ電圧、客層ともに大
きく上回ることになり様々な問題をかかえている。現在
規定されているUHV変電所に訃けるUHV変圧器は、
運転最高電圧1100I(v11バンク当す容量200
0MvA〜3000MVAとなっている6従って、国鉄
貨車輸送制限の面から、変圧器は1相当り2〜4分割程
度に分割して製作され、現地にて、リードダクトによシ
並列接続されて使用されることになる。
<Technical Background of the Invention> Due to the increase in power demand, UHV kite transmission is currently being planned and development of various UHV power transmission equipment is underway. Among these UHV power transmission equipment, transformers are one of the most important. However, compared to conventional transformers, the voltage and customer base are significantly higher than that of conventional transformers, which poses various problems.
Maximum operating voltage 1100I (capacity 200 per V11 bank)
0MvA to 3000MVA 6 Therefore, due to restrictions on the transportation of JNR freight cars, transformers are manufactured by dividing each unit into 2 to 4 parts, and are used on site by connecting them in parallel through lead ducts. will be done.

このようKtJHV変圧器は非常に複雑な構成となるが
、大容量のため、その信頼性においては、従来以とに易
いものが要求されている。また、万一事故を生じた場合
にも、−ち早く仁れを検知して、事故を最小限に留め、
他の機器へ事故の波及ケ押える手段が考慮されなければ
ならない。
Although the KtJHV transformer has a very complicated structure, due to its large capacity, its reliability is required to be simpler than before. In addition, in the unlikely event that an accident occurs, we can quickly detect the problem and minimize the accident.
Measures to prevent accidents from spreading to other equipment must be considered.

第1図は従来の500KV約変圧器の1相当シの巻線構
成を示したものである。変圧器本体1には高圧巻線3、
中圧巻線4、低圧巻線5が単相学巻変圧器構成となるよ
う結線され、別置きの負荷時電圧調整器用タンク2には
変圧器本体の低圧巻線5に接続された励磁巻線6と電圧
調整用巻M7が収納され、賦圧調整用巻線7は変圧器本
体lならびに負荷時タッグ切換器lOに接続されている
。また変圧器本体lの高電圧線路端8と中電圧線路端9
VCは、それぞれ巻線を流れる電流測定用の変流器11
.12が配置されている。
FIG. 1 shows the winding configuration of one equivalent of a conventional 500 KV transformer. The transformer body 1 includes a high voltage winding 3,
The medium-voltage winding 4 and the low-voltage winding 5 are wired to form a single-phase winding transformer, and the separate load voltage regulator tank 2 has an excitation winding connected to the low-voltage winding 5 of the transformer body. 6 and a voltage adjustment winding M7 are housed therein, and the voltage adjustment winding 7 is connected to the transformer body 1 and the on-load tag switch 1O. In addition, the high voltage line end 8 and the medium voltage line end 9 of the transformer body l
VC is a current transformer 11 for measuring the current flowing through each winding.
.. 12 are arranged.

