JPS58209240A - Optical beam communicating method - Google Patents

Optical beam communicating method

Info

Publication number
JPS58209240A
JPS58209240A JP57091230A JP9123082A JPS58209240A JP S58209240 A JPS58209240 A JP S58209240A JP 57091230 A JP57091230 A JP 57091230A JP 9123082 A JP9123082 A JP 9123082A JP S58209240 A JPS58209240 A JP S58209240A
Authority
JP
Japan
Prior art keywords
ship
optical beam
light beam
azimuth
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57091230A
Other languages
Japanese (ja)
Inventor
Tatemi Yagi
八木 建巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57091230A priority Critical patent/JPS58209240A/en
Publication of JPS58209240A publication Critical patent/JPS58209240A/en
Pending legal-status Critical Current

Links

Classifications

    • H04B10/22

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To allow an inverse reflector of an opposite side to return an inverse reflecting optical beam in response only to a calling of a specific side, by providing an optical beam communication device tracking an angle of an optical axis of transmission/receiving automatically in the inverse reflector provided for the opposite side, for the own side. CONSTITUTION:On a two-axis movable stand 12 of the own ship, an optical beam transmission section 11 and a sighting TV camera 13 are provided. The oppsite ship is provided with an omnidirectional receiver 1 receiving optical beams transmitted and a photo diode 4 is fitted to receive the optical beam and to convert the beam into electric signals. The receiver 1 is controlled for the revolution with a potentiometer 3 and a motor 2 and the azimuth is changed. The optical beam detected at the photo diode 4 is photo-electric converted and transmitted to a code discriminating section 6, where a calling signal from the friend ships only is discriminated and transmitted to a storage section 5. Further, the inverse reflector 7 is provided, which is driven with an azimuth drive servo motor 8 and tracks with an output of the storage section 5 automatically.

Description

【発明の詳細な説明】 本発明は光ビーム通信方法に係り、特に元ビームの光軸
を自動追尾させる通信方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light beam communication method, and more particularly to a communication method for automatically tracking the optical axis of an original beam.

従来より、レーザービームの様な光ビームを用いて艦船
間の通信を行なう方法がある。この種の通信号伍におい
ては、光ビームの光軸を自動追尾京せることが必要と書
れる。従来技術で寸、通信1、たい相手方へ光ビームを
反射させる;−ナレンレクタの様な逆反射器を取付け、
自艦から送信された光ビームをこの逆反射器で反射し1
、この反射光を自艦側で受信することにより、自艦の送
受信光軸を相手艦へ自動追尾させている。
Conventionally, there is a method of communicating between ships using a light beam such as a laser beam. In this type of communication signal, it is necessary to automatically track the optical axis of the light beam. With conventional technology, a beam of light is reflected to the desired destination; a retroreflector such as a Nalenrekta is installed;
The light beam sent from your own ship is reflected by this retroreflector.
By receiving this reflected light on the own ship side, the own ship's transmitting and receiving optical axis automatically tracks the other ship.

この技術において、送受信光軸を相手艦の逆反射器へ方
位角、仰角とも自動追尾させれば、自艦に多少の動揺が
あっても自艦と相+艦の通信を維持てることができる。
With this technology, if the transmitting and receiving optical axis automatically tracks the retroreflector of the other ship in both azimuth and elevation, it is possible to maintain communication between the own ship and the other ship even if the own ship is slightly shaken.

然るに、通信を行なおうとする僚艦即ち相手艦に逆反射
器を散り付けた場合、光ビームによる光軸の自動追尾に
対し大きな反射光が得られるという利点がある反面、敵
方からも逆反射器の存在を光学的に発見され易−と因う
欠点がある。
However, if you scatter retroreflectors on a consort ship that is trying to communicate, that is, the other ship, there is an advantage in that a large amount of reflected light can be obtained when the optical axis is automatically tracked by the light beam, but on the other hand, it is also possible to receive retroreflectors from the enemy ship. The disadvantage is that the presence of the vessel is easily discovered optically.

