JPS58210562A - Method and apparatus for determining methane and non-methane hydrocarbons - Google Patents

Method and apparatus for determining methane and non-methane hydrocarbons

Info

Publication number
JPS58210562A
JPS58210562A JP57093705A JP9370582A JPS58210562A JP S58210562 A JPS58210562 A JP S58210562A JP 57093705 A JP57093705 A JP 57093705A JP 9370582 A JP9370582 A JP 9370582A JP S58210562 A JPS58210562 A JP S58210562A
Authority
JP
Japan
Prior art keywords
methane
collection tube
flow path
tube
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57093705A
Other languages
Japanese (ja)
Inventor
Makoto Nishikawa
西川 孚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57093705A priority Critical patent/JPS58210562A/en
Publication of JPS58210562A publication Critical patent/JPS58210562A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PURPOSE:To determine also components other than CH4 which are incorporated in sample air in slight amounts, with the same apparatus with high precision as well, by sampling sample air in a cooled collecting tube for hydrocarbons other than CH4, first separating CH4 and O2 and heating the collecting tube, thus releasing hydrocarbons other than CH4. CONSTITUTION:Sample air is made to flow from an inlet A through a solenoid value V3 and taps V1 and V2 in order along the flow passage shown with dotted lines. A collecting tube T is cooled, captutres hydrocabons other than CH4, and discharges the other gaseous components via a measuring tube L. Then, the tap V2 is turned to the flow passage shown with solid lines, and CH4 and O2 and the like in the measuring tube L are separated into CH4 and O2 and the like with a column C2, to determine the concentration of CH4 with a hydrogen flame detector D. After the determination of CH4, when the suction volume (or the suction time) attains a prescribed value, a pump P is stopped, the solenoid valve V3 is turned to the flow passage shown with solid lines, gaseous carrier is introduced from an inlet N, the collecting tube T is heated to release gasenous non-CH4 hydrocarbons then each hydrocarbon is isolated with a column C1, and each concentration is determined with the hydrogen flame detector D. Thus, using a single apparatus, it makes possible to determine successively even slight amounts of non-CH4 hydrocarbons with high precision as well.

Description

【発明の詳細な説明】 大気中の炭化水素は、光化学大気汚染の原因物質として
大気管理上その濃度測定が重視されている。
DETAILED DESCRIPTION OF THE INVENTION Hydrocarbons in the atmosphere are a causative agent of photochemical air pollution, and measurement of their concentration is important for air management purposes.

炭化水素は多くの物質の総称であり、その測定にあたり
ては大気の天然組成の一つであるメタンと、主として人
為的汚染質から成ると考えられるメタン以外の炭化水素
(非メタン炭化水素) とに分けて測定することが定め
られている。
Hydrocarbon is a general term for many substances, and when measuring it, we use methane, which is one of the natural components of the atmosphere, and hydrocarbons other than methane (non-methane hydrocarbons), which are thought to mainly consist of anthropogenic pollutants. It is stipulated that the measurement should be carried out separately.

従来は、この測定法として、数mlの試料空気を採取し
、水素炎イオン化検出器を用、いたガスクロマトグラフ
ィ法で分離測定する方法が用いられているが、近年大気
管理の進展に伴い、大気中炭化水素濃度は低下しつつあ
り、上記従来法では感度が不足して正確な測定ができな
くなってきておりよp高感度の測定方法の開発が要求さ
れているのが現状である。
Conventionally, the method used for this measurement was to collect several milliliters of sample air and separate and measure it using a hydrogen flame ionization detector and gas chromatography, but in recent years, with advances in air quality control, air The concentration of hydrocarbons in water is decreasing, and the conventional methods described above lack sensitivity and are no longer capable of accurate measurement.The current situation is that there is a need to develop a highly sensitive measurement method.

本発明は、こうした現状を考慮し、より感度の高いメタ
ン・非メタン炭化水素測定方法並びKその装置を提供す
ることを目的とするものである。
The present invention has been made in consideration of the current situation and aims to provide a method and apparatus for measuring methane and non-methane hydrocarbons with higher sensitivity.

即ち9本発明は、捕集管を用い、かつ従来法に比して著
しく多量の試料空気中の非メタン成分を集めて測定する
ことにより、低濃度非メタン分の正確な測定を可能とす
ると共に、捕集の困難なメタンをも同時に測定し得るよ
うに工夫したものである。
That is, the present invention makes it possible to accurately measure low-concentration non-methane components by using a collection tube and collecting and measuring a significantly larger amount of non-methane components in sample air than in conventional methods. At the same time, it was devised to be able to measure methane, which is difficult to capture, at the same time.