〈背魁技術の問題点〉 第1図において、高・中庄細路端8,9に配置された変
流器11.12の役割りは、通常運転時の直流を測定す
るばかりでなく、X圧器の内部事故時たとえば巻線から
タンクへ絶縁破壊を生じて地絡を起したり巻線内部の巻
線ターン間で短絡を起した場合などに異常直流を検知し
−〔、変圧器のトリップ(N号を出す役割シも果してい
る。ここで巻線からタンクへの地絡事故で生じる異常電
流については、非常に大きな値であることは容易に見当
がつくが、巻線ター ン間短絡で生じる事故電流につい
テハ、以下に定量的に検討し、説明を加えることにする
。巻線ターン間短絡事故とは、巻線の1タ一ン分の素線
が絶縁破壊により、短絡してそのターンに異常な電流が
流れることである。この異常な電流を定量的に検討する
ためには、石;気回路的には主巻線と1タ一ン分の巻線
(ターン間短絡を規定した巻線)との間のインピーダン
スを求め、主巻線忙岨源を接続して、lター7分の巻線
を短#iさせて、多少の巻線に流れる電流を計算するこ
とに他ならない。次に示す表1は、第1図に示したよう
な500KV変圧器の1例について、高圧巻線、中圧巻
線、低圧巻線のいずれかの巻線内に1タ一ン短絡巻線を
考えて、各巻線間のインピーダンスを計算りたものであ
る。また、運転時にターン間短絡事故が生じた場合につ
いて、各々の事故に対応して、高圧側、中圧側か闇源の
場合の高圧・中圧線路ぼ流に対する電流変化外をp、u
、(バーユニット)表示して、合わせて示している。イ
ンピーダンスは、コイル1脚分の定格容@全ヘースVこ
計(1)、している。
<Problems with the backbone technology> In Figure 1, the role of the current transformers 11 and 12 placed at the ends 8 and 9 of Takasho and Nakasho narrow roads is not only to measure DC during normal operation, but also to measure In the event of an internal accident in a voltage transformer, such as when dielectric breakdown occurs from the winding to the tank, causing a ground fault, or when a short circuit occurs between the winding turns inside the winding, abnormal DC is detected. (It also plays the role of issuing the No. We will quantitatively examine and explain the accidental current that occurs in the following.A short-circuit accident between winding turns is a short-circuit accident in which one turn of the winding wire is short-circuited due to dielectric breakdown. This means that an abnormal current flows through that turn.In order to quantitatively examine this abnormal current, it is necessary to Find the impedance between the main winding (specified winding), connect the main winding source, shorten the 7-minute winding, and calculate the current flowing through some windings. Table 1 below shows that for an example of a 500KV transformer as shown in Figure 1, one terminal short circuit occurs in any one of the high voltage winding, medium voltage winding, and low voltage winding. The impedance between each winding is calculated by considering the winding.In addition, in the case that an inter-turn short circuit accident occurs during operation, it is calculated whether the high voltage side, medium voltage side or dark source is connected in response to each accident. In this case, the current change due to high voltage/medium voltage line current is p, u
, (bar unit) and are also shown. The impedance is the rated capacity for one leg of the coil @ total Heath V (1).

以下会白 表1の中で1タ一ン短絡時の環流変化を計算した値會示
しているが、仁の計算法について例會あげて説明する。
Table 1 below shows the calculated value of the change in circulation when one terminal is shorted, and the method of calculating the value will be explained using an example.

今、高圧巻線内に1ターン短絡が生じ、電源が高圧側に
接続された場合の高圧巻線に生じるν電流変化について
考えてみることVこする。
Let us now consider the v current change that occurs in the high voltage winding when a one-turn short circuit occurs in the high voltage winding and the power supply is connected to the high voltage side.

高圧巻線と1タ一ン短絡巻線間のインピーダンスは表1
に示すとおシ220チとなっている。この220−の意
味は、高圧巻線の負荷巻線が1タ一ン短絡巻線のみであ
るとき、高圧巻線側から定格電流を流し込んだとき、高
圧巻線の電圧は、定格電圧の220チとなるということ
である。従って、面圧巻線が、定格電圧・定格電流で運
転中、高圧巻線内で1ターン短絡が生じると、定格電流
に対して、100/22g = 0.451)−11の
電流がこの短絡巻線へエネルギーを供給するため増加す
ることになる。
Table 1 shows the impedance between the high voltage winding and the single-turn shorted winding.
As shown in , it is 220 inches. The meaning of 220- is that when the load winding of the high-voltage winding is only a one-turn shorted winding, when the rated current is poured from the high-voltage winding side, the voltage of the high-voltage winding is 220- of the rated voltage. This means that Therefore, if a one-turn short circuit occurs in the high voltage winding while the surface pressure winding is operating at the rated voltage and rated current, a current of 100/22g = 0.451)-11 will flow through the shorted winding relative to the rated current. It will increase to supply energy to the line.

このように第1図で示したような単巻変圧器では、lタ
ーン短絡が、高圧・中圧のいずれの巻線で生じようとも
、また、電源側が高圧・中圧側を問わず、ターン間短絡
小故が線路電流の38%〜59チ(表1よシ)の直流変
化として、線路端に取り付けた変流器によって検知でき
ていた。また、電流変化は貝荷時電圧11ti、器を動
作させたときにも生じるがこれeよ、最大±lO%程城
であるので、ターン間短絡事故の場合と区別することが
できた。
In this way, in the autotransformer shown in Figure 1, regardless of whether an l-turn short circuit occurs in the high-voltage or medium-voltage winding, and regardless of whether the power supply side is on the high-voltage or medium-voltage side, A short circuit fault could be detected as a direct current change of 38% to 59% of the line current (as shown in Table 1) using a current transformer attached to the line end. In addition, current changes also occur when the device is operated at a voltage of 11ti, but this change is within ±10% at most, so it could be distinguished from the case of an inter-turn short circuit accident.

