JPS582087A - Gas laser tube device - Google Patents

Gas laser tube device

Info

Publication number
JPS582087A
JPS582087A JP9820181A JP9820181A JPS582087A JP S582087 A JPS582087 A JP S582087A JP 9820181 A JP9820181 A JP 9820181A JP 9820181 A JP9820181 A JP 9820181A JP S582087 A JPS582087 A JP S582087A
Authority
JP
Japan
Prior art keywords
tube
laser tube
starting
anode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9820181A
Other languages
Japanese (ja)
Inventor
Takashi Kaneko
兼子 峻
Masaru Nakajima
勝 中島
Masayuki Katogi
加藤木 眞之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Moriyama Sangyo KK
Original Assignee
Toshiba Corp
Moriyama Sangyo KK
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Moriyama Sangyo KK, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP9820181A priority Critical patent/JPS582087A/en
Publication of JPS582087A publication Critical patent/JPS582087A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0977Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser having auxiliary ionisation means

Abstract

PURPOSE:To contrive to improve the starting characteristic and to form a gas laser tube device in a small type by a method wherein an energizing DC voltage is applied between the anode and cathode of a laser tube from a DC electric power source circuit, and starting discharge path is formed in the laser tube by a starting voltage generating circuit. CONSTITUTION:The main discharge path between the anode 17 and the cathode 19 is formed in the gas laser tube 10 by a capillary tube provided in the tube 10, the cylindrical cold cathode body is provided in the coaxial type around the capillary tube, and end tubes 19 having mirrors respectively are protruded on the outsides of both the ends of a vacuum vessel. The DC electric power source circuit 11 applies the energizing DC voltage between the anode 17 and the cathode 19 of the tube 10. One side of output of the starting voltage generating circuit 21 is connected to the anode 17 or to the cathode 19, and the other electrode thereof is connected to an electrode 20 for starting discharge provided being close to the outside of the tube 19 as to form a starting discharge path through the main discharge path consisting of the capillary tube.

Description

【発明の詳細な説明】 本発明はガス・レーザ管装置に係わり、特に内部鏡同軸
形ガス・レーザ管の放電開始特性りなわち起動特性を改
良した電源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas laser tube device, and more particularly to a power supply device with improved discharge initiation characteristics, ie, starting characteristics, of an internal mirror coaxial gas laser tube.

例えば、アルゴン、ヘリウム・ネオンなどを使ったガス
・レーザ管は、定常の放電を開始させるために約3 k
Vの定常放電電圧の数倍におよぶ高電圧を印加して起動
させる。この起w3電圧はパルス波あ゛るいは高周波で
あり、これを従来はレー+F管の陽極に定常放電電圧に
重畳さけて印加しているのが一般的である。このような
レーザ管発振装置では、比較的a時起動が11られる反
面、陽極回路の回路素1了および配線の全体をこの10
数kVにおよぶ起゛動電圧に充分耐えるようにしなGJ
ればならない。また陽極回路に昇圧トランスの二次巻線
を介在さぼる構成をとると、この二次巻線は起動放電電
流および定常放電電流を安全に流すのに充分な太さの巻
線でなければならないため、このトランスは人形になっ
てしまう。このように従来のこの種レーザ管装置では装
置が大形化し、且つ高い耐電圧特性をもつ回路素子を陽
極回路に用いなければならないという不都合がある。
For example, gas laser tubes using argon, helium neon, etc. require approximately 3 k to initiate a steady discharge.
It is activated by applying a high voltage several times the steady discharge voltage of V. This generated W3 voltage is a pulse wave or a high frequency wave, and conventionally, it has generally been applied to the anode of the Ray+F tube without being superimposed on the steady discharge voltage. In such a laser tube oscillator, although the start-up time at time A is relatively 11, the circuit elements of the anode circuit and the entire wiring are
Make sure that the GJ has enough resistance to the excitation voltage of several kV.
Must be. In addition, if a configuration is adopted in which the secondary winding of the step-up transformer is inserted in the anode circuit, this secondary winding must be thick enough to safely flow the starting discharge current and the steady discharge current. , this transformer becomes a doll. As described above, the conventional laser tube apparatus of this type has disadvantages in that the apparatus is large in size and circuit elements having high withstand voltage characteristics must be used in the anode circuit.

