JPS58209283A - Video signal inserting system - Google Patents
Video signal inserting systemInfo
- Publication number
- JPS58209283A JPS58209283A JP9262782A JP9262782A JPS58209283A JP S58209283 A JPS58209283 A JP S58209283A JP 9262782 A JP9262782 A JP 9262782A JP 9262782 A JP9262782 A JP 9262782A JP S58209283 A JPS58209283 A JP S58209283A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- foreground
- circuit
- luminance signal
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/64—Circuits for processing colour signals
- H04N9/74—Circuits for processing colour signals for obtaining special effects
- H04N9/75—Chroma key
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Processing Of Color Television Signals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、画像信号嵌込み方式、すなわち、いわゆるク
ロマキーに関し、特に、高解像度の画像嵌込みをきめ細
かに行なって高画質のクロマキーを実現し得るようにし
たものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image signal embedding method, that is, a so-called chroma key, and in particular, it is a system that enables high-resolution image embedding to be performed in detail to realize a high-quality chroma key. .
従来のこの種画像嵌込み方式すなわちクロマキーta、
周凡のように、前景となる画面の嵌込み7行なうべき領
域全碑定の色彩、好でし7くは、青系統の色彩にしてお
き、その領域から得られる色差丁ぎ号を用いて嵌込み用
キー信号を形成しており、例えばコンポーネント符号化
を施し比色彩画像旧号ヤ対象とした場合、前景画像にお
いて例えば青色にした嵌込み領域内の%定の一点の色差
信号R0−Yo、Bo−Yoに対して、その前景画像の
各点の色差信号B−Y、R−Yの色度図上における距m
tを色相および彩度の差よりそれぞれ算出し、さらに定
数a、bをそれぞれ乗じた嘴の和に調整可能の直流電圧
1[を加算したうえで、オー/・フロー回路もし゛くは
アンダーフロー回路により波形整形して嵌込み用キー信
号を形成し、かかる色差信号のみから形成したキー信号
を用いて前景画像の所要領域に背景画像の嵌込みを行な
っていた。しかしながら、例えば色彩画像信号のコンポ
ーネント符号化における各コンポーネントの標本化周波
数の比に関するいわゆる4:2:2方式などにおいては
、4度信号成分に比して、キー偏号形収に用いる色差信
号成分の慎不化周波収が半減して俗段に1炊りなってい
るので、嵌込み用キー信号目丁較の空間周波数が低いか
ために、嵌込み領域の枠内(C残すべき前景画像の部分
については、その部分のエツジなど細かい画像の高い空
間周波数が再現されず、例えば、嵌込み領域の青色バッ
ク中に浮ぶ人物の頭髪の部分などがきめ細かに再現され
ない等の欠点があった。Conventional image embedding method of this kind, namely chromakey ta,
Like Shufan, the color of the entire area to be inlaid in the foreground is preferably set to a blue-based color, and the color difference obtained from that area is used. For example, when component encoding is applied to an old colorimetric image, the color difference signal R0-Yo of a single point in the inset area that is colored blue in the foreground image is generated. , Bo-Yo, the distance m on the chromaticity diagram of the color difference signals B-Y, RY of each point of the foreground image
Calculate t from the difference in hue and saturation, and then add adjustable DC voltage 1 to the sum of the beaks multiplied by constants a and b, respectively, and then apply it to the over/flow circuit or underflow circuit. A key signal for insertion is formed by waveform shaping, and a background image is inserted into a required area of the foreground image using the key signal formed only from the color difference signal. However, for example, in the so-called 4:2:2 method regarding the sampling frequency ratio of each component in component encoding of a color image signal, the color difference signal component used for key polarization correction is Since the frequency loss of the inset area is halved to 1, the spatial frequency of the key signal for inset is low, so the foreground image that should be left within the frame of the inset area (C) is Regarding the part, there were drawbacks such as the high spatial frequencies of fine images such as edges in that part were not reproduced, and, for example, parts of a person's hair floating in the blue background of the inset area were not reproduced in detail.
