JPS58210544A - Measurement system of viscoelasticity in audible frequency band - Google Patents

Measurement system of viscoelasticity in audible frequency band

Info

Publication number
JPS58210544A
JPS58210544A JP9218282A JP9218282A JPS58210544A JP S58210544 A JPS58210544 A JP S58210544A JP 9218282 A JP9218282 A JP 9218282A JP 9218282 A JP9218282 A JP 9218282A JP S58210544 A JPS58210544 A JP S58210544A
Authority
JP
Japan
Prior art keywords
sample
viscoelasticity
displacement
stress
frequency band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9218282A
Other languages
Japanese (ja)
Other versions
JPH0254491B2 (en
Inventor
Shinsaku Uemura
植村 振作
Tadao Odaka
小高 忠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO BALDWIN KK
Original Assignee
TOYO BALDWIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO BALDWIN KK filed Critical TOYO BALDWIN KK
Priority to JP9218282A priority Critical patent/JPS58210544A/en
Publication of JPS58210544A publication Critical patent/JPS58210544A/en
Publication of JPH0254491B2 publication Critical patent/JPH0254491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To meaure viscoelasticity precisely by calculating complex modulus with prescribed mechanical impedances from the relation concerning to the plural oscillation states caused by the different phases of the forced oscillations applied on a specimen from boths ends thereof. CONSTITUTION:Two exciters 14', 14'' which have the same characteristic and can be controlled in relative phases are provided at both ends of a specimen 10, and arbitary different oscillation is applied on the specimen; for example, different oscillation state generated by locking the 2nd exciter 14'' and operating only the 1st exciter 14'. The 1st and the 2nd stress detectors 16', 16'' and displacement detectors 18', 18'' are placed between the two exciters 14', 14'' and the specimen 10 to detect the two different oscillation states, and the precise calculation of complex modulus of elasticity is made possible by taking the oscillation distribution detected with the displacement detectors for the two positions in both states into consideration. The viscoelasticity is thus measured precisely.

Description

【発明の詳細な説明】[Detailed description of the invention]

