JPS58209844A - Electric field ionization type ion source - Google Patents

Electric field ionization type ion source

Info

Publication number
JPS58209844A
JPS58209844A JP9281782A JP9281782A JPS58209844A JP S58209844 A JPS58209844 A JP S58209844A JP 9281782 A JP9281782 A JP 9281782A JP 9281782 A JP9281782 A JP 9281782A JP S58209844 A JPS58209844 A JP S58209844A
Authority
JP
Japan
Prior art keywords
ion beam
tip
top end
needle
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9281782A
Other languages
Japanese (ja)
Inventor
Takashi Horiuchi
堀内 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9281782A priority Critical patent/JPS58209844A/en
Publication of JPS58209844A publication Critical patent/JPS58209844A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0802Field ionization sources
    • H01J2237/0807Gas field ion sources [GFIS]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To provide fine ion beam having high luminance by grinding tungsten single crystal fine wire used as a needle-shaped electrode so as to have the specified radius of curvature and by constructing the top end of a tungsten chip with a face of special structure. CONSTITUTION:In an ion beam irradiation apparatus in which high voltage is applied between a needle-shaped electrode and a draw out electrode in gas environment exhaust in a high vaccum and fine ion beam having high luminance and comprising gas positive ions is generated from the top end of the needle- shaped electrode, tungsten single crystal fine wire 1 is electrolytically polished and the top end of it is sharpened so as to have a radius of curvature of 5,000- 300Angstrom , and electric field evaporation treatment is performed on it so that 100 face may appear on the top end of the chip. Further, evaporation treatment is performed under released conditions, to form rough surface of C(2X2) structure. Microscopic roughness is increased on the surface and ion beam having high luminance is obtained through this process. Where, C(2X2) structure is a state that five atoms have mutually evaporated from the lattice which forms 100 face.

Description

【発明の詳細な説明】 (at  発明の技術分野 本発明は高輝農機小径イオンビームを得るための針状電
極の形状に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to the shape of a needle-like electrode for obtaining a small diameter ion beam for high brightness agricultural machinery.

(b)  技術の背景 半導体大規模興積回路(LSI)の製造工程においては
1〔μm〕程度の線幅を加工することが必要であり、こ
の場合位置合わせ精度としてはol〔μm〕を必要とし
ている。さて従来微細パターンの形成には写真蝕刻技術
(ホト11ソグラフイ)が使用プれている。
(b) Background of the technology In the manufacturing process of semiconductor large-scale integrated circuits (LSI), it is necessary to process line widths of about 1 [μm], and in this case, alignment accuracy of ol [μm] is required. It is said that Conventionally, photo-etching technology (photolithography) has been used to form fine patterns.

すなわち半導体基板(ウェハ)上に塗布された薄いレジ
スト膜にマスクを通して光(1%JLJ ) 全照射1
〜光照射を受けた部分が重合或は分解して現像液に対し
て溶解度の差異を生ずることを利用し2てレジスト膜に
微細パターンの窓明けをしV後ドライエツチングなどの
加工を施すことによって各種のパターンが作られている
In other words, light (1% JLJ) is passed through a mask to a thin resist film coated on a semiconductor substrate (wafer). Total irradiation 1
- Utilizing the fact that the portion exposed to light polymerizes or decomposes, resulting in a difference in solubility in a developer, 2. Opens a window in a fine pattern in the resist film and performs processing such as dry etching after V. Various patterns are created.

然し乍ら1〔μm〕以下の線幅を加工する目的(こ対し
ては従来の光を用いた投影露光方式では使用波長による
制限を受け、最小加工i幅は約15〔μm)#こ留まっ
ている。
However, the purpose is to process a line width of 1 [μm] or less (on the other hand, in the conventional projection exposure method using light, the minimum processing width is limited to about 15 [μm] due to limitations due to the wavelength used). .

そこでイオンビーム露光、電子ビーム露光、X線露光な
どがこの目的tこ使ゎれている。
Therefore, ion beam exposure, electron beam exposure, X-ray exposure, etc. are used for this purpose.

これらは何れも微細パターンを露光できると云う固有な
利点はあるが、イオンビームは他の2者lこ較べて集束
およびコリメートが容易で解像度が上ると云う特徴があ
る。
Although both of these have the inherent advantage of being able to expose fine patterns, ion beams have the advantage of being easier to focus and collimate and have higher resolution than the other two.