本発明の目的は、上述した従来の欠点を除去し、嵌込み
用キー信号の形成に、従来使用している色差信号に加え
て、高い空間周波数を再現し得る輝度信号をも併わせ使
用し、前景画像に嵌込む背景画像の信号切換え全前景画
像の内容に応じた自然な形で行ない、画像信号のきめ細
かな切換えによる高画質のクロマキーを実現し得るよう
にした画像信号嵌込み方式を提供することにある。It is an object of the present invention to eliminate the above-mentioned drawbacks of the conventional technology, and to use a luminance signal capable of reproducing high spatial frequencies in addition to the conventionally used color difference signal to form a key signal for embedding. , provides an image signal embedding method that enables high-quality chromakey to be realized by fine-grained switching of image signals by switching signals of a background image that is inserted into a foreground image in a natural manner according to the contents of the entire foreground image. It's about doing.
すなわち、本発明画像信号嵌込み方式は、第1の色彩画
像信号の所定領域に第2の色彩画像信号の前記所定領域
に対応する領域を嵌込むにあ念り、前記第1の色彩画像
信号の前記所定領域の枠内における輝岐変゛化戎分?前
記対応する領域の前記第2の色彩画像信号の輝常成分に
加重したうえで、前記所定領域の前記第1の色彩画像信
号を前記対応する領域の前記第2の色彩画像信号に切換
えるようにしたことを特徴とするものである。That is, the image signal insertion method of the present invention aims to insert an area corresponding to the predetermined area of the second color image signal into a predetermined area of the first color image signal, and What is the brightness change within the frame of the predetermined area? weighting the brightness component of the second color image signal of the corresponding area, and then switching the first color image signal of the predetermined area to the second color image signal of the corresponding area; It is characterized by the fact that
以下に図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.
まず、コンポーネント符号化を施した色彩画像信号相互
間にて本発明方式の画像信号嵌込みを行なう場合の回路
II成の例を第1図に示す。図示の回路構成において、
YF tri 、嵌込みを行なったときの前景をなす色
彩画像信号の輝度信号成分であり、YFoは、その前景
色彩画像信号中背バック領域に2ける特定の1点の4v
信号レベルであり、YRは前景画像の青バック領域に嵌
込むべき背景色彩画像信号の輝度信号成分である。−万
、(R−Y)。First, FIG. 1 shows an example of the configuration of circuit II in the case where image signal embedding according to the present invention is performed between component-encoded color image signals. In the illustrated circuit configuration,
YF tri is the luminance signal component of the color image signal forming the foreground when inset is performed, and YFo is the 4V of a specific point in the middle back region of the foreground color image signal.
YR is the signal level, and YR is the luminance signal component of the background color image signal to be fitted into the blue back region of the foreground image. -10,000, (RY).
およびCB−Y)Fは、前景色彩画像信号の色差値4+
成分であり、(R−Y)RおよびCB−Y)Rは、背景
色彩1jIII像信号の色差信号成分である。これらの
各信号成分を用いて本発明方式の画像嵌込みを行なうに
あたっては、まず、前景輝度信号流分Y。and CB-Y)F is the color difference value 4+ of the foreground color image signal
(RY)R and CB-Y)R are color difference signal components of the background color 1jIII image signal. When performing image embedding according to the present invention using each of these signal components, first, the foreground luminance signal stream Y is calculated.
と青バック甲の特定輝度信号レベルYFoと全引算aX
に導いて両者の差を求め、前景画壇の各点と肯ハック中
の特定点との輝度信号レベル垂全算出し、加算64にて
、その前景14度信号レベル差を背喰輝信号号収分YR
に加算し、嵌込み後の背景画像に、その背景画像中に浮
ぶ部分の前景・曲’tの高い空間周波数成分を予め加算
しておき、前景と背景との切換えを行なうキー信号の如
何により、背景画像中に浮ぶ前景画像部分のどの点で切
換えが行なわれπもその前景画像部分の高い空間周波数
成分が失なわれず、細部に亘って自然な切換えが円滑に
行なわれるようにしておく。and the specific luminance signal level YFo of the blue background instep and the total subtraction aX
The difference between the two is calculated by calculating the total luminance signal level between each point in the foreground and the specific point in the active hack, and in addition 64, the foreground 14 degree signal level difference is added to the background luminance signal signal. Min YR
The high spatial frequency components of the foreground/song that float in the background image are added in advance to the background image after embedding. , at which point in the foreground image part floating in the background image is switched, the high spatial frequency components of the foreground image part are not lost, and the natural switching is performed smoothly over the details. .