とf′Lまで動的又は複素粘弾性の御・定は試料の一端
を変位の無視できるロードセルを介して固定し、他端よ
り変位検出器をfr して振動を加え、扉えた振動変位
と試料/7′】他端での横比応力とθ゛比と位相差とを
もととして行−で米た。所がロードセルの応力検出は歪
即ち微少変位(″よるので変位なしには応力の検出(ケ
不可能であり応力により弾性体を変位せしめて行う。そ
の為ロードセル受感素子を弾性体即ち振動系として構成
中るので試料の振動とロードセルの振動が混在して、聯
IR:振動系となり試料自身の特性検出に誤差を生じる
。この誤差は加λる振動周波数が低い間は問題が少なか
〜たが測定周波数〕)上列とともに誤差も太きく′fX
り最近の粘弾性測冗にはこの応力検出器の起す誤差の解
決が最大の課題となった。この誤差防止゛は測定周波帯
域の上昇、特に防音材の開発などのために重要な可聴周
波帯域での研究には特に必要である。 こうした理白によってこれ1で数100 Hz以下の粘
弾性fAn定では試料の1端より強制振動を加える方法
を甲い、数1000 Hz以上では超音波吸収法などで
波動として求められて来た。その中間の可聴周波帯域は
上述のように重要になったにも拘らず、波動として考え
る必要からこれ萱で研究が小力かった。 本発明はこの可聴周波帯域の粘弾特性を波動として究明
するため試料の両端より2つの強制振動を加えこ1−ま
での低周波強制振動法の利点を生かすと同時に2つの振
動の相対位相を変化して試料の振動状態を変化せしめ、
波動としての考察をも刀nえて粘弾性の解明を計−たも
のである。即ち波動と考えると振動の振幅並びに位相が
時間のみならず試料内の位置の関数となるため2つ以上
の複数の位置の変位蓮ひに応力の測定を必要とするので
変位並びに応1力の検出器を加振器同様試料の両端に置
き試料の異なる振動状態により変わる機械的インピーダ
ンスを求め波動性を考慮して粘弾性を検出する。 更にこうした方法を用いるに当〜て応力検出器特にロー
ドセルは前述のように1つの振動系を構成子るのでこれ
が試料の振動に混入し誤差となる力!′、3力検出器と
試料との間に光学変位検出器などのような演11定エネ
ルギー消費の無視できる変位検出器を置けば応力検出器
には変位検出器の特性が入らず試料の応力がその1\検
出可能で而も応力検出器の出力である試料えの入力振動
変位をその1\変位検比器が補捉検出するので応力検出
器の特性は加振器の特性と見做されるhゝら応力検出器
は試料に加り−られる正しい応力を示すことができる。 こうした応力検出器の誤差を防止する方法で試料の応力
と変位との関係即ち機械的インピーダンスなどを求め、
本発明の両端より加えた強制振動の異なる位相による卵
数の振動状態の関係より上記機械的インピーダンスを介
して複素弾性率が容易に計算できることを発見しこれを
利用して複素弾性率の酸1定を行うものである。 以下図面によって好ましい実施例を説明する。 第1図は在米の粘弾性測定方丈で10は試料、吊器16
で第1加振器14にエリ加えられた変位ξによる応力σ
を検出し E°=σ/ξ/1 ・・・・・−・・・・・・・・・・
・・ (1)としてEoの振幅とξとσの位相よりEo
を決定するが4の大きい弾性体を沖いるのでそれの変位
は無視可能と考え式(1)を用いたものである。併しな
がら変位が如何に小さくとも変位なしでは応力の検知は
不可能で必らず変位があるので検出器16自身が振動系
であり、従って第1図中の振動系である試料を別の振動
系である応力検出器で固定す差が小さく応力検出器は振
動系でなく(11式で近似されるがωが可聴周波帯域と
欧りω美(ムは太きいのでω孟は可聴周波帯域にある)
近つくと誤差が太きくで(11式は補正乏しでは用いC
−れず最近の窩周彼帯域の粘弾性剖)足に(は誤差補正
が最大−)問題となって来た。 さら(C在来の(11式を甲いた粘弾性測定には試料l
Oも単純に一つの発条体と考え、変位も直線に沿うとし
て即ち歪か試料中の場所
To control and control dynamic or complex viscoelasticity up to f'L, one end of the sample is fixed via a load cell whose displacement can be ignored, and a displacement detector is applied from the other end to apply vibration. Sample/7'] The samples were measured in rows based on the transverse specific stress, θ' ratio, and phase difference at the other end. However, since the stress detection of a load cell depends on strain, that is, minute displacement ('', it is impossible to detect stress without displacement, and it is performed by displacing an elastic body due to stress. Therefore, the load cell sensing element is connected to an elastic body, that is, a vibration system. Since the vibration of the sample and the vibration of the load cell coexist, it becomes a combined IR (vibration system) and causes an error in detecting the characteristics of the sample itself.This error is less of a problem as long as the applied vibration frequency is low. [Measurement frequency]) The error becomes thicker with the upper row ′fX
Therefore, solving the errors caused by stress detectors has become the biggest challenge in recent viscoelastic measurements. This error prevention is particularly necessary for research in the audio frequency band, which is important for increasing the measurement frequency band, especially for the development of soundproofing materials. Based on these principles, a method of applying forced vibration from one end of the sample has been used to determine the viscoelastic fAn constant at frequencies below several 100 Hz, and waves at frequencies above several 1000 Hz have been determined using ultrasonic absorption methods. Although the audio frequency band in between has become important as mentioned above, there has been little research into it due to the need to consider it as a wave. In order to investigate the viscoelastic properties in the audio frequency band as waves, the present invention applies two forced vibrations from both ends of the sample. changes to change the vibration state of the sample,
This is an attempt to elucidate viscoelasticity by considering it as a wave. That is, when considered as a wave, the amplitude and phase of the vibration are a function not only of time but also of the position within the sample, so it is necessary to measure the displacement and stress at two or more positions, so it is necessary to measure the displacement and stress at two or more positions. A detector is placed at both ends of the sample like a vibrator, and the mechanical impedance changes depending on the different vibration states of the sample, and the viscoelasticity is detected by considering the wave nature. Furthermore, when using such a method, the stress detector, especially the load cell, constitutes one vibration system as mentioned above, so this force mixes with the vibration of the sample and causes errors! If a displacement detector such as an optical displacement detector that consumes constant energy is placed between the three force detectors and the sample, the characteristics of the displacement detector will not be included in the stress detector and the stress of the sample will be reduced. However, the input vibration displacement of the sample, which is the output of the stress detector, is captured and detected by the displacement detector, so the characteristics of the stress detector can be regarded as the characteristics of the exciter. A stress detector can indicate the correct stress being applied to the sample. The relationship between the stress and displacement of the sample, that is, the mechanical impedance, etc., is determined using a method that prevents errors in the stress detector.
According to the present invention, it was discovered that the complex modulus of elasticity can be easily calculated through the mechanical impedance from the relationship between the vibration states of the egg number due to the different phases of forced vibrations applied from both ends, and using this, the complex modulus of the acid 1 The purpose of this is to determine the Preferred embodiments will be described below with reference to the drawings. Figure 1 shows the viscoelastic measurement method in the United States, where 10 is the sample and the hanging device is 16.
The stress σ due to the displacement ξ applied to the first vibrator 14 at
Detected and E°=σ/ξ/1 ・・・・・・−・・・・・・・・・・・・・
... (1) From the amplitude of Eo and the phases of ξ and σ, Eo
is determined by using equation (1), considering that the displacement is negligible since it is located at a large elastic body of 4. However, no matter how small the displacement, it is impossible to detect stress without displacement, and since there is always a displacement, the detector 16 itself is a vibration system, and therefore the sample, which is the vibration system in Figure 1, is The stress detector is a vibration system, and the difference in fixation is small, so the stress detector is not a vibration system (approximated by equation 11, but ω is in the audio frequency range, so ω is in the audio frequency range, so ω is in the audio frequency range). band)
The closer the error is, the larger the error becomes (Equation 11 is used when the correction is insufficient.
Recently, the viscoelastic autopsy of the circumfosal zone has become a problem in the foot (error correction is the greatest). In addition, for viscoelasticity measurement using conventional (C) formula 11, sample l is used.
We can also consider O simply as one spring body, and assume that the displacement is along a straight line, that is, the strain or location in the sample.