すなわちXfFIJの場合はこれtこ適するレンズが無
いのでマスクとウェハ間の隙き間ζこよっては半影ぼけ
を生ずることがある【7、また電子ビームを用いる場合
はウェハ衝突後の後方散乱や強いエネルギーをもつ2次
市、子放出などによる近接効果が認められるのに対し、
イオンビームの場合はあまり後方散乱さねずまた発生す
る2次電子のエネルギーも低いのでか\る効果は無祈で
きる。
In other words, in the case of XfFIJ, there is no lens suitable for this, so the gap ζ between the mask and the wafer may result in penumbra blur [7] Also, when using an electron beam, backscattering after wafer collision and While the proximity effect due to strong energy secondary city, child emission etc. is recognized,
In the case of an ion beam, there is not much back scattering and the energy of the secondary electrons generated is low, so the effect can be expected.

こ\で イオンビーム腹光の何よりの特徴は電算機制御
によって(、T−意の精密パターンを描画する機能をも
つことで、この点のみでは電子ビームと同様であるが、
r!接ウつハlこイオン注入することにより不純物元素
を導入1−たり、イオンエツチングlこよりウェハを加
工するなど電子ビームの持ち得ない特徴をもっている。
The most important feature of the ion beam is that it has the ability to draw precise patterns using computer control, and in this respect it is similar to the electron beam.
r! It has features that electron beams cannot have, such as introducing impurity elements by ion implantation and processing wafers by ion etching.

さて、イオンビーム霧光の%徴である精密パターン描画
、不純物注入戒(4加工々どを行うlこはイオンビーム
が高輝胛微少径であることが必要である。
Now, in order to carry out precise pattern drawing, impurity implantation, etc., which are characteristics of ion beam mist, it is necessary that the ion beam has a high brightness and a small diameter.

すなわち針状N、極の先端はなるべく尖鋭lこすること
に6才って電界強度が増力旧〜イオンビーム径が少さい
状態で輝度ケ増すことができる。
In other words, by making the tips of the needle-like poles as sharp as possible, the electric field strength can be increased and the brightness can be increased when the ion beam diameter is small.

(e)  従来技術と問題点 第1図はイオンビーム露光装置において、イオンビーム
が形成されるイオン室の構成を、捷だ第2図はイオン源
として用いられるタングステン(W)針状電極の形状金
示している。
(e) Prior art and problems Figure 1 shows the configuration of the ion chamber where the ion beam is formed in an ion beam exposure system. Figure 2 shows the shape of the tungsten (W) needle-shaped electrode used as the ion source. Showing money.

図において従来のイオン源は直径200〜300〔μm
〕のW紳1の先端全電解研磨により尖らせテ釦状とした
ものを用い、この先端−こイオンビーム全形成すべきガ
ス例えば水素をノズル2から供給すると共に装置内を約
10−7 [torr]の高真空lこ排久(、た状紳で
W電極1と穴の開いた引出し電極3の間に直流高電圧を
加えることによりW電極の先端部において水素ガスを電
界電離させ、引出し電極3の穴4より水素イオンビーム
を得るものである。
In the figure, the conventional ion source has a diameter of 200 to 300 μm.
] The entire tip of a W head 1 is electrolytically polished to make it sharp into a button shape, and the gas to be formed, such as hydrogen, is supplied from the nozzle 2 to the entire tip of the ion beam, and at the same time the inside of the device is heated to about 10-7 [ torr] high vacuum discharge (by applying a DC high voltage between the W electrode 1 and the extraction electrode 3 with a hole in the vertical shape, hydrogen gas is field ionized at the tip of the W electrode, and the extraction A hydrogen ion beam is obtained from the hole 4 of the electrode 3.

こ\でWがイオン源として選ばれる理由は融点が338
7〔℃〕と高く、大型流密ytこよっても電3− 極の先端が変jLべ彊質しないことによる。
The reason W is chosen as the ion source here is that its melting point is 338.
This is due to the fact that the tip of the electrode does not change and become stiff even if the temperature is as high as 7 [°C] and the large flow density is exceeded.

さて、ガス分子を電界電離させガス陽イオンの高輝度微
少径イオンビームを得るにはW電極の先端をなるべく尖
鋭として電界強1fe高めることが必要であり、そのた
め1こは従来のW線では不充分でW単結晶が用いられて
いる。すなわち従来のW線を用いて電解研磨を行う場合
は曲率半径が数〔μm〕のものしか得られないのに対し
単結晶からなるW細線を用いて電解i1f磨金行う場合
は曲率半径が数100〜数1000〔A〕のものを得る
ことができる。
Now, in order to ionize gas molecules in an electric field and obtain a high-brightness micro-diameter ion beam of gas cations, it is necessary to make the tip of the W electrode as sharp as possible and increase the electric field strength by 1fe, which is not possible with conventional W wires. W single crystal is used. In other words, when performing electrolytic polishing using a conventional W wire, the radius of curvature is only a few [μm], whereas when performing electrolytic I1F polishing using a thin W wire made of single crystal, the radius of curvature is only a few [μm]. 100 to several thousand [A] can be obtained.