しかし、UHv変圧器の場合は、第1図のように配置さ
れた変流器でeよターン間短絡事故を検知できない。何
故なら、先にも説明のとおり、υIIV変圧器は多数の
巻線が並列接続されておシ、1つの巻線内で1ターン短
絡が生じても、その電流変化が線路電流に与える影響が
少なく、負荷時戒圧F$4整器の動作で生じる直流変化
と区別することができなくなるためである。
However, in the case of a UHv transformer, a short-circuit accident between turns cannot be detected with a current transformer arranged as shown in FIG. This is because, as explained earlier, a υIIV transformer has many windings connected in parallel, and even if a one-turn short circuit occurs in one winding, the current change will have no effect on the line current. This is because it is so small that it cannot be distinguished from the DC change caused by the operation of the F$4 rectifier during load.

第2図は想定されるU HV変圧器の巻線構成を示し、
たものである。1ト相単巻変圧器は2つの変圧−4本体
IA、113が並列接続され、それぞれの変圧器本体I
A、IBの中には高圧巻線3a 、3b 、:3c 、
3d 、3e 、3f 。
Figure 2 shows the winding configuration of an assumed U HV transformer,
It is something that A 1-phase autotransformer has two transformer bodies IA and 113 connected in parallel, and each transformer body IA and 113 are connected in parallel.
A, IB include high voltage windings 3a, 3b, :3c,
3d, 3e, 3f.

中圧巻線4a 、4b 、4c 、4d 、4e 、4
fが3脚づつ収納され並列接続して、単巻変圧器結線さ
れている。また負荷時斌圧潤整器2A 、2Bも2台配
置され、それぞれには成田A11整巻#7A、7Bが収
納されている0従つで、;窮2図において高圧・中圧巻
線はそれぞれ6脚の巻線が並列接続されている。第2図
では低圧巻線、励磁巻線性省略している。このような場
合でも巻線内1ター/短絡事故にンけるコイル1脚外の
巻線電流変化u1先とまったく同様な関係にちる。(t
JHV変圧器の場合の巻線間インピーダンスは表1と同
様と考えてよい。)しかし、6脚の巻線のトータシ電流
を考えたとき、その環流〜59% 、 6.a−〜9.
8%)となシ負荷時電圧IiI!、l整器の動作による
電流変化±lOチ程鹿と区別できなくなり、事故と検出
できなくなってしまう。
Medium voltage windings 4a, 4b, 4c, 4d, 4e, 4
Three legs of f are housed and connected in parallel, and are connected to an autotransformer. There are also two load pressure regulating regulators 2A and 2B, each of which houses Narita A11 regulating windings #7A and 7B; Six winding legs are connected in parallel. In FIG. 2, the low voltage winding and excitation winding are omitted. Even in such a case, the relationship is exactly the same as the change in the winding current u1 outside the coil 1 leg in the event of a short-circuit accident within the winding. (t
The impedance between windings in the case of a JHV transformer can be considered to be the same as in Table 1. ) However, when considering the total current of the six-legged winding, the circulation current is ~59%, 6. a-~9.
8%) Voltage under load IiI! , the current change due to the operation of the regulator ±lO becomes indistinguishable from a deer and cannot be detected as an accident.

内、以りのことは従来の500 KV変圧器でも、並列
コイル脚数が多い場合には、同様なことが言える。
The same applies to conventional 500 KV transformers when the number of parallel coil legs is large.

〈発明の目的〉 本発明は、上記従来技術のもつ欠点を除去するためにな
さねたもので、UHV変圧器のように並列接続されるコ
イル脚数が多い場合素線ターン間蝉絡事故などの巻線内
部事故ケ精度よく、早期に検出することのできる信頼性
の高い変圧器巻線内部事故検出装置を得ることを目的と
する。
<Purpose of the Invention> The present invention has been made to eliminate the drawbacks of the above-mentioned prior art, and when a large number of coil legs are connected in parallel, such as in a UHV transformer, accidents such as cicadas between turns of strands may occur. The purpose of the present invention is to obtain a highly reliable transformer winding internal fault detection device that can accurately and early detect faults inside a transformer winding.