一方、引算器lからの前景輝度信号レベル差を絶対愼変
換回路6に導いて輝度信号レベル差の絶対!を求め、つ
いで、波形整形回路7にて、後述するキー計算回路8か
らの従来どおりの色差信号のみに基づくキー信号とのレ
ベル合わせを施したうえで、その前景輝度1号絶対レベ
ル差をNAMu路9に導さ、千−寸算回路8からの従来
どおりの色差信号に基つくキー信号と非加算混合する。On the other hand, the foreground luminance signal level difference from the subtracter l is guided to the absolute value conversion circuit 6 to calculate the absolute value of the luminance signal level difference. Then, in the waveform shaping circuit 7, the level is matched with the key signal based only on the conventional color difference signal from the key calculation circuit 8, which will be described later, and the foreground luminance No. 1 absolute level difference is calculated as NAMu. 9 and is non-additively mixed with a key signal based on the conventional color difference signal from the 1,000-dimensional calculation circuit 8.
しかして、上述した波形整形回路7は、例えば第2図に
示すような入出力狩性を有するものであり、かかる入出
力特性を表わすデータを格納したIJ−ドオンリメモリ
を用いて容易に構成し得るものである。な2、この波形
整形回路70人出力時性は、図示の例のように直線状の
ものとすることができるが、嵌込みを施すべき前景画像
の内容、特に、育バック領域周辺の画像内容に最屑の入
出力特性とするのが望1(〜く、一般には、人出方行性
曲線の傾斜度αを0.2〜0.4の範囲に設定するのが
好適である。したがって、波形整形回路7は、例えば第
3図に示すように、その前後に掛算器MUL 1および
2を接続し、それらの掛算器に印加する直流イ圧値を可
変抵抗器VRIおよびYR2によりそれぞれ変化させ、
乗数とする上述の係数αを手動調整して、任意所望の傾
斜度αが得られるようVこすることもできる。The above-mentioned waveform shaping circuit 7 has input/output characteristics as shown in FIG. 2, for example, and can be easily configured using an IJ-only memory that stores data representing such input/output characteristics. It is something. 2. The output time of this waveform shaping circuit 70 can be linear as shown in the example shown, but the content of the foreground image to be inset, especially the image content around the back area. It is desirable to set the input/output characteristics to be the most wasteful. Generally speaking, it is preferable to set the slope α of the directional curve in the range of 0.2 to 0.4. For example, as shown in FIG. 3, the waveform shaping circuit 7 has multipliers MUL 1 and 2 connected before and after it, and the DC voltage value applied to these multipliers is changed by variable resistors VRI and YR2, respectively. let me,
It is also possible to manually adjust the multiplier factor α to obtain any desired slope α.
上述のようにしてNAM回路9がらは、従来の色度信号
によるキ2丁信号に旨い空間間波数成分を有する前景輝
度信号レベル差成分を加味した高解像度のきめ細か坊−
画像嵌込みが可能のキー信号が得られる。かかる制解像
変のキー信号ケオーバフロー・アンダーフロー回路1o
にて波形整形したのち、低域通過F波回路11に導いて
信号波形を滑かにし、いわゆるソフトクロマキーヲ行な
い得るようにする。ついで、そのキー信号をキー信号分
配回路12に導いて、輝度信号切換え用と色差信号切換
え用とに分配し、それぞれの切換えスイッチと17で作
用する掛算器2並びに15および18にその1ま乗数と
して供給するとともに、反転回路13並びに14にて極
性を反転させたうえで、掛算器5並びに17および2o
に反転乗数として供給し、前景4変信号成分と背景輝度
信号成分、並びに、各前景色差信号成分と各背景色差信
号成分がいずれも差動的に増減して切換えられるような
掛算処理を行なう。このように互いに差動的に増減する
前景4度信号成分と背景輝度信号成分とを7JO′s、
器3vこより混合して切換えるとともに、各前景色差信
号成分と各背景色差信号成分とを加算器16および19
によりそれぞれ混合して切換えることにより、高解1象
朋のクロマキーを達成することかできる。As described above, the NAM circuit 9 generates a high-resolution, fine-grained filter that adds a foreground luminance signal level difference component having a good spatial wave number component to the conventional key 2 signal based on the chromaticity signal.