こ\で旬、在細線断面の面方位が既知のWは工業的に生
産されており、例えば(100:)方向の結晶面をもち
径0.2 [mm) 庚さIO[n1m)程の細線は入
手でき、この使用目的ζこ適している。
In this case, W with a known plane orientation in the thin wire cross section is produced industrially, for example, with a crystal plane in the (100:) direction, a diameter of 0.2 [mm) and a stiffness of about IO [n1m]. Fine wire is available and suitable for this purpose.

さて、」y在はこのようfこ市、解研磨したW単結晶線
チップ全更Iこ嘗、竹蒸発処理してその先端部の平面’
t(100)面と1〜だものがイオン源として多く用い
られている。
Now, in this case, the entire W single crystal wire chip that has been depolished has been replaced, and the tip of the tip is flattened by bamboo evaporation.
The t(100) plane and the 1~ plane are often used as ion sources.

こ\で電界蒸発は第1図に示すイオンビーム装4− 置においてlo   [torr)  以下の高真空l
こ排気した状態でWilの先端の電界を6〔v/入〕程
度番こなるように正の高電圧を加えると共にW絣1の温
度全15[’K)程度に保つことにより行う。
Here, field evaporation is performed using the ion beam equipment shown in Figure 1 under a high vacuum of less than lo [torr].
In this evacuated state, a positive high voltage is applied to the tip of the Wil so that the electric field changes by about 6 [v/in], and the total temperature of the W kasuri 1 is maintained at about 15 [K].

この場合W線1の先端よりW原子がイオンとなって蒸発
し先端表面全結晶学的ζこ完全な[100)面とするこ
とができる。
In this case, W atoms become ions and evaporate from the tip of the W line 1, so that the entire tip surface can be made into a perfect [100) plane crystallographically.

従来はこのようにしてできたW単結晶細線(以後Wチッ
プ)を電極としてイオンビームが形成され、イオンビー
ム露光が行われていた。然しこのイオンビーム露光にお
いてより高い輝度をもつイオン源の出現が希望さ扛てい
た。
Conventionally, an ion beam was formed using the W single crystal thin wire (hereinafter referred to as a W chip) produced in this manner as an electrode, and ion beam exposure was performed. However, there was much hope for the emergence of an ion source with higher brightness in this ion beam exposure.

(d)  発明の目的 本発明の目的は従来よりも高輝度の微小径イオンビーム
を得る針状電極の形状を提供することを目的とする。
(d) Object of the Invention An object of the present invention is to provide a needle-like electrode shape that obtains a micro-diameter ion beam with higher brightness than before.

(e)  発明の構成 本発明の目的は剣状電極として使用するW単結晶細線が
5000 CA :]  以下の曲率半径をもつよう研
磨すると共にWチップの先端がC(2X2 )構造全も
つ[] 0 (1)而で構成されている状態で使用する
こと−こよりit IiV、することができる。
(e) Structure of the Invention The object of the present invention is to polish the W single crystal thin wire used as a sword-shaped electrode to have a radius of curvature of 5000 CA:] or less, and to make the tip of the W tip have a C (2X2) structure. 0 (1) It can be used in a state where it is configured as follows.

(f)  発明の実施例 本発明は高輝度を得るためにfloo)面を露出したW
チップの先端部(こ対し更に条件ヲ変えて電、界蒸発を
行b、(100)面金C(2×2)構造とするものであ
る。
(f) Embodiments of the Invention In order to obtain high brightness, the present invention uses W with an exposed floo surface.
The tip of the chip was further subjected to electric and field evaporation under different conditions to form a (100) surface metal C (2×2) structure.

こ\でC(2X2 )構造は(100)面金構成する格
子点より交互に原子が蒸発した状態を云う。
Here, the C(2X2) structure refers to a state in which atoms are alternately evaporated from the lattice points forming the (100) plane gold.

