JPS58211114A - Uneven interval plane diffraction grating - Google Patents

Uneven interval plane diffraction grating

Info

Publication number
JPS58211114A
JPS58211114A JP9529782A JP9529782A JPS58211114A JP S58211114 A JPS58211114 A JP S58211114A JP 9529782 A JP9529782 A JP 9529782A JP 9529782 A JP9529782 A JP 9529782A JP S58211114 A JPS58211114 A JP S58211114A
Authority
JP
Japan
Prior art keywords
diffraction
bit
diffraction grating
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9529782A
Other languages
Japanese (ja)
Inventor
Ritsuo Hasumi
蓮見 律男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9529782A priority Critical patent/JPS58211114A/en
Publication of JPS58211114A publication Critical patent/JPS58211114A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • G02B6/29326Diffractive elements having focusing properties, e.g. curved gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29325Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide of the slab or planar or plate like form, i.e. confinement in a single transverse dimension only
    • G02B6/29328Diffractive elements operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To perform diffraction and convergence simultaneously by forming uneven-interval gradings on plural single-crystal flat plates which are different in surface crystal direction, bit by bit, by anisotropic etching and obtaining different-angle reflective diffraction surfaces. CONSTITUTION:Si single-crystal flat plates 3-5 which differ in surface cyrstal direction, bit by bit, are arranged fixedly on an Si substrate 1 with an adhesive 2, and the surfaces are polished. The surfaces are coated with photoresist 6 and the anisotropic etching is carried out after exposure and development; and the remaining photoresist is removed and then a reflective film 7 is formed over the surface to manufacture the uneven-interval plane gratings 10. The size of single crystal plates 3-5 are determined corresponding to a prescribed blaze angle. The diffraction gratings 10, an optical transmission line 9, and input and output optical fibers 11 and 12 are arranged on a substrate 8. Light 13 incident from the input fiber 11 to the diffraction grating 10 is diffracted and the polarized light of every wavelength is converged to the output fiber 12.

Description

【発明の詳細な説明】 この発明は集光作用をする平面回折格子の回折効率の改
善に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the diffraction efficiency of a planar diffraction grating that has a light focusing function.

回折格子には凹面回折格子と平面回折格子とかあり、前
者は回折と集光を同時に行なえるか、後者は回折のみで
あるため適当な集光手段を必要としていた。そこで電子
ビーム露光やレーザ光の干渉により不等間隔の格子全形
成して集光も行なわせる事が行なわれているが、反射内
の形状が不完全であるため回折効率が低い欠点があった
。1だ単結晶の異方性エツチング全利用して反射回折面
の角度を一定に揃え、旨い回折効率を持った等間隔モ面
回折格子の製作も行なわれているが、この場合はレンズ
により集光したり、単結晶基板を薄ぐ)III にして
円筒面状に曲げて集光作用を持たせる方法かとられてい
る。両者を組合せて、単結晶の平面基板に電子ビーム露
光やレーザ光の干渉により不等間隔の格子を形成すると
、回折と集光を同時に行なえる平面回折格子になるが、
反射回折面の角度が一定であるために中心から離れた位
置ではブレーズ角度からはずれて回折効率が低下する問
題があった。そこでこの発明はこのような集光作用をす
る平面回折格子の回折効率を高める事を目的としており
、そのための手段として表面の結晶方位角度が少しづつ
異なる複数個の単結晶の平面基板を使って不等間隔の平
面回折格子を形成している。この方法によれば各位置に
おける中心波長に対するブレーズ角度と反射回折面とを
ほぼ一致させる事かり能であり、また単結晶基板の数を
増やせばどのような大きさの回折格子でも製作できる。
Diffraction gratings include concave diffraction gratings and planar diffraction gratings, and the former can perform diffraction and focusing at the same time, while the latter requires a suitable focusing means because it only performs diffraction. Therefore, attempts have been made to use electron beam exposure or laser light interference to form a grating with uneven spacing to collect light, but this method has the drawback of low diffraction efficiency due to the incomplete shape of the reflection. . It is also possible to make uniformly spaced mosaic diffraction gratings with good diffraction efficiency by making full use of anisotropic etching of single crystals to keep the angles of the reflection diffraction surfaces constant. The method is considered to be a method of making a single crystal substrate thinner (III) and bending it into a cylindrical shape to give it a light-concentrating effect. By combining the two and forming a grating with unequal spacing on a single-crystal flat substrate by electron beam exposure or laser light interference, a flat diffraction grating that can perform diffraction and focusing simultaneously can be obtained.
Since the angle of the reflection diffraction surface is constant, there is a problem that the diffraction efficiency decreases at a position away from the center due to deviation from the blaze angle. Therefore, the purpose of this invention is to improve the diffraction efficiency of such a planar diffraction grating that has a light focusing effect, and as a means for that purpose, it uses a plurality of single-crystal planar substrates whose surfaces have slightly different crystal orientation angles. This forms a planar diffraction grating with non-uniform spacing. According to this method, it is possible to substantially match the blaze angle with respect to the center wavelength at each position and the reflection diffraction surface, and by increasing the number of single crystal substrates, a diffraction grating of any size can be manufactured.