【Cよらず一様であるとして中
成で近イしi可能と考乏て来たC併し乍I−試別自肩カ
ニ単なる発条で斤く粘性のある弾性体で11変位(7試
料中の位置の関数即ち波動の形式を取るもので従って 鼓にE” == )’−I−i rt 4  ρ−質t
、、=i料第1端よりの距離 t=待時間で表わさ扛る
。試料の1端(第1端)より振動変位ei011が加え
られた時の(21の変位ξげ ξ(4t)=(Mco   −’Ns+n−χ)eIo
”  −=(315でゝ   C・ で示されM N I”i境界φ件により決定キノ9.る
。 但し!j!LKc°Hc゛= 必vT−−−−−・−−
−−−・(41である。 上式にて明らカーなように試料中の変位ξは一様でなく
変数よ、tにより変化する波動となり、これ1での歪が
Xに無関係に一様とした仮定は使用不能で境界条件によ
って変化する振動の分布を知ることが必要となりその為
には変位を1端のみでなく同時に1つ以上で検出して先
ず振動分布を知り加振端の応力と1位より求められる複
素弾性毘を補正する必要が起る。所が一つの振動状態の
みより上記の複素舞性との補正計算は困難で寧ろ異なる
特定の2つの振動状態を検比し夫々の時の1端の機械的
インピーダンスと複重弾性率との関係から試料の複素弾
性率を求める方が容易である。 12−図に示すようにこの為に寡発明では試料1゜の両
端に2つの特性同一で相対位相の制御できる加振器14
’、14’を設は異なる任意の試料振動、ケタは第2加
振器14′はロックしwJ1加振器14′のみを作動さ
せ、又は第1と第2の加振器を異なる相対位相θで同時
に作動芒せるなどにより試料に異なる振動状態を作る。 それと共に2つの加振器14’、14’と試料10の間
に第2図に示すように第1第2の応力検出器16’、1
6″及び変位検出器18′。 18“とを置き2つの加振器14’、14’の異なる作
動によりて生じる2つの異なる振動状態を検出すると共
に両計態の時の1端の応力、変位検出器16′18′又
(グ16’、IF1″の出力の2つの値の関係より2つ
の位置の変位検出器(てより検出した振動分布を零旙、
に入れて柁暫な複紫外性率の引算を可能にし7又は容易
にしたものである。 而もこの時使用する質位検す器18’、18″1仁光学
式など変位測定の為にエネルギー消費の0に近い検出器
を用いると検出器変位のために要する応力は0なので応
力検出器16’、16’の出力は試料10のみの変位に
要する応力を示し、而も変位検出器18’lFt“は応
力検出器の外側で試料端に直紡されているので試料10
の真の変位を示し在来の方法の時の応力検出器16’、
16’の微少でにあるが存在する変位6′こよる誤差を
防止干ることが出来る一次に第2図のように試料lOの
両端第1端12′と第2端12″に置かれた第171L
I振器14′とこれと同一特性の第2加振器14′とを
相対位相角θで作動させた時の振動状gを以下簡革に1
明する。 (21式にて第2加振器14′がe1′JJtの振動を
加えたとすればM=1となり第2加振器14′が6 +
 (”を−〇)とすれtげ第(2)式は ω (CnS  、 + N S in −j ’)e16
’(=eI (0)t−θ)−・・・・−、+31C1 故に 従−て θ”” Or  ’ l  π の時それぞれ
で示さ几る。又第2端を固定した時のNをNflxとす
ればξCt)= 0ならしめる時のNfixはωl (−′− 他方カロ振端にf位置1 (t)jを生じる力F(は 
 。 δξ F=−AE”(コ)工=。・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・(9)てあり
加振端より見た機械インピーダンスZばz=F7(41
)ニー。・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・−・・・(1011 で示される。従って(31式をχで微分してFを求める
と け1様に となる。所がN(π)と”f ixとは倍角の余切の関
係があるので 2z(π)Zfix=z(π)十A2ρE。 、’−E” = (2Zfix−z(π))Z(π)/
ρA2°°°°曲°αJの関係よりEoを容易に計算で
きる。 同時に θ;、−yrtr3嗜、π、ユπ  などの特
足の4° 2° 42 インピーダンスの間の関係より複素弾性率を求めること
も可能である。 こうした本発明の方法によれば在米の単に試料を歪一定
の単純発条体と考えることの出来た低周波時の粘弾性と
異り、波動と見做さざるを得ない可聴周波帯域の粘弾性
をより精確に測定すること、即ち一様でない歪の分布を
考慮してその分布を2つの加振器により制御可能にした
上で1つ以上の異〜た振動状態の機械インピーダンスを
介して複素弾性率を精密に測定可能にし而も在来の応力
測定器誤差の排除に成功したものである。本文では2つ
の応力検出器の使手を述べたが試験方法によりてはその
1つは省略可能であることは勿論である。 4、簡単外図面の説明 第1図は在来の試料の1端より加振他端固定の強制振動
粘弾性測定方式の素子配置図、第2図は本発明の試料両
端加振型粘弾性測定方式の素子配置図。 図中 10 試料    12’、12“ 第1、第2試料端
14 加振器   14’、14″  第1、第2加振
器16 応力検出器 16’、16’  第1、第2応力検出器18 変位検
出器 1B’、IR”  第】、第2変位検出器諜  応力検
出ロードセル弾性体
[I have been thinking that it is possible to approach Nakasei because it is uniform regardless of C, but I-I- Trial self-shoulder crab 11 displacements in a viscous elastic body with a simple spring (7 samples It is a function of the position in the center, that is, it takes the form of a wave, and therefore the drum is E” == )'-I-i rt 4 ρ-quality t
,,=distance from the first end of the charge, t=waiting time. When vibrational displacement ei011 is applied from one end (first end) of the sample (21 displacement ξage ξ(4t) = (Mco −'Ns+n−χ)eIo
” −= (indicated by ゝ C・ in 315 and determined by M N I”i boundary φ.
---・(41) As shown in the above equation, the displacement ξ in the sample is not uniform, but is a variable and becomes a wave that changes with t, so that the strain at 1 is constant regardless of X. Such assumptions cannot be used, and it is necessary to know the distribution of vibration that changes depending on the boundary conditions. To do this, displacement is detected not only at one end but at one or more at the same time, and first, the vibration distribution is known and the vibration distribution at the excitation end is detected. It is necessary to correct the complex elasticity obtained from the stress and the first order. However, since there is only one vibration state, it is difficult to calculate the correction for the complex elasticity described above, and rather, it is necessary to compare two specific vibration states. It is easier to find the complex modulus of the sample from the relationship between the mechanical impedance at one end and the complex modulus at each time. The exciter 14 has two characteristics that are the same and can control the relative phase.
