JPS58211011A - Transmission axle made of fiber reinforced composite material - Google Patents

Transmission axle made of fiber reinforced composite material

Info

Publication number
JPS58211011A
JPS58211011A JP9215082A JP9215082A JPS58211011A JP S58211011 A JPS58211011 A JP S58211011A JP 9215082 A JP9215082 A JP 9215082A JP 9215082 A JP9215082 A JP 9215082A JP S58211011 A JPS58211011 A JP S58211011A
Authority
JP
Japan
Prior art keywords
pipe
reinforced composite
composite material
fiber reinforced
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9215082A
Other languages
Japanese (ja)
Inventor
Masaharu Imao
今尾 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9215082A priority Critical patent/JPS58211011A/en
Publication of JPS58211011A publication Critical patent/JPS58211011A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/026Shafts made of fibre reinforced resin

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE:To increase adhesive strength at adhesion portions by a method wherein the contact surface between a pipe made of fiber reinforced composite material and a coupling are in a tapered shape and then the contact surfaces are stuck together by adhesive agent. CONSTITUTION:Contact surfaces 5 between a pipe 1 made of fiber reinforced composite material and a coupling 2 are in a tapered form and then the contact surface 5 are stuck together by adhesive agent. In case of adhesion, an axial force is applied to achieve the adhesion. At this time, the air in the pipe 1 is discharged through air hole 3. When the contact surfaces 5 of the pipe 1 are machined to form a taper with a lathe, an arrangement of belt-like convex part 4 which can secure machining in a true circle in relation to the fluctuation stopper may eliminate necessity for direct machining of the outer surface of the pipe 1 in a true circle, so that the strength of the pipe 1 is not decreased.

Description

【発明の詳細な説明】 本発明は、モーターやエンジンなどの回軸する動力をユ
ーザーに伝えるための伝動軸に関するものであり、特に
、繊維強化複合材料製パイプ部を有する伝動軸に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power transmission shaft for transmitting rotating power of a motor, engine, etc. to a user, and particularly relates to a power transmission shaft having a pipe section made of fiber-reinforced composite material. .

従来、伝動軸は金属製中実棒または金属製中空パイプで
製作されるのが一般的であるが、近年、ガラス繊維や炭
素繊維等による繊維強化複合材料を用いた伝動軸開発の
ための検討が盛んになされている。それは、繊維強化複
合材料の比強度(強度/比重)と、比弾性(弾性率/比
重)が鋼やアルミニウムなどの金属に比べてすぐれてい
るので、共振を避けながら高速回転を達成することが可
能になることや、また、自動車などで熱望されるような
軽量化が可能になるからである。
Conventionally, power transmission shafts have generally been manufactured using solid metal rods or hollow metal pipes, but in recent years, studies have been conducted to develop power transmission shafts using fiber-reinforced composite materials such as glass fiber and carbon fiber. is being actively carried out. This is because the specific strength (strength/specific gravity) and specific elasticity (elastic modulus/specific gravity) of fiber-reinforced composite materials are superior to metals such as steel and aluminum, making it possible to achieve high-speed rotation while avoiding resonance. This is because it will become possible to reduce the weight of automobiles and the like, which is an aspirational goal.

繊維強化複合材料製伝動軸は、一般に中空パイプ形状で
あるが、その両端には、フランジ継手やフレキシブル継
手を設けることにより、動力を受入れ、次へ伝達して行
くことができるようにしなければならない。
Transmission shafts made of fiber-reinforced composite materials are generally shaped like hollow pipes, but they must be equipped with flange joints or flexible joints at both ends to receive power and transmit it to the next part. .

金属製伝動軸の場合には、パイプに継手を溶接すること
が一般的であるが、繊維強化複合材料においてはパイプ
と継手を一体成形することは比較的困難であるため、パ
イプと継手を別々に準備し、後で何らかの方法で接合す
る方が好ましい。本発明は、そのような方法のうち一つ
の優れた方法を適用された伝動軸を提供するものである
In the case of a metal transmission shaft, it is common to weld the fitting to the pipe, but with fiber-reinforced composite materials, it is relatively difficult to integrally mold the pipe and the fitting, so the pipe and fitting are separately welded. It is preferable to prepare it beforehand and then join it in some way later. The present invention provides a power transmission shaft to which one of such methods is applied.