以下本発明実施例について説明するが、その前に1本発
明の一要素となりている捕集分析法について簡単に説明
する。
Examples of the present invention will be described below, but before doing so, a collection analysis method, which is one element of the present invention, will be briefly explained.

これは、第1図は原理を説明するもので9図においてT
は捕集管でガラス管等に適当な充てん剤を詰めてあり、
その周囲にヒータHが巻いである。
This is because Figure 1 explains the principle, and Figure 9 shows T.
is a collection tube, which is a glass tube filled with an appropriate filler.
A heater H is wound around it.

■lはコック、C1はガスクロマトグラフのカラム。■l is the cock, and C1 is the gas chromatograph column.

Dは検出器、Nはキャリヤガス入口9Mはキャリヤガス
流量を制御するマスフローコントローラ。
D is a detector, N is a carrier gas inlet, and 9M is a mass flow controller that controls the carrier gas flow rate.

Pはポンプ、Aは試料空気入口である。P is the pump and A is the sample air inlet.

いま、コックvlが点線で示す状態にあるとき。Now, when the cock vl is in the state shown by the dotted line.

ポンプPを働らかせると、試料空気入口Aから試料空気
が吸い込まれ、捕集管Tを通v;I=ンプPを経て糸外
に送られる。捕集管Tは相対的に低い温度に保たれてお
り、また捕集管T内の充てん剤はこの温度で捕集すべき
成分に対して十分大きな保持容量を持つものが詰められ
ているので、空気は通過するが、捕集すべき成分は捕集
管T内に捕えられる。
When the pump P is operated, sample air is sucked in from the sample air inlet A, and is sent to the outside of the yarn through the collection tube T and the pump P. The collection tube T is kept at a relatively low temperature, and the filler inside the collection tube T has a sufficiently large holding capacity for the components to be collected at this temperature. , the air passes through, but the components to be collected are trapped in the collection tube T.

一定量(試料流量が一定であれば一定時間ンの試料を吸
引したらポンプPを止め、コックvlを実線側に切り換
えると共に、捕集管TのヒータHに通電し、これを加熱
すると、捕集された成分物質は洗い出されキャリヤガス
に運ばれてカラムC1を通る間に分離され、検出器りで
その量が測定される。Mはマスフローコントローラであ
つて、捕集管Tが加熱されてその抵抗が変化しても一定
流量のキャリヤガスが流れるように流量を制御する。
After suctioning a certain amount of sample (for a certain period of time if the sample flow rate is constant), stop the pump P, switch the cock Vl to the solid line side, and energize the heater H of the collection tube T to heat it. The collected component substances are washed out, carried by the carrier gas, and separated while passing through the column C1, and the amount thereof is measured by a detector. M is a mass flow controller, and the collection tube T is heated. The flow rate is controlled so that a constant flow rate of carrier gas flows even if the resistance changes.

このような捕集分析法は、大気中の臭気成分の分析にお
いて既に実用化されている。
Such a collection analysis method has already been put to practical use in the analysis of odor components in the atmosphere.

このような捕集分析法を大気中炭化水素の測定に応用す
ることは従来から試みられているが、メタンは沸点が低
い(約−160℃)ために、これを捕集するには捕集管
Tを極低温に保つか、非常に長い(数m)捕集管を用い
なければならないという技術的困難があり、大気中炭化
水素の測定法の実用的な方法として採用する仁とはでき
ない。
Attempts have been made to apply this kind of collection analysis method to the measurement of hydrocarbons in the atmosphere, but since methane has a low boiling point (approximately -160°C), collection of methane is difficult. There are technical difficulties in that the tube T must be kept at an extremely low temperature or a very long collection tube (several meters) must be used, so it cannot be used as a practical method for measuring hydrocarbons in the atmosphere. .

さて、第2図は本発明の一実施例装置を示すものである
。図において、第1図と同一符号を付したものは第1図
のそれらと同じものであって、非メタン炭化水素の分析
系を構成し、これにコックV2 +計量管り、カラムC
2キャリヤガス調圧器Bがら成るメタンの分析系と、電
磁弁v3が付は加えられている。なお、Dはこの場合水
素炎イオン化検出器を用いる。
Now, FIG. 2 shows an apparatus according to an embodiment of the present invention. In the figure, the parts with the same reference numerals as in Fig. 1 are the same as those in Fig. 1, and constitute a non-methane hydrocarbon analysis system.
A methane analysis system consisting of a two-carrier gas pressure regulator B and a solenoid valve V3 are added. Note that D uses a hydrogen flame ionization detector in this case.