', 14' indicates different sample vibrations, the digit indicates that the second exciter 14' is locked and only wJ1 exciter 14' is operated, or the first and second exciters are set to different relative phases. Different vibration states are created in the sample by simultaneously moving the actuators at θ. At the same time, between the two vibrators 14', 14' and the sample 10, as shown in FIG.
6'' and a displacement detector 18'. 18'' are placed to detect two different vibration states caused by different operations of the two vibrators 14', 14', and to detect the stress at one end in both conditions. Based on the relationship between the two values of the outputs of the displacement detectors 16' and 18'(G16' and IF1''), the vibration distribution detected by the displacement detectors at two positions is
This makes it possible to temporarily subtract the double ultraviolet ray ratio. However, if a detector with energy consumption close to 0 is used to measure displacement, such as the quality detector 18' or 18'' 1-piece optical type used at this time, the stress required for detector displacement is 0, so stress detection is possible. The outputs of the detectors 16', 16' indicate the stress required for the displacement of the sample 10 only, and since the displacement detector 18'lFt'' is spun directly to the edge of the sample outside the stress detector, the output of the sample 10 is
stress detector 16', which indicates the true displacement of the conventional method;
Although the displacement of 16' is small, it can prevent the error due to the displacement 6'.The first end 12' and the second end 12' of the sample lO are placed on both ends of the specimen as shown in Figure 2. 171st L
The vibration state g when the I vibrator 14' and the second vibrator 14' having the same characteristics are operated at a relative phase angle θ is simplified as 1 below.
I will clarify. (In equation 21, if the second vibrator 14' applies a vibration of e1'JJt, then M=1 and the second vibrator 14' is 6 +
(“-〇), the tth equation (2) is ω (CnS, + N S in −j') e16
'(=eI (0)t-θ)-...-, +31C1 Therefore, it is shown in each case when θ"" Or 'l π. Also, if N when the second end is fixed is Nflx, Nfix when ξCt) = 0 is ωl (-'- On the other hand, the force F( is
. δξ F=-AE”(ko)work=.・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・(9) Mechanical impedance Z as seen from the excitation end Z = F7 (41
)knee.・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・-・・・(1011 Since ix has a double angle cocution relationship, 2z(π)Zfix=z(π)×A2ρE. ,'-E" = (2Zfix-z(π))Z(π)/
Eo can be easily calculated from the relationship ρA2°°°°curve °αJ. At the same time, it is also possible to obtain the complex modulus of elasticity from the relationship between the impedances of special legs such as θ;, -yrtr3, π, and yuπ. According to the method of the present invention, unlike the viscoelasticity at low frequencies in the US where the sample can be considered as a simple spring body with constant strain, the viscoelasticity in the audio frequency range has to be regarded as a wave. To measure the elasticity more precisely, i.e. by taking into account the non-uniform strain distribution and making it controllable by two exciters, through the mechanical impedance in one or more different vibration states. This method makes it possible to precisely measure the complex modulus of elasticity while successfully eliminating the errors of conventional stress measuring instruments. In this text, we have described two ways to use the stress detector, but it goes without saying that one of them can be omitted depending on the test method. 4. Simple explanation of external drawings Figure 1 is an element layout diagram of the conventional forced vibration viscoelastic measurement method in which the sample is vibrated from one end and fixed at the other end, and Figure 2 is the device arrangement of the viscoelasticity measurement method in which the sample is vibrated at both ends of the present invention. Element layout diagram of measurement method. 10 in the figure Samples 12', 12'' First and second sample ends 14 Vibrators 14', 14'' First and second vibrators 16 Stress detectors 16', 16' First and second stress detectors 18 Displacement detector 1B', IR" second displacement detector Stress detection load cell elastic body