A key signal that allows image embedding is obtained. Key signal overflow/underflow circuit 1o for such resolution change
After shaping the signal waveform, the signal is guided to a low-pass F-wave circuit 11 to smooth the signal waveform, so that so-called soft chroma keying can be performed. Next, the key signal is guided to the key signal distribution circuit 12, which distributes it to a luminance signal switching circuit and a color difference signal switching circuit. After inverting the polarity in inverting circuits 13 and 14, the multipliers 5, 17 and 2o
is supplied as an inversion multiplier, and multiplication processing is performed such that the foreground 4-variant signal component and the background luminance signal component, as well as each foreground color difference signal component and each background color difference signal component, are all differentially increased or decreased and switched. The foreground 4 degree signal component and the background luminance signal component which differentially increase and decrease with respect to each other in this way are
At the same time, each foreground color difference signal component and each background color difference signal component are mixed and switched by adders 16 and 19.
By mixing and switching between the two, it is possible to achieve a high-resolution one-image chroma key.
本発明方式の画像信号嵌込みは、上述したコンポーネン
ト符号化色彩画像信号相互の嵌込みのみならず、アナロ
グ令コンポジットの通常の色彩画像信号相互の嵌込みに
も同様に適用することができ、その場曾の回路構成の例
を第4図に示す。図示の回路構成においては、例えばカ
ラーテレピンヨンカメラからの三原色画像信号R、G
、 B’i、カラーエンコーダ21に導いて、前景画像
とするアナログ・コンポジットの色彩画線信号を形成す
るとともに、輝度差検出回路26に導いてマトリックス
することにより輝度信号Yを形成し、その輝度信号Yに
ついて、第1図示の構成例におけると同様の前景輝度信
号レベル差を取出し、また、キー信号発生回路27に導
いて、従来どおりの色差信号によるキー信号を形成する
。以下、第1図示の構成例におげろと全く同様にして、
上述の前景輝度信号レベル差と従来のキー信号とをN
A M曲路28にて非の日算混合することにより、高解
像朋のキー1ぎ台金形成するとともに、前景輝度信号レ
ベル差を7M算器24に導いて、背景とするコンポジッ
ト色彩画像信号の嵌込み領域における輝度信号を予め加
算したうえで、上述の高解像度キー信号をそのまま掛算
器22に印加するとともに反転回路29分介して掛算器
25に印加し、前景色彩画像信号と背景色彩画像信号と
を差動的に増減させ、加算器23にて合成して高解像の
クロマキーをきめ細かに行なって組合わせた低込み合成
のコンポジット色彩画像信号を取出す。The image signal embedding method of the present invention can be applied not only to the embedding of component-encoded color image signals described above, but also to the embedding of ordinary color image signals of an analog composite. An example of the circuit configuration of Bazō is shown in FIG. In the illustrated circuit configuration, for example, three primary color image signals R and G from a color turpentine camera are used.
. Regarding the signal Y, the foreground luminance signal level difference similar to that in the configuration example shown in FIG. Hereinafter, in exactly the same manner as in the configuration example shown in the first diagram,
The foreground luminance signal level difference described above and the conventional key signal are expressed as N
By mixing non-daily calculations at the A/M curve 28, a high-resolution key base is formed, and the foreground luminance signal level difference is led to the 7M calculator 24 to create a composite color image as a background. After adding the luminance signals in the signal inset area in advance, the high-resolution key signal described above is applied as is to the multiplier 22 and also applied to the multiplier 25 via the inverting circuit 29, and the foreground color image signal and the background color are The image signals are differentially increased/decreased and combined in an adder 23, and high-resolution chroma keying is performed in detail to obtain a composite color image signal of low-intensity synthesis.
さらに、第1図示の構成によるコンポーネント符号化色
彩画像信号相互の嵌込みに際して、前景輝度信号レベル
差を背景画像輝度信号成分に加算するにあたって、前景
輝度信号レベル差を背景画像の輝度信号レベルに応じて
変化させ、いわゆる変調した形態にして背景画像輝度信
号成分に加算すれば、前景に対する背景の嵌込みをさら
に自然に行なうことができる。Furthermore, when adding the foreground luminance signal level difference to the background image luminance signal component when inserting the component encoded color image signals into each other using the configuration shown in FIG. If the background image luminance signal component is changed in a so-called modulated form and added to the background image luminance signal component, the background can be embedded into the foreground more naturally.