一方、外部鏡サイドアーム形のガス・レーザ管において
キサビラリーチ1−プの外周に起動放電用電極を巻き、
この電極と陰極との間に起動電圧を印加づる構造も″提
案されている。しかしながらこれはレーザ管の電極′配
置の相異からそのまま内部鏡同軸形ガス・レーザ管には
適用できない。このため内部鏡同軸形レーザ管における
最も起動特性の良好な電極配竺、回路構成の開発が望ま
れている。
On the other hand, in the external mirror side arm type gas/laser tube, a starting discharge electrode is wound around the outer circumference of the xibira reach 1-pipe.
A structure in which a starting voltage is applied between this electrode and the cathode has also been proposed. However, this cannot be directly applied to an internal mirror coaxial gas laser tube due to the difference in the arrangement of the electrodes in the laser tube. It is desired to develop an electrode arrangement and circuit configuration with the best starting characteristics for an internal mirror coaxial laser tube.

本発明は以上のよう全事情に鑑みてなされIcもので、
内部鏡同軸形ガス・レーザ管を使用しその起動特性が良
好で、しかも装置を小形化しうる機成のカス・レーザ管
発振装置を提供りるbのである。
The present invention has been made in view of all the circumstances as described above.
It is an object of the present invention to provide a Kass laser tube oscillation device that uses an internal mirror coaxial gas laser tube, has good starting characteristics, and can be miniaturized.

以下、図面を参照してイの実施例を説明す゛る。Embodiment A will be described below with reference to the drawings.

〈jお同一部分は同一符号であられづ。<j The same parts have the same symbols.

第1図ないし第4図に示?を装置は、回路構成が第1図
の通りになっている。すなわち、レーザ管(10)の定
常放電電圧を発生ηる直流電源(11)とレーIf管部
(12)とが、2本のクープル(13)により接続され
ている。直流電源(11)は−次巻線が商用電源に接続
され・る電源トランス(14,)、二次巻線に接続され
る1B電圧整流回路(15)、定電流回路(16)を有
している。可変抵抗< V t< >は定電流値を調整
づるためのものである。I“1流電源(11)で得られ
た例えば4kVの直流型口は、2本のh−プル(13)
によリレーザ管の陽極<17>、陰極(18)間に印加
される。なお陽極(17)にはバラスト抵抗([<1)
を介してIIJ流電圧電圧極が接続されている。
Shown in Figures 1 to 4? The circuit configuration of the device is as shown in Figure 1. That is, a DC power source (11) that generates a steady discharge voltage of the laser tube (10) and a laser If tube section (12) are connected by two couples (13). The DC power supply (11) has a power transformer (14,) whose negative winding is connected to a commercial power supply, a 1B voltage rectifier circuit (15) connected to the secondary winding, and a constant current circuit (16). ing. The variable resistor <Vt<> is for adjusting the constant current value. For example, a 4kV DC type port obtained with a single-current power supply (11) is connected to two H-pulls (13).
A voltage is applied between the anode <17> and the cathode (18) of the laser tube. Note that the anode (17) is equipped with a ballast resistor ([<1)
The IIJ current voltage voltage poles are connected via.