〈発明の概要〉 かかる目的を達成するため、本発−1−j: U HV
変圧器のように複数のコイル脚を並列接続して単巻変圧
器結線された変圧器巻線構成において、並列接続された
各巻線の中性点側にそれぞれ変流器を配置して、各巻線
を流れる電流す同時に検出比較することによシ、コイル
内部で起きた短絡事故を早期に検出するものである。
<Summary of the invention> In order to achieve the above object, the present invention-1-j: U HV
In a transformer winding configuration in which multiple coil legs are connected in parallel and connected as an autotransformer like a transformer, a current transformer is placed on the neutral point side of each winding connected in parallel, and each winding is connected in parallel. By simultaneously detecting and comparing the current flowing through the wire, short-circuit accidents occurring inside the coil can be detected at an early stage.

〈発明の実施例〉 以下、本発明の一実施例について図面を参照して説明す
る。第3図は先に第2図に示したUHV変圧器巻線構成
の中に変流器を複数個配置した、本発明に係る回路構成
図である。
<Embodiment of the Invention> An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a circuit configuration diagram according to the present invention in which a plurality of current transformers are arranged in the UHV transformer winding configuration shown in FIG. 2 above.

第3図において変流器20’a 、 20b 、20c
 、 20d 、 20e 。
In FIG. 3, current transformers 20'a, 20b, 20c
, 20d, 20e.

20fはそれぞれ中圧巻線4a、4b、4c、4d、4
e、4fの中性点側口出しリード位置に配している。図
で省略されているが、変流器20a、20b、20c、
20d、20e、20fの出力信号リードは変圧器群と
は別に配置された変圧器制御宇内の制御装置に接続され
、常に各変流器からの出力全比較し、その値が異なった
時、必要に応じて変LE器のトリップ信号を出すように
回路構成されている。
20f are medium voltage windings 4a, 4b, 4c, 4d, 4, respectively.
It is placed at the neutral point side exit lead position of e and 4f. Although omitted in the figure, current transformers 20a, 20b, 20c,
The output signal leads of 20d, 20e, and 20f are connected to a control device in the transformer control unit located separately from the transformer group, and the outputs from each current transformer are always compared, and if the values differ, the necessary The circuit is configured to issue a trip signal for the transformer LE in response to the change.

〈発明の他の実施例〉 第4図は本発明に係る他の実施例を示した回路構成図で
ある。第4図ij第3図と変流器が配置される位置を除
いて、まったく同様なものである。
<Other Embodiments of the Invention> FIG. 4 is a circuit configuration diagram showing another embodiment according to the present invention. Fig. 4 ij is exactly the same as Fig. 3 except for the position where the current transformer is arranged.

第4図において変流器21A、21B &’12合の単
位変圧器本体IA、IB内でそれぞれ3脚の中圧巻線4
a。
In Fig. 4, there are three medium voltage windings 4 in each unit transformer body IA, IB of current transformers 21A, 21B &'12.
a.

4b、4c 、4d 、4e 、4f  が並列接続さ
れた後の口出しリードの中性点側に配置している。変流
器21A、21Bの出力信号リードに関しては先の実施
例と同様である。
4b, 4c, 4d, 4e, and 4f are arranged on the neutral point side of the output leads after they are connected in parallel. The output signal leads of current transformers 21A and 21B are the same as in the previous embodiment.

〈発明の効果〉 このように構成された本発明の実施例による変圧器巻線
内部事故検出装置においては次のような種々の効果が得
られる。
<Effects of the Invention> In the transformer winding internal fault detection device according to the embodiment of the present invention configured as described above, the following various effects can be obtained.

(1)  常に並列接続された巻線の通過電流を対比し
て観察できるので、いづれか1つの巻線又は1台の単位
変圧器内で巻線内部事故、巻線ターン間短絡事故など、
によって電流にアンバランスを生じた場合、いち早く事
故を察知して対処することができる。
(1) Since the passing current of windings connected in parallel can always be observed in comparison, it is possible to prevent internal winding accidents, short circuits between winding turns, etc. in any one winding or in one unit transformer.
If an imbalance occurs in the current, the accident can be quickly detected and dealt with.