従って、本発明の目的//i士述の!Hな従来技術の欠
点を除去し、所足の送信源からの呼びかけに対してのみ
逆反射特性を示し、送信源以外から逆反射器の存在を探
知されにぐい光ビーム通信方法を提供することにある。
Therefore, the object of the present invention is as follows: To provide a light beam communication method that eliminates the drawbacks of conventional techniques, exhibits retroreflection characteristics only in response to calls from a required transmission source, and makes it difficult for the presence of a retroreflector to be detected from sources other than the transmission source. It is in.

而して、本発明は自分側には、相手側に設すられた逆反
射器に送受信光軸の角度を自動的に追尾する光ビーム通
信装置が設けられる、一方、相手側には全方位受信機と
、呼びかけ方向を感知しその方位角を記憶する記憶手段
と、呼びかけ方向に前記逆反射器を指向させる手段を有
Tる。通信時には、全方位受信機によって光ビームを受
信すると共に、記憶手段にぞの万位角を記憶する。この
記憶手段からの出力によって指向手段を介し2て逆反射
器を光軸方向に自動的に追尾させる。この様にして、自
分以外からは光学的に反射断面積の大きな逆反射器を探
知されにぐいと論う効果を得ることができる。
Thus, in the present invention, a light beam communication device is provided on the own side to automatically track the angle of the transmitting and receiving optical axis to a retroreflector installed on the other side, while an omnidirectional It includes a receiver, a storage means for sensing the calling direction and storing its azimuth, and means for directing the retroreflector in the calling direction. During communication, the omnidirectional receiver receives the light beam and stores the corresponding angle in the storage means. The output from the storage means automatically causes the retroreflector to track in the optical axis direction via the directing means. In this way, it is possible to obtain the effect that a retroreflector with a large reflection cross section is difficult to be detected by anyone other than the user.

以下、図面を参照して本発明の一実施例について詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は自艦側と相手区側との間の光ビーム通信方法を
説明するための図である。この図において、自艦側には
、二軸可動架台12が設けられる。
FIG. 1 is a diagram for explaining a method of optical beam communication between the own ship side and the other side. In this figure, a two-axis movable pedestal 12 is provided on the own ship side.

この二軸可動架台12上に光ヒーム送信部11及び照準
用TV左カメラ3が取り付けられる。そして押準用TV
カメラ13にて相手艦(僚艦)方向に照準を合せ、送信
部11より光ビームが拡り角度θtをもって発射きれる
。この光ビームは大気中を伝搬し相手区側に達する、 一方、相手ffl側においては、自艦側から送られて来
る光ビームを受信する全方位受信機1が設けられる。こ
の全方位受信機1内にはフォトダイオード4が取付けら
れ、元ビームを受光し、電気信号に変換する。また全方
位受信機1は方位検出ポテンショメータ3を介してモー
タ2によって1m転可能に制御され、その方位が変えら
れる。方位検出ポテンショメータ3は、全方位受信機3
が呼びかけられた、即ち自艦側からの光ビームの方位角
を検出する。このポテンショメータ3によって検出され
た方位角は記憶部5に格納される。フォトタイオード4
で検出された光ビームは、光電変換されて符号判別部6
に送られる。符号判別部6は敵味方付識別装置の一種で
、味方艦からの呼かけ信号のみを符号判別して、記憶部
5へ送出する。
An optical beam transmitter 11 and an aiming TV left camera 3 are mounted on this biaxially movable pedestal 12. And a TV for pushing
The camera 13 is aimed in the direction of the opponent ship (consort ship), and the light beam is spread from the transmitter 11 and can be emitted at an angle θt. This light beam propagates through the atmosphere and reaches the other party's side. On the other hand, on the other party's ffl side, an omnidirectional receiver 1 is provided to receive the light beam sent from the own ship's side. A photodiode 4 is installed inside the omnidirectional receiver 1 to receive the original beam and convert it into an electrical signal. Further, the omnidirectional receiver 1 is controlled by a motor 2 via an azimuth detection potentiometer 3 so that it can rotate by 1 m, and its orientation can be changed. The direction detection potentiometer 3 is the omnidirectional receiver 3
Detects the azimuth of the light beam from the ship's own ship. The azimuth detected by the potentiometer 3 is stored in the storage section 5. Photo diode 4
The detected light beam is photoelectrically converted and sent to the code discriminator 6.
sent to. The code discrimination section 6 is a kind of enemy/friend identification device, and discriminates the code of only the calling signal from a friendly ship and sends it to the storage section 5.