すなわち、本発明による伝動軸は、繊維強化製複合材料
製パイプから成り、第1図、第2図に示すようにその両
端部の外周面または内周面に1/ 200〜115のテ
ーパ一部(5)を設け、継手にもこれに合うテーパ一部
を設け、これをパイプの両端に接着剤によって接合する
ことを特徴とするものである。1/2oO〜115のテ
ーパーを設けることによ゛す、接着時に軸方向に力を加
えると、強固に接着をすることが可能になり、かつ、十
分な接着長さを得ることができる。
That is, the transmission shaft according to the present invention is made of a pipe made of fiber-reinforced composite material, and as shown in FIGS. 1 and 2, the outer circumferential surface or inner circumferential surface of both ends thereof has a taper portion of 1/200 to 115. (5), the joint is also provided with a taper portion that matches this, and this is joined to both ends of the pipe with an adhesive. By applying a force in the axial direction during bonding by providing a taper of 1/2 oO to 115 mm, it becomes possible to bond firmly and to obtain a sufficient bonding length.

また継手は繊維強化複合材料でできていてもよ(、金属
製であってもかまわない。接着長さは伝動すべきトルク
の大きさにより決められる。
The joint may also be made of fiber-reinforced composite material (and may also be made of metal). The length of the bond is determined by the amount of torque to be transmitted.

接着剤は熱を加えて硬化させるタイプが多く用いられる
が、その場合、継手が完全にパイプをふさいでしまうと
、とじ込められたパイプ中の空気が、・熱を加えられた
ときに膨張して、接着面を通って外へ出ようとするため
、完全な接着が得られないことがある。これを防止する
ためには、少な(とも一方の継手には、第1図に示すよ
うな空気孔(3)を設けることが好ましい。
Adhesives are often cured by applying heat, but in that case, if the fitting completely blocks the pipe, the trapped air in the pipe expands when heat is applied. Because the adhesive tries to escape through the adhesive surface, complete adhesion may not be achieved. In order to prevent this, it is preferable to provide a small number of air holes (3) in one joint as shown in FIG.

この空気孔(3)は伝動軸の強度には、実質的に影響を
及ぼさないほどに小さいものであるべきである。
This air hole (3) should be so small that it does not substantially affect the strength of the transmission shaft.

前述のパイプの接着面にテーパー加工をする場合、一般
に旋盤加工が行われるが、例えば直径80m以上にもな
ると、旋盤のチャック中央部にパイプを挿入して加工部
分をチャック付近にもってくることができなくなる。そ
の為、チャックで加工しない側をくわえ、加工すべき側
はふれどめで受けることが必要になる。しかし、繊維強
化複合材料製パイプの外周は真円が出ていないのが普通
であるので、ふれどめの当る部分は、削って真円をつく
る必要がある。もし、パイプをそのまま削るなら強度の
低下をまぬがれ得ないことになるので、ふれどめが当る
と予想される部分に、予め帯状の凸部(4)を設けてお
き、ここを削って真円を出すことが有効である。
When tapering the adhesive surface of the pipe mentioned above, lathe processing is generally performed, but for example, when the diameter is 80 m or more, it is necessary to insert the pipe into the center of the chuck of the lathe and bring the machined part near the chuck. become unable. Therefore, it is necessary to hold the side that will not be processed with a chuck and hold the side that is to be processed with a grip. However, since the outer periphery of fiber-reinforced composite material pipes is usually not perfectly circular, the area where the rims meet must be shaved to create a perfect circle. If you cut the pipe as it is, you will inevitably lose strength, so prepare a belt-shaped convex part (4) in advance in the area where the rim is expected to hit, and cut it to create a perfect circle. It is effective to issue

その位置は、テーパー加工するべき端部に近いことが好
ましい。もちろん比較的細いノくイブに対してはこのよ
うな方法は不必要であることにいうまでもない。
Preferably, its location is close to the end to be tapered. Of course, it goes without saying that such a method is unnecessary for relatively thin nokubu.

本発明者は、上に述べた発明に従って、乗用車用のプロ
ペラシャフトを製作したが極めて良好な結果を得ること
ができた。
The present inventor manufactured a propeller shaft for a passenger car in accordance with the above-described invention, and was able to obtain extremely good results.

なお、接着部の接合強度を増すために、接着面の円周面
に垂直な方向にボルト止め、またはリベット止めを併用
することは本発明の範囲内である。
Note that it is within the scope of the present invention to use bolting or riveting in a direction perpendicular to the circumferential surface of the adhesive surface in order to increase the bonding strength of the adhesive part.

繊維強化複合材料の補強繊維としては、種々のものを用
いることができるが、例えば、シリコンカーバイド繊維
、アルミナ繊維、炭素繊維。
Various reinforcing fibers can be used for the fiber-reinforced composite material, such as silicon carbide fibers, alumina fibers, and carbon fibers.

黒鉛化繊維、ガラス絨維、アラミド繊維、ボロン繊維な
どを挙げることができ、これらは単独で、或いは適宜組
合せて用いることができる。
Examples include graphitized fibers, glass fibers, aramid fibers, boron fibers, etc., and these can be used alone or in appropriate combinations.