Claims (1)

【特許請求の範囲】 l)試料の両端に特性同一で相対位相の制御可能な2つ
の加振器を具え試料に゛加え′32つの強制振動を相対
的に制御して試料に異なる振動状態を与え、その複素粘
弾性を測定することを特徴とする可聴周波帯域粘弾性測
定方式−2)試料の異なる振動状態にてその機械的イン
ピーダンスを求め異なる特定振動状態の機械的インピー
ダンス値の間の関係を用いて試料の複素粘弾性を求める
ことを特徴とする特許請求の範囲第1項=1載の可聴周
波帯域粘弾性測定方式。 3)外側より加振器、応力検出器、変位検出器、試料の
順に測定器を結合し、変位検出器を測定エネルギーを無
視可能な型とし、誤差な≦試料端の応力と複数点の変位
とを測定して複累舞性率を検出可能にすることを特徴と
する特許請求の範囲第3項記載の可聴周波帯域粘弾性測
定方式。
[Claims] l) Two vibrators with the same characteristics and controllable relative phase are provided at both ends of the sample, and the two forced vibrations are relatively controlled to create different vibration states in the sample. An audio frequency band viscoelasticity measurement method characterized by measuring the complex viscoelasticity of the given sample. An audio frequency band viscoelasticity measurement method according to claim 1, characterized in that the complex viscoelasticity of a sample is determined using the method. 3) Connect the measuring devices in the order of the vibrator, stress detector, displacement detector, and sample from the outside, and make the displacement detector a type where the measurement energy can be ignored. 4. The audio frequency band viscoelasticity measuring method according to claim 3, wherein the method for measuring viscoelasticity in an audio frequency band makes it possible to detect a multimodal rate by measuring the following.
JP9218282A 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band Granted JPS58210544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9218282A JPS58210544A (en) 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9218282A JPS58210544A (en) 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band