相手区側Inは逆反射器7が設けられる。尚、全方位受
信機1.逆反射器7及びレーダーマスト14の位置的関
係は、例えば第2図に示す様になってbる。
A retroreflector 7 is provided on the other side In. In addition, omnidirectional receiver 1. The positional relationship between the retroreflector 7 and the radar mast 14 is as shown in FIG. 2, for example.

逆反射器7は方位駆動サーボモータ8によって回転駆動
される。この回転軸には方位角検出ポテンショメータ9
が設けられ、逆反射器7の方位角を検出し、その信号は
サーボ増幅器10に送られる。一方、光ビームの入射方
位角を格納している記憶部5からもその情報がサーボ増
幅器10に送られる。而して、サーボ増幅器10は記憶
部5からの方位角を基準にして、ポテンショメータ9か
ら与えられる方位角との差が零になる様にサーボモータ
8を回転駆動する。つまり、それらの差が零になった所
で、光ビームの入射方向と逆反射器7の向いている方向
とが一致してbることになる。
The retroreflector 7 is rotationally driven by an azimuth drive servo motor 8. An azimuth detection potentiometer 9 is attached to this rotation axis.
is provided to detect the azimuth of the retroreflector 7 and send its signal to the servo amplifier 10. On the other hand, the information is also sent to the servo amplifier 10 from the storage section 5 which stores the incident azimuth angle of the light beam. Then, the servo amplifier 10 rotates the servo motor 8 so that the difference between the azimuth from the storage section 5 and the azimuth given from the potentiometer 9 becomes zero. That is, when the difference between them becomes zero, the incident direction of the light beam and the direction in which the retroreflector 7 is facing coincide with each other.

この状態で、自虐側の光ビーム送信部11から送出され
た光ビームの一部は逆反射器7で反射され、自艦側に返
送される。自艦側ではこの反射ビームを受信することに
よシ、相手艦の逆反射器7の方向を容易に追尾すること
ができる。
In this state, a part of the light beam sent out from the light beam transmitting section 11 on the masochistic side is reflected by the retroreflector 7 and sent back to the own ship side. By receiving this reflected beam, the own ship can easily track the direction of the retroreflector 7 of the other ship.

なお、本実施例においては、全方位受信機1が光ビーム
を受信しないとき即ち待状態のときには、逆反射器7け
レータ−マスト14等の遮へい物によってその通信が不
可能な様に停止される。これは、目的とする自艦以外と
の通信を避けるためで、ポテンショメータ9の初期設足
をレータ−マスト14の方向に行なうことによって達成
される。
In this embodiment, when the omnidirectional receiver 1 does not receive a light beam, that is, when it is in a standby state, the communication is stopped by a shielding object such as the retroreflector mast 14. Ru. This is achieved by initially installing the potentiometer 9 in the direction of the controller mast 14 in order to avoid communication with other than the intended ship.