(2)負荷時電圧調整器を動作させた場合、生じる電流
変化の影Vについても複数台の並列された巻線の電流変
化f+は、それぞれの巻線で等しく検出されるため、明
らかに巻線内部事故時の現象と区別することができ、精
度良く巻線内部事故の判定をすることができる。また、
この動作原理は巻線の並列接続数に関係しない。
(2) When the on-load voltage regulator is operated, the current change V+ of the windings connected in parallel is detected equally by each winding, so it is clear that This can be distinguished from the phenomenon occurring when an accident occurs inside the wire, and the occurrence of an accident inside the winding can be determined with high accuracy. Also,
This operating principle is independent of the number of windings connected in parallel.

(3)  巻線内部事故を察知した場合、事故を起した
巻線又は単位変圧°器を即座に断定することができる。
(3) When an accident inside a winding is detected, the winding or unit transformer that caused the accident can be immediately determined.

従って、変電所内に敵気的に接続きれた予備の変圧器が
設置されている場合など、事故の復旧に時間を要さない
Therefore, it does not take much time to recover from an accident, such as when a spare transformer that has been disconnected is installed in a substation.

(4)巻線内部事故を検出するための変流器は中圧巻線
の中性点側口出しリードに配置されているため、リード
の電圧が比較的低く、変流器を取シ付ける際の絶縁構成
においても、特に絶縁的なイn頼性を低丁させることが
ない。
(4) Since the current transformer for detecting internal winding faults is placed on the neutral point side exit lead of the medium voltage winding, the lead voltage is relatively low, making it difficult to install the current transformer. Even in the insulating configuration, the insulating reliability is not particularly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単巻単相変圧器の巻線構成を示す結線図
、第2図は想定されるUHV変圧器の巻線構成を示す結
線図、第3図は本発明に係る変圧器巻線内部事故検出装
置を示す結aI図、第4図は本発明の他の実施例を示す
結線図である。 IA、IB・・・単位変圧器本体 2A、2B・・負荷時直圧、11整器 3.3a、3b、3c、3d、3e、3f ・・・高圧
巻線4.4a、4b、4c、4d、4e、4f ・・中
圧巻線5・・・低圧巻線 6・・・励磁巻線 7 、7A 、 7B・・・1圧I!L1整巻線8・・
・高圧線路端 9・・・中圧線路端 10・・負荷時タップ切換器 11.12.20a、20b、20c、20d、20e
、2Of 、21A、21B −−−変流器 第1図 //
Fig. 1 is a wiring diagram showing the winding configuration of a conventional single-turn single-phase transformer, Fig. 2 is a wiring diagram showing the winding configuration of an assumed UHV transformer, and Fig. 3 is a wiring diagram showing the winding configuration of an assumed UHV transformer. FIG. 4 is a connection diagram showing a winding internal accident detection device, and FIG. 4 is a connection diagram showing another embodiment of the present invention. IA, IB...Unit transformer body 2A, 2B...Direct voltage at load, 11 regulators 3.3a, 3b, 3c, 3d, 3e, 3f...High voltage winding 4.4a, 4b, 4c, 4d, 4e, 4f...Medium voltage winding 5...Low voltage winding 6...Excitation winding 7, 7A, 7B...1 voltage I! L1 regular winding 8...
- High voltage line end 9... Medium voltage line end 10... On-load tap changer 11.12.20a, 20b, 20c, 20d, 20e
, 2Of , 21A, 21B ---Current transformer Fig. 1//

Claims (2)

【特許請求の範囲】[Claims] (1)1つまたは複数の変圧器タンク内にわたって、複
数脚の変圧器巻線が収納され、それぞれ電気的V?:、
並列接続されて、単巻単相変圧器を構成するものにおい
て、並列接続される中圧巻線の各々の中性点側リードに
変流器を配置して、リードに流れる電流を測定し、これ
らの中圧巻線の電流のバランスから変圧器巻線内部事故
を検出することを特徴とする変圧器巻線内部事故検出装
置。 亭
(1) Multiple legs of transformer windings are housed within one or more transformer tanks, each with an electrical V? :,
When connected in parallel to form a single-winding, single-phase transformer, a current transformer is placed on the neutral point side lead of each medium-voltage winding connected in parallel, and the current flowing through the leads is measured. A transformer winding internal fault detection device is characterized in that it detects a transformer winding internal fault from the current balance of the medium voltage winding. Tei
(2)特許請求範囲第1項に記載のものにおいて変流器
の配置位置を1つの変圧器タンクごとに並列接続された
後の中性点側中圧巻線口出しリードとすることを特徴と
する変圧器巻線内部事故検出装置。
(2) In the product described in claim 1, the current transformer is arranged at the neutral point side medium voltage winding lead after being connected in parallel for each transformer tank. Transformer winding internal fault detection device.
JP57094098A 1982-06-03 1982-06-03 Inspecting device for internal trouble of winding of transformer Pending JPS58211671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57094098A JPS58211671A (en) 1982-06-03 1982-06-03 Inspecting device for internal trouble of winding of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57094098A JPS58211671A (en) 1982-06-03 1982-06-03 Inspecting device for internal trouble of winding of transformer