以下図面に従ってこの発明の説明を行なう。The present invention will be explained below with reference to the drawings.

第1図・第2図・第3図はこの発明の一実施1タリの製
作工程を示したものである3、第1図のように平滑な基
板1の上に接着剤2を塗41i シ、衣面のノJ位角度
が少しつつ異なる単結晶子&3・、トコ)金順に密着し
て配列し固定する。次に表面が一様になるように研磨加
工してから充分きれいに洗浄全行ない、フォトレジスト
6を塗布してから電rヒーム露光やレーザ光の干渉によ
り露光して現像すると、第2図のようにフォトレジスト
6によりイ・等間隔の格子が形成される。これをエツチ
ングすると単結晶平板;6舎4・5の表面のフォトレジ
スト6が無い部分がそれぞれ異方性エツチングされるか
ら、残ったフォトレジスト6を除去して′洗浄し、表面
全体に反射膜7を形成すると第3図のようになって不等
間隔平面回折格子が完成する。、この実施例では三分割
の場合を示したが、分割数C1任意であり、細かい稈回
折効率が高くなる替りに製作が面倒になる。また温度に
よる膨張の問題を考慮すると、基板]には単結晶平板3
・4・bと同質の物を使用した方が良い。単結晶平板3
・4・5の材料としては価格や加工性の点から7リコン
ウエハーが適している。第3図において単結晶平板′、
Sの反射回折面が一番大さく、単結晶平板4が次に大き
く、単結晶平板5か一番小さくなっており、それぞれ中
心におけるブレーズ角度に−・致させである。これらの
角度はあらかじめ入射光の拡がり全考慮して波長分散と
焦点距離から計算して求める。このような構造にすると
入射光の回折方向と反射方向とがほぼ一致するため回折
効率が向くなる−5この実施例では全体の一度に加工す
る場合を示したが、大きい物の場合は個別に製作してか
ら位置を正確に配置して組立てる。
Figures 1, 2, and 3 show the manufacturing process of one embodiment of this invention. , single crystallites with slightly different angles on the surface of the crystal &3. Next, the surface is polished so that it is uniform, thoroughly cleaned, and photoresist 6 is applied, and then exposed and developed using electric beam exposure or laser beam interference, as shown in Figure 2. Then, a grid of equal intervals is formed using the photoresist 6. When this is etched, the parts of the surfaces of the single-crystal plates 4 and 5 where there is no photoresist 6 are anisotropically etched, so the remaining photoresist 6 is removed and washed, and a reflective film is coated on the entire surface. 7, the unevenly spaced plane diffraction grating is completed as shown in FIG. In this embodiment, a case of three divisions is shown, but the number of divisions C1 is arbitrary, and the fine culm diffraction efficiency increases, but manufacturing becomes complicated. Also, considering the problem of expansion due to temperature, the single crystal flat plate 3
・It is better to use the same quality as 4.b. Single crystal flat plate 3
・7 recon wafer is suitable as the material for 4 and 5 from the point of view of price and processability. In Fig. 3, a single crystal plate',
The reflection diffraction surface of S is the largest, the single crystal flat plate 4 is the next largest, and the single crystal flat plate 5 is the smallest, each matching the blaze angle at the center. These angles are determined in advance by taking into account the entire spread of the incident light and calculating from the wavelength dispersion and focal length. With such a structure, the diffraction direction of the incident light and the reflection direction almost match, which improves the diffraction efficiency. After manufacturing, accurately position and assemble.