すなわち、第3図は体心立方格子の結晶格子をもつWの
(100)面の配列を示したものであるが、Wチップの
温度′fr20 C”K )  J:、l下lこ保つと
共lこチップ先端の電界強Vが6 (V/ A )程度
として電界蒸発會続けると委起部ζこおいて選択的にイ
オンの蒸発が起る結呆W原子5が格子状に配列した平担
面を得ることが知られており、か\る処理(r l/た
Wチップが一般lこイオン源として用いられている。
In other words, Fig. 3 shows the (100) plane arrangement of W with a body-centered cubic crystal lattice, but if the temperature of the W chip is maintained at When the electric field strength V at the tip of the tip is about 6 (V/A) and the field evaporation continues, ions selectively evaporate at the starting part ζ. W atoms 5 are arranged in a lattice pattern. It is known to obtain a planar surface, and a W chip is commonly used as an ion source.

然し最近このような平担面なrloO)面をもつWチッ
プに対してチップTlHf′f:450 [”K)程度
−土で上げ捷たチップ先端の電界強度全4〔V/入〕程
度lこ下けて電界蒸9を続けると(]、 OO)面をト
m収する結晶面(こおいて1個置きに原子が蒸発して凹
凸面状態を示すことが見出された。(G、Ehrtic
hPhysics  ’f’oday  47.Jun
e  198] )第4図はこの状態ヲ示すものでfl
oo)面のW原子が1つ置きに蒸発して格子欠陥6全形
成しC(2X2)構造をとった状態を示している。
However, recently, for a W chip with such a flat rloO) surface, the chip TlHf'f: about 450 [K) - the total electric field strength at the tip of the chip raised with soil is about 4 [V/in] l It was found that when electric field evaporation 9 is continued, atoms evaporate every other crystal plane that forms the (], OO) plane, resulting in an uneven surface state. (G ,Ehrtic
hPhysics 'f'oday 47. June
e 198] Figure 4 shows this state.
This shows a state in which every other W atom on the (oo) plane evaporates to form all 6 lattice defects, resulting in a C(2X2) structure.

本発明はこのよりなC(2X2)構造を利用することに
より先端部の凹凸を増し高輝度微小径ビームを得るもの
である。
The present invention utilizes this firm C(2×2) structure to increase the unevenness of the tip and obtain a high-intensity, minute-diameter beam.

すなわちW単結晶細線を電解研磨してその先端部の曲率
半径を5000[A)〜300(A)に尖鋭化した稜電
界蒸発処理を施して(100)面がチップ先端に現われ
るよう整形する。更番こ条件を緩めて電界蒸発を行うこ
とによりこの表面fC(2×2)構造の凹凸面状態とす
るものであり、これ(こより微ネR的に表面の凹凸を増
し、高輝度のイオンビームラ増り出すことができる。
That is, a W single crystal thin wire is electrolytically polished and subjected to edge field evaporation treatment to sharpen the radius of curvature of the tip to 5000 [A] to 300 [A] to 300 [A], thereby shaping the wire so that the (100) plane appears at the tip of the chip. By performing electric field evaporation with the conditions relaxed, this surface is made to have an uneven surface fC (2 x 2) structure, which increases the surface unevenness in terms of fineness and generates high-intensity ions. Beamla can be increased.

(gl  発明の効果  7一 本発明の実施fこより高輝度微小径イオンビームを得る
ことが可能となりイオンビーム露光の能率を大幅に向上
することが0T能となった。
(gl Effects of the Invention 7. Implementation of the Invention) As a result, it has become possible to obtain a high-intensity, minute-diameter ion beam, and it has become possible to greatly improve the efficiency of ion beam exposure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン室の構成図、第2図はタングステン電極
の形状図、第3図は(1003面におけるタングステン
原トの格子配列また第4図はC(2x2)構造の説明図
である。 図において、■はタングステン線、5はタングステン原
子、6は格子欠陥。  8− 菓1図 第7図 鴻3図      第4図 [株]■@■   ○○00
FIG. 1 is a configuration diagram of an ion chamber, FIG. 2 is a diagram of the shape of a tungsten electrode, FIG. 3 is a lattice arrangement of tungsten atoms in the (1003 plane), and FIG. 4 is an explanatory diagram of a C (2x2) structure. In the diagram, ■ is a tungsten wire, 5 is a tungsten atom, and 6 is a lattice defect.