仁の実施例装置は、以下のような手順で操作され分析が
行なわれる。
Jin's example device is operated and analyzed in the following manner.

(リコツクvl 、v2及び電磁弁v3が点線流路をと
るとき、ポンプPを働らかせると、試料空気は試料空気
人口Aから入り捕集管T、計量管りを通過しポンプPを
経て系外に流れ出る。捕集管Tの一例は、内径4mm、
長さ20Cmのガラス管で。
(When Rikotsukku vl, v2 and solenoid valve v3 take the dotted line flow paths, when pump P is operated, sample air enters from sample air population A, passes through collection pipe T, metering pipe, and passes through pump P to the system. An example of the collection tube T has an inner diameter of 4 mm,
A glass tube with a length of 20cm.

ポリマービーズ系充てん剤を詰め、この段階ではドライ
アイス温度(約−60°C)に保たれる。
It is filled with a polymer bead-based filler and maintained at dry ice temperature (approximately -60°C) at this stage.

この条件では、非メタン成分のみ捕集され、メタンは捕
集されずに捕集管Tを通シ抜けて計量管りを通って流れ
る。
Under this condition, only non-methane components are collected, and methane flows through the collection pipe T and through the metering pipe without being collected.

(2)この状態でコックV2を実線流路側に切り換える
と、そのとき計量管り内を通過中であった試料(メタン
、酸素等)がサンプリングされ、カラムC2でメタンと
酸素が分離されて水素炎イオン化検出器りでメタン濃度
が測定される。
(2) In this state, when cock V2 is switched to the solid line flow path side, the sample (methane, oxygen, etc.) that was passing through the metering pipe at that time is sampled, and methane and oxygen are separated in column C2, resulting in hydrogen Methane concentration is measured with a flame ionization detector.

(3)吸引空気量が所定量に達したら(又は吸引時間が
所定時間に達したら少ポンプPを止め、を磁弁v3を実
線流路に切換える。すると窒素ガス(キャリヤガス)が
抵抗R9電磁弁v3を通って捕集管Tに流れ、管T内に
残る空気(酸素)を追い出す。これは、捕集管Tを加熱
したとき充てん剤の酸化を防ぐためである。
(3) When the suction air amount reaches a predetermined amount (or when the suction time reaches a predetermined time), stop the small pump P and switch the magnetic valve v3 to the solid line flow path.Then, nitrogen gas (carrier gas) flows into the resistor R9 solenoid. It flows into the collection tube T through the valve v3, expelling the air (oxygen) remaining in the tube T. This is to prevent the filler from oxidizing when the collection tube T is heated.

(4)上記(2)におけるメタンの測定が終りてからコ
ックvlを実線流路に切シ換え、ヒータHに通電し、1
50〜200°Cまで捕集管Tを加熱すると。
(4) After completing the methane measurement in (2) above, switch the cock Vl to the solid line flow path, energize the heater H, and
When the collection tube T is heated to 50-200°C.

捕集されていた非メタン成分はキャリヤガスにより洗い
出されカラムc1を通って検出器りに達し、その量が測
定される。カラムC1は分離能力を持たない単なる抵抗
であって、非メタンの各成分は分離されず一括して測定
されることKなる。
The collected non-methane components are washed out by the carrier gas, pass through the column c1, and reach the detector, where their amount is measured. Column C1 is simply a resistor with no separation ability, and the non-methane components are not separated but measured all at once.

(5)捕集管Tを冷却し1次の分析に備える。(5) Cool the collection tube T and prepare for the first analysis.

以上説明したコックvl、v2.ポンプP、ヒータII
Cook vl and v2 explained above. Pump P, heater II
.

電磁弁■3等は予めプログラムを組んでシーケンスコン
トローラ等を用いて制御することにより自動的に分析が
行なわれる。
The analysis is automatically performed by programming the electromagnetic valve (3) in advance and controlling it using a sequence controller or the like.

以上説明したように1本発明分析法は、試料捕集中に非
メタン成分のみを捕集する捕集管を通過して出て来た試
料空気をサンプリングしてまずメタンを測定し、続いて
捕集の完了した捕集管から非メタン成分を洗い出して測
定するものであって大量の試料中の非メタン成分を集め
て測定するので、従来法の10〜100倍の感度が容易
に得られる。
As explained above, the analysis method of the present invention first measures methane by sampling the sample air that has passed through a collection tube that collects only non-methane components during sample collection, and then Since the non-methane components are washed out from the collected collection tube and measured, the non-methane components in a large amount of sample are collected and measured, so a sensitivity 10 to 100 times higher than conventional methods can be easily obtained.