第4図はこの発明の光学素子の応用例であり、光通信用
の集積型光分波器に取付けた状態金示している。これは
基板8上に光伝送路9を置き、その周囲の壁面に不等間
隔平面回折格子10と入力用光ファイバJ1と出力用光
フアイバ12全取付けて固定してあり1人力月光ファイ
バ]ユからの光]3を不等間隔平面回折格子J、OT沖
1折して出力用尤ノアイ・くT2に波長毎に分光し7千
東丸し、ている。不等間隔平面回折格子10は平面状の
ままで集光作用を行なう事が可能であり、このため光伝
送路9の周囲は平面に加工するだけでよいので製作が容
易である利点がある。各素子の位置は正確に設定する必
要があるので、あらかじめ基板すに溝全形成しておいて
埋込むようにすると簡単て゛ある。このような集積型光
分波器では中心波長か決っているのでブレーズ角度の設
定が容易であり、最も回折効率の商い角度の組合せが行
なえる。、第5図は別の一実施例″′Cあり、第1図・
第2図・第3図の工程手順で製作した不等間隔平間回」
Jr格floを円筒面基板J4に格子方向に1■口ずて
張合せた物である。不等間隔平面回折格子10は陥Eに
直角な方向に関しては集光作用全角−するが格子方向に
は無力な点を改良するために、格子方向を円筒面基板1
4により集光させているもので矛。
FIG. 4 shows an application example of the optical element of the present invention, and shows the optical element installed in an integrated optical demultiplexer for optical communication. In this system, an optical transmission line 9 is placed on a substrate 8, and an unevenly spaced plane diffraction grating 10, an input optical fiber J1, and an output optical fiber 12 are all attached and fixed to the surrounding wall. [Light from] 3 is folded into the non-uniformly spaced plane diffraction grating J, OT 1, and separated into wavelengths by 7,000 yen to the output optical eye T2. The non-uniformly spaced flat diffraction grating 10 can perform a light condensing action while remaining flat, and therefore has the advantage of being easy to manufacture because the area around the optical transmission path 9 only needs to be processed into a flat surface. Since the position of each element must be set accurately, it is easier to form the entire groove in the substrate in advance and bury it. In such an integrated optical demultiplexer, since the center wavelength is determined, it is easy to set the blaze angle, and the combination of angles that provides the best diffraction efficiency can be made. , FIG. 5 shows another embodiment "'C," and FIG.
"Unequally spaced flat circuit made using the process steps shown in Figures 2 and 3"
This is made by pasting Jr. flo onto a cylindrical substrate J4 in a lattice direction. The non-uniformly spaced planar diffraction grating 10 has a full-angle condensing effect in the direction perpendicular to the depression E, but is powerless in the grating direction.
The light is focused by 4 and is a spear.

す、このため従来の凹面回折格子と全く等価の17[用
をする。凹面回折格子の大きさは製作装置1こよって寸
法に制限があったが、この発明の方?1り(こよられ、
例えは1m角の物もIIJ能であるから分光天文学用に
役立つ。
Therefore, it has a function of 17[deg.] which is completely equivalent to that of a conventional concave diffraction grating. The size of the concave diffraction grating was limited by the manufacturing equipment 1, but this invention is better. 1ri (Koyorare,
For example, a 1m square object is useful for spectroscopic astronomy because it has IIJ capability.

以りのようにこの発明によれば任意の大きさの・F面回
折格子か製作可能であり、しかも回折と集九全回時に行
なえるので別に集光系を必要としない利点がある。材料
や製作方法はLSIに類似しており、そのための設備が
転用できるのでル−リングエンジンのような特殊な装置
が不要である。
As described above, according to the present invention, an F-plane diffraction grating of any size can be manufactured, and furthermore, since diffraction and focusing can be performed at the same time, there is no need for a separate focusing system. The materials and manufacturing method are similar to LSI, and the equipment can be reused, so special equipment such as a ruling engine is not required.