Claims (1)

【特許請求の範囲】[Claims] 高真空tこ排気されたガス雰囲2中で針状電極と引出し
電極との間lこ高電圧を印加し、該針状電極の先端より
前記ガス陽イオンの高輝度微少径イオンビームを得るイ
オンビーム照射装置lこおいて、針状電極との先端部の
曲率半径が5000[A]以下とされ、且つ該先端部の
表面がC(2X2)構造の(Zoo)面とされたタング
ステン単結晶線から構成されてなることを特徴とする電
界電離型イオン源。
A high voltage is applied between the needle electrode and the extraction electrode in a high vacuum evacuated gas atmosphere 2, and a high brightness minute diameter ion beam of the gas cations is obtained from the tip of the needle electrode. In this ion beam irradiation device, a tungsten monomer is used, in which the radius of curvature of the tip with respect to the needle electrode is 5000 [A] or less, and the surface of the tip is a (Zoo) plane with a C (2X2) structure. A field ionization type ion source characterized by being composed of crystal wires.
JP9281782A 1982-05-31 1982-05-31 Electric field ionization type ion source Pending JPS58209844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9281782A JPS58209844A (en) 1982-05-31 1982-05-31 Electric field ionization type ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9281782A JPS58209844A (en) 1982-05-31 1982-05-31 Electric field ionization type ion source

Publications (1)

Publication Number Publication Date
JPS58209844A true JPS58209844A (en) 1983-12-06

Family

ID=14064972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9281782A Pending JPS58209844A (en) 1982-05-31 1982-05-31 Electric field ionization type ion source

Country Status (1)

Country Link
JP (1) JPS58209844A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714114A1 (en) * 1990-12-28 1996-05-29 Sony Corporation A method of manufacturing a flat panel display apparatus
US7511280B2 (en) 2003-10-16 2009-03-31 Alis Corporation Ion sources, systems and methods
US7511279B2 (en) 2003-10-16 2009-03-31 Alis Corporation Ion sources, systems and methods
US7518122B2 (en) 2003-10-16 2009-04-14 Alis Corporation Ion sources, systems and methods
US7521693B2 (en) 2003-10-16 2009-04-21 Alis Corporation Ion sources, systems and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714114A1 (en) * 1990-12-28 1996-05-29 Sony Corporation A method of manufacturing a flat panel display apparatus
EP0729171A2 (en) * 1990-12-28 1996-08-28 Sony Corporation A method of manufacturing a flat panel display apparatus
EP0729171A3 (en) * 1990-12-28 1997-02-12 Sony Corp A method of manufacturing a flat panel display apparatus
US7511280B2 (en) 2003-10-16 2009-03-31 Alis Corporation Ion sources, systems and methods
US7511279B2 (en) 2003-10-16 2009-03-31 Alis Corporation Ion sources, systems and methods
US7518122B2 (en) 2003-10-16 2009-04-14 Alis Corporation Ion sources, systems and methods
US7521693B2 (en) 2003-10-16 2009-04-21 Alis Corporation Ion sources, systems and methods

Similar Documents

Publication Publication Date Title
JPH0362482A (en) Formation method of electrode and electronic device equipped with electrode formed by method thereof
JPH02160339A (en) Field ionizer using
JP2015062170A (en) Correcting apparatus
JPS58209844A (en) Electric field ionization type ion source
JPS6251134A (en) Field ionization type gas ion source
JPS6345740A (en) Ion beam device
JP2843249B2 (en) Method and apparatus for manufacturing a device
JPH0226342B2 (en)
JP2000340492A (en) Mask for electron beam exposure and manufacture of semiconductor device using the same
US6621090B2 (en) Electron-beam sources exhibiting reduced spherical aberration, and microlithography apparatus comprising same
GB1597594A (en) Manufacture of semiconductor elements
JPS60119053A (en) Formation of high-luminance ion beam
JP2743399B2 (en) Focused ion beam equipment
JPS59148230A (en) Manufacture of chip for ion source
JPS61203642A (en) Dry etching method
JPS59139530A (en) Manufacturing of chip for electrical field ionizing type ion source
JP2002025424A (en) Patterned orientational carbon nanotube cathode, manufacturing method of the same, charged particle beam exposure system, and manufacturing method of semiconductor device
CN109867260B (en) Method for carrying out electron beam or ion beam focusing etching and microscopic imaging on non-conductive substrate
JP3155085B2 (en) Silicon substrate groove forming method
JP2005093484A (en) Stencil mask and its manufacturing method
JP2681118B2 (en) Method for forming fine pattern of semiconductor
JPS61185750A (en) Mask for ion beam exposure
JPS58151027A (en) Etching method
JPS59196544A (en) Electron gun
JPS60133628A (en) Method for manufacturing field ionization type ion source chip