この様に本発明によれば、自艦の光ヒームが相手艦を容
易に目動追尾するとともに、相手艦に設けられた逆反射
器は呼びかけられた特定の艦に対してのみ逆反射光ビー
ムを返送することができる。
As described above, according to the present invention, the light beam of one's own ship can easily visually track the other ship, and the retroreflector provided on the other ship emits a retroreflected light beam only to the specific ship called out. It can be returned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明に供する自艦側と相手
艦側間の通信系を示す図、第2図は相手艦の通信系を示
す図で(a)が側面図、(b)が平面図である。 111−を全方位受信機、 5は方位角記憶部10はサ
ーボ増幅器、 7は逆反射器。 代理人デ理士薄 1)利 幸
Fig. 1 is a diagram showing a communication system between one's own ship and the other ship to explain an embodiment of the present invention, and Fig. 2 is a diagram showing the communication system of the other ship, where (a) is a side view and (b) ) is a plan view. 111- is an omnidirectional receiver, 5 is an azimuth storage unit 10 is a servo amplifier, and 7 is a retroreflector. Agent De Physician Usuki 1) Toshiyuki

Claims (1)

【特許請求の範囲】[Claims] 第1の側に設けられた光ビーム送信部より光ビームを送
出し、第2の側に設けられた逆反射器で該光ビームを反
射することにより自動的に追尾する光ビーム通信方法に
おいて、第1の側から到来する光ビームを受信する全方
位受信機と、該全方位受信機が受信する光ビームの到来
方向を記憶する記憶手段と、該記憶手段の出力に基いて
前記逆反射器を前記方向に指向させる指向手段を有し、
該第1の側に対してのみ自動追尾することを特徴とする
光ビーム通信方法。
In a light beam communication method in which a light beam is transmitted from a light beam transmitter provided on a first side and automatically tracked by reflecting the light beam with a retroreflector provided on a second side, an omnidirectional receiver for receiving a light beam arriving from the first side; a storage means for storing the direction of arrival of the light beam received by the omnidirectional receiver; comprising directing means for directing the
A light beam communication method characterized by automatically tracking only the first side.
JP57091230A 1982-05-31 1982-05-31 Optical beam communicating method Pending JPS58209240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57091230A JPS58209240A (en) 1982-05-31 1982-05-31 Optical beam communicating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57091230A JPS58209240A (en) 1982-05-31 1982-05-31 Optical beam communicating method

Publications (1)

Publication Number Publication Date
JPS58209240A true JPS58209240A (en) 1983-12-06

Family

ID=14020617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57091230A Pending JPS58209240A (en) 1982-05-31 1982-05-31 Optical beam communicating method

Country Status (1)

Country Link
JP (1) JPS58209240A (en)

Similar Documents

Publication Publication Date Title
US5274379A (en) Optical identification friend-or-foe
US4834531A (en) Dead reckoning optoelectronic intelligent docking system
US5110202A (en) Spatial positioning and measurement system
JP3052686B2 (en) Laser distance measuring device
US4926050A (en) Scanning laser based system and method for measurement of distance to a target
JPH09250927A (en) Surveying system
CA2297611A1 (en) Virtual multiple aperture 3-d range sensor
US20190324145A1 (en) Lidar Apparatus and Method
RU2137149C1 (en) Gear for target detection
WO2022110210A1 (en) Laser radar and mobile platform
CN211554313U (en) Multi-line laser radar
JPS58209240A (en) Optical beam communicating method
WO2022062469A1 (en) Laser radar
US20220082665A1 (en) Ranging apparatus and method for controlling scanning field of view thereof
WO2022083235A1 (en) Detection and communication system, control device and detection system
JPS58201080A (en) Detection for vehicular position
EP1695468B1 (en) Laser-based communications with a remote information source
EP0614093B1 (en) Identification system with high discriminating power
WO2022252057A1 (en) Detection method and apparatus
JP3155188B2 (en) Automatic tracking device
JPH1073434A (en) Laser range finder
CN218158324U (en) Laser radar
JP2943449B2 (en) Laser radar device
CN209979838U (en) Multi-line laser radar
WO2022156344A1 (en) Laser radar and unmanned aerial vehicle