さてレーリ“管(10)の′一方のJンドチコーブ(1
9)の外周に番Jリング状の起動放電電極(20)が巻
かれている。そしてこの電[1(20)と陰極(18)
との間に起動電圧発生回路(21)で発件される高周波
高電圧が印加されるようになっている。この回路(21
)は、陽極(17)へ通じるバラスト抵抗(R1)の手
前から各プリーダ抵抗(R2)、(R3)、(R4)に
より分岐して得られる電圧によって駆動される。ブリー
ダ抵抗(R2)、(R3)fIlにはトリーガコンデン
サ(CI)、抵抗(R4)には時定コンテン1ノ(C2
)がそれぞれ接続されている。また抵抗(R2)、(R
3)間にはシリコン制御整流素子(SCR)を介してパ
ルストランス(P T )の−次巻線が接続されている
。SCRのカソード、ゲート間には抵抗(R3)、ネオ
ン管のようなm電素子(DZ)、ゲート電流調整用抵抗
(R5)が接続され、ま/、:S CFでの7ノード、
ゲート間にはゲート保護抵抗(R7、>が接続されてい
る。パルストランス(PT)の二次巻線は、その巻始め
がレーザ管の陰極(18)に、巻終りが起動放電電極(
20)に接続されている。
Now, one side of the Lehri tube (10) is the J dotchicove (1).
A J-ring-shaped starting discharge electrode (20) is wound around the outer periphery of the electrode 9). And this electrode [1 (20) and cathode (18)
A high frequency high voltage generated by a starting voltage generation circuit (21) is applied between the two. This circuit (21
) is driven by a voltage obtained by branching from before the ballast resistor (R1) leading to the anode (17) through each leader resistor (R2), (R3), and (R4). The bleeder resistor (R2) and (R3) are connected to the trigger capacitor (CI), and the resistor (R4) is connected to the time constant content 1 node (C2).
) are connected to each other. Also, the resistance (R2), (R
3) The -order winding of a pulse transformer (P T ) is connected between them via a silicon controlled rectifier (SCR). A resistor (R3), an electric element (DZ) like a neon tube, and a gate current adjustment resistor (R5) are connected between the cathode and gate of the SCR.
A gate protection resistance (R7,
20).

陰極(18)の回路はゲート電流調整用抵抗(1<6)
を介してSCRのゲー1−に、まlζ」−放電電流検出
用抵抗(R8)を介し、パルストランス(PT)の−次
巻線の巻終りとと6に直流電源の負がわに接続されてい
る。パルストランス(1丁)の−次、二次巻線比はおよ
そl:HlOである。
The cathode (18) circuit is a gate current adjustment resistor (1<6)
Connect to the negative side of the DC power supply to the end of the next winding of the pulse transformer (PT) and to the negative side of the DC power supply through the discharge current detection resistor (R8). has been done. The negative and secondary winding ratio of the pulse transformer (one unit) is approximately l:HlO.

次にこの回路素子を組込んだ装置の構造例を第2図ない
し第4図により説明する。この装置は直流電源回路(1
1)を電源ボックス(11a)に収納し、シー11管(
10)、起動電圧発生回路(21)、およびバラスト抵
抗(、R1)をレー畳f管収納ボックス(22)に−緒
に組入れ、これらを2本のウーブル(13)により連結
しである。
Next, an example of the structure of a device incorporating this circuit element will be explained with reference to FIGS. 2 to 4. This device is a DC power supply circuit (1
1) is stored in the power supply box (11a), and the Sea 11 tube (
10), a starting voltage generation circuit (21), and a ballast resistor (R1) are assembled together in a Ray F tube storage box (22), and these are connected by two wobbles (13).

矢印(1)はレーザ光出力をあらゎしている。The arrow (1) indicates the laser light output.

レーザ管(,10) 1.L、ガラス製の円筒状容器〈
23)の両端にぞそれぞれ径小、のエントチ1−ブ(1
9)1,24)ヵ、連結。。、イゎ、。端部。
Laser tube (,10) 1. L, glass cylindrical container
23), each with a small diameter entrench 1-tube (1
9) 1, 24) ka, connection. . , Wow. edge.