メタンは従来法と感度は変らないが、メタンは地球上ど
こでも少くとも1.2PPm程度存在することが知られ
ているので、従来法程度の感度で十分測定可能である。
The sensitivity of methane is the same as that of the conventional method, but it is known that methane exists anywhere on the earth at least around 1.2 PPm, so it can be sufficiently measured with the sensitivity of the conventional method.

また、メタン測定系で扱う試料空気は前段の捕集管で非
メタン成分が除かれているので、ブレカラトナど複雑な
分析系を用いる必要がなく、簡単な1本のカラム(充て
ん剤:モレキーラシーブ等ンでも安定に分析することが
できる。
In addition, since non-methane components are removed from the sample air used in the methane measurement system in the collection tube at the front stage, there is no need to use a complicated analysis system such as a Brekaratona, and a simple column (filling material: Molecuila sieve, etc.) is not required. The analysis can be carried out stably even under high conditions.

また、万一捕集管の充てん剤が劣化したり、捕集温度が
不適当で非メタン成分の完全捕集ができなくなる(低沸
点炭化水素が通過するンと、メタン分析系の分析におい
てこれらが検出されるので。
In addition, in the unlikely event that the packing material in the collection tube deteriorates or the collection temperature is inappropriate, complete collection of non-methane components becomes impossible (low-boiling hydrocarbons pass through, and these is detected.

捕集管の良否がチェックできる利点もある。Another advantage is that the quality of the collection tube can be checked.

なお、上述の分析過程(υ〜(5)において(3)の過
程はポリマビーズ系充てん剤のように酸素の存在下で加
熱すると劣化する場合にのみ必要なプロセスであって、
このようなおそれのない充てん剤であれば省略してもよ
い。
In addition, in the above analysis process (υ ~ (5)), the process (3) is necessary only when heating in the presence of oxygen deteriorates, such as with polymer bead-based packing materials.
If the filler does not pose such a risk, it may be omitted.

M3図は本発明の他の実施例装置であって、6ポ一トコ
ツク2個の代りに12ボ一トコツク1個を用いて、装置
構成と分析操作を簡略化したものである。
Fig. M3 shows another embodiment of the apparatus of the present invention, in which one 12-point stock is used instead of two 6-point stock, thereby simplifying the apparatus configuration and analysis operation.

図において、第2図と同一符号を付したものは第2図の
それらと同じもので、同じ機能をもつ。
In the figure, parts given the same reference numerals as those in FIG. 2 are the same as those in FIG. 2, and have the same functions.

第3図の実施例装置では次の過程で分析が行わnる。In the apparatus of the embodiment shown in FIG. 3, analysis is performed in the following process.

(1)−EずコックVは点線流路において、捕集管Tを
所定温度に冷却し、所定量の材料空気が吸引の試料がサ
ンプリングされカラムC2でメタンと酸素が分離されて
その中のメタン成分が測定される。
(1)-Ezu cock V is in the dotted line flow path, cooling the collection tube T to a predetermined temperature, a predetermined amount of material air is sampled, and methane and oxygen are separated in column C2. Methane content is measured.

この間捕集管Tは冷却されたままで、キャリヤガスが流
れ空気が追い出される。
During this time, the collection tube T remains cooled and the carrier gas flows to expel air.

(3)メタンの測定が終りてから、ヒータHに通電し、
非メタン成分を追い出して測定する。この場合、捕集管
Tの洗い出し時のガスの流を方向は試料捕集時と同方向
(順方向)であって(第2図実施例装置の場合は逆方向
)追い出し過程で捕集管Tが分離カラムとして機能する
ので非メタン各成分がやや分離する傾向を生じるが。
(3) After the methane measurement is completed, turn on the heater H,
Measure by expelling non-methane components. In this case, the direction of the gas flow during flushing of the collection tube T is the same direction (forward direction) as when collecting the sample (in the case of the embodiment device shown in FIG. Since T acts as a separation column, the non-methane components tend to separate somewhat.

これは測定時のデータ処理技術(ピーク面積で定量する
)によって解決できる。
This can be solved by data processing technology during measurement (quantification by peak area).