Publications (1)

Publication Number Publication Date
JPS58211671A true JPS58211671A (en) 1983-12-09

Family

ID=14100966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57094098A Pending JPS58211671A (en) 1982-06-03 1982-06-03 Inspecting device for internal trouble of winding of transformer

Country Status (1)

Country Link
JP (1) JPS58211671A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135025A (en) * 2011-11-30 2013-06-05 岭澳核电有限公司 Searching method for short circuit points between transformer core frames of million-kilowatt nuclear power station
CN105048411A (en) * 2015-09-06 2015-11-11 国家电网公司 220 kV transformer neutral point gap action control device and method
WO2019219196A1 (en) * 2018-05-17 2019-11-21 Siemens Aktiengesellschaft Method and device for identifying an inter-turn short circuit in parallel windings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135025A (en) * 2011-11-30 2013-06-05 岭澳核电有限公司 Searching method for short circuit points between transformer core frames of million-kilowatt nuclear power station
CN103135025B (en) * 2011-11-30 2016-04-06 岭澳核电有限公司 The lookup method of short dot between the transformer core frame of million kilowatt nuclear power station
CN105048411A (en) * 2015-09-06 2015-11-11 国家电网公司 220 kV transformer neutral point gap action control device and method
WO2019219196A1 (en) * 2018-05-17 2019-11-21 Siemens Aktiengesellschaft Method and device for identifying an inter-turn short circuit in parallel windings
CN112154585A (en) * 2018-05-17 2020-12-29 西门子股份公司 Method and device for detecting turn-to-turn short circuits in windings arranged in parallel
US11131719B2 (en) 2018-05-17 2021-09-28 Siemens Energy Global GmbH & Co. KG Method and device for identifying an inter-turn short circuit in parallel windings

Similar Documents

Publication Publication Date Title
US7667935B2 (en) Aircraft applicable circuit imbalance detection and circuit interrupter and packaging thereof
CN205080251U (en) Through -flow calibration system of current transformer secondary circuit
EP3108556B1 (en) Method for detecting an open-phase condition of a transformer
US20120001645A1 (en) Combined electrical variable detection device
Ballal et al. Interturn faults detection of transformers by diagnosis of neutral current
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
US4634981A (en) Method for testing a circuit breaker using a three terminal current transformer
EP0300075A1 (en) Current detector
US7221548B2 (en) Residual-current circuit breaker and a method for testing the reliability performance of a residual-current circuit breaker
JPS58211671A (en) Inspecting device for internal trouble of winding of transformer
Lubich High resistance grounding and fault finding on three phase three wire (delta) power systems
KR102006591B1 (en) Current Transformer secondary open detection method and apparatus independent of primary current magnitude
US3823369A (en) Transformer tester for indicating shorted conditions in power transformers
US3296081A (en) Nuclear reactors
US3414772A (en) Differential relay with restraining means responsive to transformer bank voltage
KR101116763B1 (en) Apparatus for detecting trouble of MOF
JP3894346B2 (en) Protection relay control circuit test equipment
JP3123999B2 (en) Short circuit test apparatus and method
JPH10253685A (en) Apparatus for inspecting measuring leakage current
KR102468562B1 (en) Device for diagnosing the condition of main transformer for rail vehicles
RU2713880C1 (en) Device for protection against breaks of secondary circuits of current transformers
KR20230055043A (en) Detection method and apparatus for current transformer secondary open with arcing current
KR890000624Y1 (en) A tester
TW312798B (en) Arc detection system, sensor and method
JP2024066022A (en) Test Equipment