また、マトリックス樹脂としては、エポキシ樹脂、不飽
和ポリエステル樹脂、ビニルエステル樹脂、フェノール
樹脂、ポリイミド樹脂などの熱硬化性樹脂やポリアミド
、ポリカーボネートなどの熱可塑性樹脂を用いることが
できる。
Further, as the matrix resin, thermosetting resins such as epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, and polyimide resins, and thermoplastic resins such as polyamides and polycarbonates can be used.

本発明による伝動軸は、桜、・り試験機にかけられたが
、接着部は十分の強度を有することが明らかになった。
The power transmission shaft according to the present invention was subjected to a test machine, and it was found that the bonded portion had sufficient strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はともに本発明に従う一例を示すもので
あり、部分的に断面を示している。 1、繊維強化複合材料製パイプ 2、継手 3 空気孔 4゛帯帯状部 5 テーパ一部(接着部) 特許出願人 三菱レイヨン株式会社 代理人弁理士  1)村 武 敏
Both FIG. 1 and FIG. 2 show an example according to the present invention, and partially show a cross section. 1. Fiber-reinforced composite material pipe 2, joint 3, air hole 4゛ band-shaped portion 5, part of the taper (adhesive portion) Patent applicant Mitsubishi Rayon Co., Ltd., representative patent attorney 1) Satoshi Muratake

Claims (1)

【特許請求の範囲】[Claims] (1)繊維強化複合材料製パイプを有する伝動軸におい
て、その両端部の外周面または内周面に’ /200〜
115のテーパ一部を設け、継手にもこれに合うテーパ
一部を設げ、これを、パイ°プの両端に接着剤によって
接合することを特徴とする伝動軸。
(1) In a transmission shaft having a fiber-reinforced composite material pipe, the outer circumferential surface or inner circumferential surface of both ends of the transmission shaft has a diameter of /200 to
A power transmission shaft characterized in that a part of the taper of 115 is provided, the joint is also provided with a part of the taper that matches this, and this is joined to both ends of the pipe with an adhesive.
JP9215082A 1982-06-01 1982-06-01 Transmission axle made of fiber reinforced composite material Pending JPS58211011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9215082A JPS58211011A (en) 1982-06-01 1982-06-01 Transmission axle made of fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9215082A JPS58211011A (en) 1982-06-01 1982-06-01 Transmission axle made of fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JPS58211011A true JPS58211011A (en) 1983-12-08

Family

ID=14046390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9215082A Pending JPS58211011A (en) 1982-06-01 1982-06-01 Transmission axle made of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPS58211011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3419291A1 (en) * 1984-05-24 1985-11-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Hollow shaft with a permanently connected flange
JP2005024095A (en) * 2003-07-02 2005-01-27 Abb Res Ltd Shaft, method of manufacturing the shaft, and device for implementing the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3419291A1 (en) * 1984-05-24 1985-11-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Hollow shaft with a permanently connected flange
JP2005024095A (en) * 2003-07-02 2005-01-27 Abb Res Ltd Shaft, method of manufacturing the shaft, and device for implementing the method

Similar Documents

Publication Publication Date Title
US4185472A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by radial pin interlock
US4236386A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by a polygonal surface interlock
US4211589A (en) Shaft and universal joint assembly
US4272971A (en) Reinforced tubular structure
US4348247A (en) Method of fabricating a reinforced tubular structure
US4187135A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
US4259382A (en) Fiber reinforced composite shaft with metal connector sleeves secured by adhesive
US5632685A (en) End fitting for drive shaft assembly and method of manufacturing same
US4238540A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by connector ring interlock
US4887989A (en) Dynamically balanced driveshaft and method of producing the same
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
JP6580490B2 (en) Drive shaft
US4265951A (en) Fiber reinforced composite shaft with metallic connector sleeves mounted by longitudinal groove interlock
JPS6154965B2 (en)
KR101372894B1 (en) Hybrid drive shaft and preparing method for the same
JPS58211011A (en) Transmission axle made of fiber reinforced composite material
GB2051304A (en) Fibre-reinforced composite shaft with metallic connector sleeves
KR20090016805A (en) Fabrication process of hybrid driveshaft based on composite materials
JPH05215119A (en) Manufacture of propeller shaft
JPH0160686B2 (en)
KR101999277B1 (en) Cfrp propeller shafts for vehicle
JPH0742974B2 (en) Manufacturing method of transmission shaft made of fiber reinforced plastic
JPS598568B2 (en) Vehicle drive propulsion shaft
JPH04301437A (en) Shaft made of fiber-reinforced resin for transmitting driving force
JPS5916125B2 (en) Fiber reinforced resin propeller shaft