上述のような態様の画像信号嵌込みを行なうには、第1
図示の41!成例における画像信号入力端子から画像切
換えスイッチとして作用する掛算器2゜5までの回路構
成を第5図もしくは第6肉にそnぞれ示すように変更す
る。In order to perform image signal insertion in the manner described above, the first
41 shown! The circuit configuration from the image signal input terminal to the multiplier 2.5 which acts as an image changeover switch in the example is changed as shown in FIG. 5 or 6, respectively.
第5図示の構成例においては、前景輝度信号成分YFと
前景前バック中の特定輝度信号レベルYF。In the configuration example shown in FIG. 5, the foreground luminance signal component YF and the specific luminance signal level YF in the foreground and back.
とを引算器30に導いて求めた前景輝度信号レベル差を
掛算器31に供給するとともに、特定輝度信号レベルY
FO”、入力信号の1/x分形成する逆数器34に供給
して形成した逆数輝度信号レベル鴇。を掛算器35に導
いて背景輝度信号成分YRとの乗算を行ない、背景画像
輝度信号レベルと特31に乗数として供給し、前景輝度
信号レベル差に乗算してその比の大きさに応じた値の前
景輝度信号レベル差分求め、加算器32に導いて背景輝
度信号成分YRに加算するl以後の信号処理は第1図示
の構成例におけると全く同様にする。and the foreground luminance signal level difference obtained by leading them to the subtracter 30 is supplied to the multiplier 31, and the specific luminance signal level Y
FO'' is supplied to the reciprocal unit 34 which generates 1/x of the input signal to form the reciprocal luminance signal level.The signal is led to the multiplier 35 and multiplied by the background luminance signal component YR to obtain the background image luminance signal level. and is supplied as a multiplier to the foreground luminance signal level difference and multiplied by the foreground luminance signal level difference to obtain a foreground luminance signal level difference of a value corresponding to the magnitude of the ratio, which is led to an adder 32 and added to the background luminance signal component YR. The subsequent signal processing is exactly the same as in the configuration example shown in the first figure.
上述の信号処理により、前景輝度信号レベル差が背景画
像のm原信号レベルによって変調された形態となり、背
景画像の輝度レベルの高いところでは前景輝度信号レベ
ル差の朋算盪が増大し、また、背景画像のf4度レベル
の低いところでは前景輝度信号レベル差の加算器が減少
する。Due to the above signal processing, the foreground luminance signal level difference becomes modulated by the m original signal level of the background image, and the foreground luminance signal level difference increases in areas where the luminance level of the background image is high. At a low f4 degree level of the background image, the adder for the foreground luminance signal level difference decreases.
つぎに、第6園に示す構成例は第5図示の構成例におけ
る信号処理過程を簡単化するために、前景前バック中の
特定輝度信号レベルYFoの逆数器34による逆数値に
相当する係数αが0〈αく1なる範囲にてほぼ一定値と
なる場合には、前述し数段階の値に対応した複数段階の
係数値αを係数器35−1〜35−nに予め格納してお
き、前景および背景の画像内容に応じて最適の係数値α
牙取出し、切換スイッチSWを介して掛算器33に供給
すれば、比較的簡易に第5図示の構成によるのと同等の
作用効果を得ることができる。Next, in order to simplify the signal processing process in the configuration example shown in FIG. 5, the configuration example shown in FIG. When the value is approximately constant in the range from 0 < α to 1, the coefficient values α of multiple stages corresponding to the values of several stages described above are stored in advance in the coefficient units 35-1 to 35-n. , the optimal coefficient value α depending on the foreground and background image content
By extracting the tooth and supplying it to the multiplier 33 via the changeover switch SW, it is possible to relatively easily obtain the same effect as the configuration shown in FIG.