製作時間の点でも従来の刻線方式よりもはるかに短い時
間しか要しないので量産に適しており、レプリカを取っ
て使う必要も無くなる。このようにして得られる不等間
隔平面回折格子は、光通信用の光分波器、光波長計、各
種分光分析装置、色彩計などに応用できる。
In terms of production time, it takes much less time than the conventional marking method, making it suitable for mass production and eliminating the need for replicas. The unevenly spaced plane diffraction grating thus obtained can be applied to optical demultiplexers for optical communication, optical wavelength meters, various spectroscopic analysis devices, colorimeters, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図はそれぞれこの発明の一実施例
の各工程の側断面図であり、第4図は一応用例の平面図
、第5図は別の一応用例の斜視図である7、 1−−一基板、2−−−接着剤、3・4・5−  単結
晶・ト板、6−−−ノ第1・レジスト、7−  反射膜
、8−  基扱、9−IY:伝i1.1o−−−不等間
隔”F面回折I8f。 ]]−一一人力用光ファイバ、12−  出力用尤ノ“
ノ′イバ、]]3−−−光14−  円筒面基板特許出
願人 蓮  見  律  男 囚面 45 // 第  2  図 /7 第  3  図 第4図 1o  第5WJ
1, 2, and 3 are side sectional views of each step of an embodiment of the present invention, FIG. 4 is a plan view of one application, and FIG. 5 is a perspective view of another application. 7, 1--substrate, 2--adhesive, 3, 4, 5- single crystal/top plate, 6--first resist, 7- reflective film, 8- base handling, 9 -IY: Transmission i1.1o---Unequally spaced "F-plane diffraction I8f. ]] - Optical fiber for single force, 12 - For output"
Noiba, ] ] 3 --- Light 14 -- Cylindrical surface substrate Patent applicant Ren Mi Ritsu Male prisoner surface 45 // Fig. 2/7 Fig. 3 Fig. 4 1 o No. 5 WJ

Claims (1)

【特許請求の範囲】[Claims] 表面の結晶方位角度が少しづつ異なる複数Hの単結晶の
平面基板に、不等間隔の格子を異方性−1−ノチングに
より形成して角度が異なった反射回折面とし、回折と集
光を同時に行なわせ、かつ回折効率を高めた事を特徴と
する光学素子
A lattice with uneven spacing is formed by anisotropic -1-notching on a flat substrate of a single crystal of multiple H's with slightly different crystal orientation angles on the surface to form reflective diffraction surfaces with different angles, and diffraction and focusing are achieved. An optical element characterized by simultaneous diffraction and improved diffraction efficiency.
JP9529782A 1982-06-02 1982-06-02 Uneven interval plane diffraction grating Pending JPS58211114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9529782A JPS58211114A (en) 1982-06-02 1982-06-02 Uneven interval plane diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9529782A JPS58211114A (en) 1982-06-02 1982-06-02 Uneven interval plane diffraction grating

Publications (1)

Publication Number Publication Date
JPS58211114A true JPS58211114A (en) 1983-12-08

Family

ID=14133835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9529782A Pending JPS58211114A (en) 1982-06-02 1982-06-02 Uneven interval plane diffraction grating

Country Status (1)

Country Link
JP (1) JPS58211114A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241711A (en) * 1985-04-18 1986-10-28 Matsushita Electric Ind Co Ltd Input-output device for guided light
JPH01202705A (en) * 1988-02-09 1989-08-15 Matsushita Electric Ind Co Ltd Optical tuner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61241711A (en) * 1985-04-18 1986-10-28 Matsushita Electric Ind Co Ltd Input-output device for guided light
JPH01202705A (en) * 1988-02-09 1989-08-15 Matsushita Electric Ind Co Ltd Optical tuner

Similar Documents

Publication Publication Date Title
US4330175A (en) Blazed diffraction grating structures and method of manufacturing the same
US10422934B2 (en) Diffraction gratings and the manufacture thereof
US4512638A (en) Wire grid polarizer
CA1321495C (en) Diffraction grating and manufacturing method thereof
US20040201890A1 (en) Microlens including wire-grid polarizer and methods of manufacture
US20020105725A1 (en) Electrically-programmable optical processor with enhanced resolution
EP2752691A1 (en) Variable-efficiency diffraction grating
EP2383589B1 (en) Optical component
GB2509536A (en) Diffraction grating
US20150029588A1 (en) Control of Light Wavefronts
US20160131807A1 (en) Manufacture method for blazed concave grating
US6415073B1 (en) Wavelength division multiplexing/demultiplexing devices employing patterned optical components
US20220171282A1 (en) Diffractive optical element fabrication
US6839135B2 (en) Optical device
US8279525B2 (en) Three-dimensional diffractive structure, method for making, and applications thereof
JPS58211114A (en) Uneven interval plane diffraction grating
JP4823199B2 (en) Wavelength selective optical switch
JPS6252506A (en) Grating forming method
Blattner et al. Rigorous diffraction theory applied to microlenses
JPS6127505A (en) Manufacture of blaze optical element
US6701045B2 (en) Planar optical waveguide dense wavelength division multiplexer
WO2021038919A1 (en) Diffraction grating, manufacturing method for diffraction grating, and photomask
JP7301201B2 (en) Manufacturing method of concave diffraction grating
US6650796B2 (en) Waveguide optical frequency router
CN101126836A (en) 100% matching circular, annular equal light beam aperture microarray grating