Publications (2)

Publication Number Publication Date
JPS58210544A true JPS58210544A (en) 1983-12-07
JPH0254491B2 JPH0254491B2 (en) 1990-11-21

Family

ID=14047287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9218282A Granted JPS58210544A (en) 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band

Country Status (1)

Country Link
JP (1) JPS58210544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294408A (en) * 1994-04-21 1995-11-10 Sakurai Kenzai Sangyo Kk Elastic modulus/viscosity coefficient measuring method and device therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129089A (en) * 1977-04-15 1978-11-10 Mitsubishi Electric Corp Measuring method of complex modulus of elasticity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129089A (en) * 1977-04-15 1978-11-10 Mitsubishi Electric Corp Measuring method of complex modulus of elasticity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294408A (en) * 1994-04-21 1995-11-10 Sakurai Kenzai Sangyo Kk Elastic modulus/viscosity coefficient measuring method and device therefor

Also Published As

Publication number Publication date
JPH0254491B2 (en) 1990-11-21

Similar Documents

Publication Publication Date Title
US5078013A (en) Ultrasonic measuring apparatus using a high-damping probe
US6654424B1 (en) Method and device for tuning a first oscillator with a second oscillator and rotation rate sensor
França et al. All-optical measurement of in-plane and out-of-plane Young's modulus and Poisson's ratio in silicon wafers by means of vibration modes
D'Emilia et al. Calibration of tri-axial MEMS accelerometers in the low-frequency range–Part 1: comparison among methods
KR101716877B1 (en) Apparatus and method for detecting fatigue crack using nonlinear ultrasonic based on self- piezoelectric sensing
JPH10253339A (en) Method and apparatus for measurement by utilizing sound wave
CN112964242A (en) System and method for testing mechanical coupling error of quartz tuning fork gyroscope gauge head
JPS58210544A (en) Measurement system of viscoelasticity in audible frequency band
US3176505A (en) Vibration energy transfer techniques using stretched line element
Hasanian et al. Directional nonlinear guided wave mixing: case study of counter-propagating shear horizontal waves
SU682796A1 (en) Apparatus for the determination of shear viscosity and elasticity of media
RU2619812C1 (en) Method of non-destructive testing of hidden defects in technically complex structural element which is not accessible and device for its implementation
Schrag et al. Mechanical techniques for studying viscoelastic relaxation processes in polymer solutions
RU2265214C2 (en) Method for measuring relaxation of strain of soft composites
RU2466368C1 (en) Method of determining dynamic characteristics of tensometric pressure transducer (versions)
RU2791836C1 (en) Device for concrete strength measurement
EP4083586A1 (en) System and method for the determination of object properties
RU2045024C1 (en) Hardness tester
JPH02264843A (en) Hardness measuring apparatus
SU1532856A1 (en) Method of determining deformation of single-crystal wafers
Hirao et al. Interface delamination of layered media: acoustic spectroscopy and modal analysis
SU1392386A1 (en) Device for measuring parameters of resonance oscillations
JP2017047193A (en) Biological measurement apparatus, biological measurement method, and detection method
Pettersson et al. On the verification of the applicability of the orthotropic plate wave theory to paper
JPS6055244A (en) Measuring device of visco-elasticity