以上の説明から明らかなように、本発明によれば、色彩
画像信号相互の嵌込みを行なうl/)わゆるクロマキー
について、従来色差信号のミラ用Q)で嵌込み用キー信
号を形成していたがために、キー信号自体の空間周波数
が低下し、軟込みを行なう青バック領域の周iもしくは
領域内の前景画像については高い空間周波@成分が脱落
して、その再現が困難であったのに反し、嵌込み用キー
信号の形成に前景輝度信号のレベル変化をも加味してき
め細かい嵌込みを行ない得るようにするとともに、嵌込
む背景画像の方にも前景画像の高い空間周波数成分をあ
らかじめ加算しておき、キー信号による切換え位置の如
何に拘らず、前景画像の高い空間周波数成分の脱落を防
いでいるので、画像内容に応じた自然な高画質のクロマ
キーを円滑に行なうことができる。また、上述のように
きめ細かい嵌込みを行ない得るようにしたキー信号を低
域P波することによりソフトクロマキー2行なう場合に
は、キー信号自体の空間周波数はやや低下するも、前景
および背景の両画像信号間にてエツジ部分の高い空間周
波数成分を相補っているので、高解像度クロマキーの利
点は損われない。As is clear from the above description, according to the present invention, regarding the so-called chromakey l/) that performs mutual fitting of color image signals, the key signal for fitting is conventionally formed using the mirror Q) of the color difference signal. Therefore, the spatial frequency of the key signal itself decreased, and high spatial frequency @ components of the foreground image around the blue background area or the area that softened were dropped, making it difficult to reproduce them. On the other hand, the level change of the foreground luminance signal is taken into consideration when forming the key signal for embedding, so that detailed embedding can be performed, and the high spatial frequency components of the foreground image are also added to the background image to be embedded. By adding the values in advance, the high spatial frequency components of the foreground image are prevented from being dropped regardless of the switching position by the key signal, so it is possible to smoothly perform natural high-quality chroma keying according to the image content. . In addition, when soft chroma key 2 is performed by applying low-frequency P waves to the key signal that enables fine inset as described above, although the spatial frequency of the key signal itself is slightly lowered, both the foreground and background Since the high spatial frequency components of the edge portions are complemented between the image signals, the advantages of high-resolution chromakey are not lost.
なお、本発明方式の画像信号嵌込みは、コンポーネント
符号化した色彩画像信号にも、また、アナログ・コンポ
ジットの色彩画像信号にも同様に適用して同様の効果を
挙げることができ、ざらに、従来のクロマキー装置に簡
単な回路を付加することによって高画質のクロマキーを
行ない得るように改造することができる。Note that the image signal insertion method of the present invention can be similarly applied to component-encoded color image signals and analog composite color image signals to achieve the same effect. By adding a simple circuit to a conventional chromakey device, it can be modified to perform high-quality chromakey.
第1図は本発明方式による画像信号嵌込み装置の回路構
成の例を示すブロック線図、第2図は同じくその構成例
における波形整形回路の入出力特性の例を示す特性曲線
図、第3図は同じくその波形整形回路の構成例を示す回
路図、
第4図は同じくその画像信号嵌込み装置の回路構成の他
の例を示すブロック線図、
第5図および第6図は第1図示の画像信号嵌込み装置の
構成例に変更を施した一部の他の構成例をそれぞれ示す
ブロック庫図である。
1.80・・・引算器
2、5.15.17.18.20.22.25.81゜
88・・・掛算器
3、4.16.19.23.24.32・・・加算器6
・・・絶対1直斐侠回路 7・・・波形整形回路8・
・・キー計算回路 9,28・・・NAM回路10
・・・オーバフロー、アンダー70−制御回路11・・
・低域通過P波回路
12・・・キー信号分配回路
13、14.29・・・反転回路
21・・・カラーエンコーダ
26・・・輝度差検出回路 27・・・キー信号発生回
路84・・・逆数器 35−1〜35−n・・
・係数器MULL、2・・・掛算器 VRI、2・・・
可変抵抗器SW・・・切換スイッチ
特許出願人 日 本 放 送 協 会
第1;習
′7v2 i図
第3図
CDC
第4r1
第5図
第6図FIG. 1 is a block diagram showing an example of a circuit configuration of an image signal embedding device according to the present invention, FIG. 2 is a characteristic curve diagram showing an example of input/output characteristics of a waveform shaping circuit in the same configuration example, and FIG. The figure is a circuit diagram showing an example of the configuration of the waveform shaping circuit, FIG. 4 is a block diagram showing another example of the circuit configuration of the image signal insertion device, and FIGS. 5 and 6 are the same as in FIG. FIG. 6 is a block diagram showing some other configuration examples obtained by modifying the configuration example of the image signal insertion device of FIG. 1.80...Subtractor 2, 5.15.17.18.20.22.25.81゜88...Multiplier 3, 4.16.19.23.24.32...Addition Vessel 6
... Absolutely 1 direct chivalry circuit 7 ... Waveform shaping circuit 8.