(4ン捕集管を冷却する。(Cool the 4-inch collection tube.

以上に述べたように1本発明によると、非メタン炭化水
素に対し、従来方法に比べてはるかに高い感度が得られ
、しかも、捕集分析法を単純に適用した場合の問題点で
あったメタンの測定ができない点も解決され、メタンと
同時測定が可能となる。
As mentioned above, according to the present invention, much higher sensitivity can be obtained for non-methane hydrocarbons compared to conventional methods, and moreover, it is possible to obtain a much higher sensitivity for non-methane hydrocarbons, which was a problem when simply applying the collection analysis method. This solves the problem of not being able to measure methane, making it possible to measure methane and methane simultaneously.

また、捕集管を通過した試料を分析して捕集の困難なメ
タンを測定するという方法をとることにより万一捕集管
の使用条件が不適切であっても。
In addition, by analyzing the sample that has passed through the collection tube and measuring methane, which is difficult to capture, even if the usage conditions of the collection tube are inappropriate.

メタン測定時にこれをチェックできるという利点もある
。さらにこのメタン測定用の分析系はブレカットなどを
必要とせア、極く単純な分析系でよいことも大きな利点
である。
Another advantage is that this can be checked when measuring methane. Another great advantage is that this analytical system for measuring methane does not require a Brecut, and can be a very simple analytical system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法の一つである捕集分析法を説明する図、
第2図は本発明の一実施例装置を示し。 第3図は他の実施例装置を示す図である。 図中、Aは試料空気入口、Tは捕集管、Hはヒータ、N
はキャリヤガス入口、Lは計量管、C2はガスクロマト
グラ7カラム、Dは検出器、 VtVztj:コック、
v3は電磁弁、2社ポンプである。 第3図
Figure 1 is a diagram explaining the collection analysis method, which is one of the conventional methods.
FIG. 2 shows an embodiment of the present invention. FIG. 3 is a diagram showing another example device. In the figure, A is the sample air inlet, T is the collection tube, H is the heater, and N
is carrier gas inlet, L is metering tube, C2 is gas chromatograph 7 column, D is detector, VtVztj: cock,
v3 is a solenoid valve and pump from two companies. Figure 3

Claims (1)

【特許請求の範囲】 1、非メタン成分のみを捕集するように冷却された捕集
管を通して試料空気をサンプリングし。 ガスクロマトグラフカラムでメタン成分と酸素に分離し
て水素炎イオン化検出器によりメタン濃度を測定した後
、前記捕集管を加熱して捕集された非メタン成分を追い
出し、前記水素炎イオン化検出器に導いて非メタンlI
I度を測定するるようにしたことを特徴とするメタン・
非メタン炭化水素測定方法。 2キャリヤガス入口、試料空気入口、冷却及び加熱手段
を備えるとともに適当な充てん剤が詰められた捕集管、
計蓋管、吸引ポンプ、ガスクロマトグラフカラム、水素
炎イオン化検出器及び1又は2以上の流路切換コックを
具備した装置において、(1)試料空気入口、捕集管、
計量管。 吸引ポンプの接結からなる流路。 (2)キャリヤガス入口、計量管、ガスクロマトグラフ
カラム、水素炎イオン化検出器の接続からなる流路。 (3ンキャリャガス入口、捕集管、水素炎イオン化恍 検出器の接碕からなる流路。 を備えるとともにこれら流路(1)及び(2) (3)
を前記コックにより選択的に切り換えることができるよ
う構成し、前記(1)の流路が選択されるときには前記
捕集管を冷却手段により冷却し、前記(2)(3)の流
路が選択されるときには、(2)の流路における水素炎
イオン化検出器での測定が終了した後に(3)の流路に
おける捕集管を加熱手段により加熱してt%許請求の範
囲第1項に記載の測定方法を実施するようにしたことを
特徴とするメタン・非メタン炭化水素測定装置。
[Claims] 1. Sample air is sampled through a collection tube cooled to collect only non-methane components. After separating the methane component and oxygen using a gas chromatography column and measuring the methane concentration using a flame ionization detector, the collection tube is heated to drive out the collected non-methane components, and the collected non-methane components are transferred to the flame ionization detector. Lead to non-methane lI
Methane, which is characterized by being designed to measure I degrees.
Non-methane hydrocarbon measurement method. 2. A collection tube equipped with a carrier gas inlet, a sample air inlet, cooling and heating means, and filled with a suitable filler;
In an apparatus equipped with a meter lid tube, a suction pump, a gas chromatography column, a hydrogen flame ionization detector, and one or more flow path switching cocks, (1) a sample air inlet, a collection tube,
Measuring tube. A flow path consisting of a suction pump connection. (2) A flow path consisting of a carrier gas inlet, a metering tube, a gas chromatography column, and a flame ionization detector connection. (3) A flow path consisting of a carrier gas inlet, a collection tube, and a hydrogen flame ionization detector.
can be selectively switched by the cock, and when the flow path of (1) is selected, the collection tube is cooled by the cooling means, and the flow paths of (2) and (3) are selected. When the measurement with the hydrogen flame ionization detector in the flow path (2) is completed, the collection tube in the flow path (3) is heated by a heating means, and the t% A methane/non-methane hydrocarbon measuring device characterized by carrying out the described measuring method.
JP57093705A 1982-05-31 1982-05-31 Method and apparatus for determining methane and non-methane hydrocarbons Pending JPS58210562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57093705A JPS58210562A (en) 1982-05-31 1982-05-31 Method and apparatus for determining methane and non-methane hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57093705A JPS58210562A (en) 1982-05-31 1982-05-31 Method and apparatus for determining methane and non-methane hydrocarbons

Publications (1)

Publication Number Publication Date
JPS58210562A true JPS58210562A (en) 1983-12-07

Family

ID=14089819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57093705A Pending JPS58210562A (en) 1982-05-31 1982-05-31 Method and apparatus for determining methane and non-methane hydrocarbons

Country Status (1)

Country Link
JP (1) JPS58210562A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388238A (en) * 2015-12-11 2016-03-09 力合科技(湖南)股份有限公司 Detection apparatus
CN106501399A (en) * 2016-10-21 2017-03-15 苏州冷杉精密仪器有限公司 A kind of methane and NMHC detection method of content
CN109541056A (en) * 2018-11-15 2019-03-29 浙江全世科技有限公司 A kind of device and method that non-methane total hydrocarbons content directly detects
CN114235941A (en) * 2022-02-28 2022-03-25 华电智控(北京)技术有限公司 Direct detection device and method for non-methane total hydrocarbons in ambient air

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388238A (en) * 2015-12-11 2016-03-09 力合科技(湖南)股份有限公司 Detection apparatus
CN106501399A (en) * 2016-10-21 2017-03-15 苏州冷杉精密仪器有限公司 A kind of methane and NMHC detection method of content
CN109541056A (en) * 2018-11-15 2019-03-29 浙江全世科技有限公司 A kind of device and method that non-methane total hydrocarbons content directly detects
CN114235941A (en) * 2022-02-28 2022-03-25 华电智控(北京)技术有限公司 Direct detection device and method for non-methane total hydrocarbons in ambient air

Similar Documents

Publication Publication Date Title
Hamilton Ion exchange chromatography of amino acids. A single column, high resolving, fully automatic procedure.
US5595709A (en) Instrument for measuring non-methane organic gases in gas samples
CN206594119U (en) A kind of volatile organic matter on-line monitoring system with automatic Calibration function
CN106645522A (en) On-line volatile organic compound monitoring system with automatic calibration function
JPH06194351A (en) Gas-chromatograph system
US3790348A (en) Apparatus for determining the carbon monoxide, methane and total hydrocarbons content in air
TWI642936B (en) Apparatus and method for analyzing breath gas mixture for halitosis detection
US3638396A (en) Gas chromatograph interfacing system and method
CN111480073A (en) System and method for real-time monitoring of chemical samples
CN202676680U (en) Device capable of detecting low-concentration freon in seawater
US3338087A (en) Breath analyzing apparatus
US4399688A (en) Air pollution detection
US6447575B2 (en) Method and apparatus for gas chromatography analysis of samples
JP2006337158A (en) Sample concentration device
Dietz et al. Tracing atmospheric pollutants by gas chromatographic determination of sulfur hexafluoride
JP4157492B2 (en) Formaldehyde gas detector
JPS58210562A (en) Method and apparatus for determining methane and non-methane hydrocarbons
US3653840A (en) Portable air pollution detector
US3530292A (en) Apparatus and method for determination and measurement of carbon in aqueous solutions
JPS58501787A (en) Method and apparatus for continuous automatic air analysis
US3638397A (en) Gas analysis system and method
CN103940939A (en) Foul gas detection device based on micro-fluidic chip
JP2002350299A (en) Odor measurement method and device
US3118736A (en) Method for blood gas analysis
US5846292A (en) Chromatograph with column extraction