...Key calculation circuit 9, 28...NAM circuit 10
...Overflow, under 70-control circuit 11...
-Low pass P wave circuit 12...Key signal distribution circuit 13, 14.29...Inversion circuit 21...Color encoder 26...Brightness difference detection circuit 27...Key signal generation circuit 84...・Reciprocal unit 35-1 to 35-n...
・Coefficient unit MULL, 2... Multiplier VRI, 2...
Variable resistor SW... Changeover switch Patent applicant Japan Broadcasting Association No. 1; Xi'7v2 Figure i Figure 3 CDC Figure 4r1 Figure 5 Figure 6
Claims (1)
号の前記所定唄域に対応する領域を嵌込むにあたり、前
記第1の色彩画像信号の前記所定領凋の枠内における輝
度変化成分を前記対応する領域の前記第2の色彩画像信
号の輝度成分に刀l]′xシたうえで、前記所定領域の
前記第1の色彩画像信号を前記対応する領域の前記第2
の色彩画像信号に切換えるようにしたこと全特徴とする
画1象信号嵌込み方式。L When inserting a region corresponding to the predetermined singing region of the second color image signal into a predetermined region of the first color image signal, a luminance change component within the frame of the predetermined region of the first color image signal is added to the luminance component of the second color image signal of the corresponding area, and then the first color image signal of the predetermined area is added to the luminance component of the second color image signal of the corresponding area.
The image signal insertion method is characterized by switching to a color image signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9262782A JPS58209283A (en) | 1982-05-31 | 1982-05-31 | Video signal inserting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9262782A JPS58209283A (en) | 1982-05-31 | 1982-05-31 | Video signal inserting system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58209283A true JPS58209283A (en) | 1983-12-06 |
JPH035717B2 JPH035717B2 (en) | 1991-01-28 |
Family
ID=14059677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9262782A Granted JPS58209283A (en) | 1982-05-31 | 1982-05-31 | Video signal inserting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58209283A (en) |
-
1982
- 1982-05-31 JP JP9262782A patent/JPS58209283A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH035717B2 (en) | 1991-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5436673A (en) | Video signal color correction based on color hue | |
CA2271631A1 (en) | Device and process for producing a composite picture | |
Kubota et al. | The Videomelter | |
JP2000209604A (en) | Color signal processing unit for video signal processing system | |
GB2267010A (en) | Chroma keyer with secondary hue selector. | |
JP3366357B2 (en) | Video signal processing device and video signal processing method | |
JPS58209283A (en) | Video signal inserting system | |
JP2002176657A (en) | Edge achromatic circuit and its method | |
JPH01259464A (en) | Sharpness improving circuit | |
US7224406B2 (en) | Digital signal processing system and method applied for chroma transition | |
JP3698448B2 (en) | Color detection circuit, camera with color detection circuit, and method for automatically selecting a desired color | |
JP2995683B2 (en) | Color correction circuit for color video signals | |
JP2004289810A (en) | Color correction | |
JP2727041B2 (en) | Non-additive video mixing device | |
US5574510A (en) | Multi-component video signal mixer | |
KR100759327B1 (en) | Method and apparatus for enhancing green contrast of a color video signal | |
JP3288108B2 (en) | Digital camera | |
JPS6367890A (en) | Color television broadcasting equipment | |
US6788342B1 (en) | Color video camera for generating a luminance signal with unattenuated harmonics | |
US7046305B1 (en) | Method and apparatus for enhancing green contrast of a color video signal | |
JPS58154987A (en) | Special effect system | |
JPH01206792A (en) | Video signal synthesizing circuit | |
JPS61179697A (en) | Picture signal processor | |
JPH01274584A (en) | Picture quality improving device for television camera | |
JPH01303993A (en) | Color signal processing circuit for television receiver |