ミラー(25> 、  (26)をもつ端板(27) 
、(28)が気密接合されてなる。容器(23)の内側
には管軸tにキャピラリーチューブ(29)が配置され
、これは一端部外周においで保持@(30)により支持
されている。キャピラリーチューブ(29)の外側には
同軸をなして円筒状冷陰極体(31)が設けられ、ステ
ム(33)を貫通する陰、極り−ド(18)に接続され
ている。保持筒(3o)内の空間にはステム(33)を
貫通する陽極リード(17)が露出されている。全反射
ミラー〈26)の方のエンドチューブ(24)内には、
ブリ」−メタ窓(34)をもつ細管(35)がステム(
32)の内側から延長されている。このような内部鏡同
軸形レーザ管は、管内にアルゴン、ヘリウム・ネオンの
ような放電用ガスが封入され、主放電路が陽極リード(
17)からキャピラリーチューブ(29)の細孔を通り
冷陰極体(31)に達する通路にできる。なお保持筒(
3o)は陽極がゎの空間と陰極がわの空間とを実質的に
分離している。
End plate (27) with mirrors (25>, (26))
, (28) are hermetically sealed. A capillary tube (29) is arranged on the tube axis t inside the container (23), and is supported by a holder (30) at one end of the outer periphery. A cylindrical cold cathode body (31) is coaxially provided on the outside of the capillary tube (29), and is connected to a negative pole (18) passing through a stem (33). An anode lead (17) passing through the stem (33) is exposed in the space inside the holding cylinder (3o). Inside the end tube (24) toward the total reflection mirror (26),
A tubule (35) with a meta-window (34) is connected to the stem (
32) is extended from the inside. In such an internal mirror coaxial laser tube, a discharge gas such as argon, helium, or neon is sealed inside the tube, and the main discharge path is an anode lead (
17), passes through the pores of the capillary tube (29), and forms a path to reach the cold cathode body (31). Note that the holding cylinder (
3o) substantially separates the space between the anode and the cathode.

さてそこで、陽極リード(17)に直接連通する方のエ
ンドチューブ(19)の外周壁面に、導体薄板を丸めI
こ起りJ放電電極(20)が巻かれている。この電極は
外部放電防11のため絶縁カバー(36)によっC覆わ
れている。そしてレーザ管(10)が収納されたボック
ス(22)と、シー1f管Jンドチ、−L−プ〈19)
とのIalの空間に、起動電圧発生回路(21)の各回
路素子およびバラスト抵抗がイ」孔内板状のプリント配
線基板(37)、(38)にとりつけられ、円筒状ホル
ダ(39)により固定されている。このホルダ(39)
はボックス(22)の着脱可能なキャップ(22a)に
設番ノた突起筒(22b)に嵌合され固定されている。
Now, on the outer peripheral wall of the end tube (19) that directly communicates with the anode lead (17), a thin conductive plate is rolled up.
A rolling J discharge electrode (20) is wound. This electrode is covered with an insulating cover (36) for external discharge protection 11. And the box (22) in which the laser tube (10) is stored, the sea 1f tube J dochi, -L-pu <19)
Each circuit element of the starting voltage generation circuit (21) and the ballast resistor are attached to the plate-shaped printed wiring boards (37) and (38) in the hole, and held by the cylindrical holder (39). Fixed. This holder (39)
is fixed to the removable cap (22a) of the box (22) by fitting into the numbered protrusion tube (22b).

なお主11ツブ(22a)には出力レーザ光が通る出力
窓(22C)が穿たれている。またJンドヂューブ〈1
9)の先端外周には黒色ゴムからなる有孔保護カバー(
40)がかぶせられている。
Note that the main 11 knob (22a) is provided with an output window (22C) through which the output laser beam passes. Also, J Dodubu〈1
9) There is a perforated protective cover (
40) is covered.

ホルダ(39)は一端が突起筒(22b)に、他端が保
護カバー(40)に嵌合され保持されている。
The holder (39) is held with one end fitted into the protruding tube (22b) and the other end fitted into the protective cover (40).

回路素子はとくにそのネオン管からなる放電素子(DZ
)をこれから発づる放電光の一部がレーザ@<10)の
内部、とくに好ましくは冷陰極体(31)の電子放出面
に達するような位置に置かれる。またパルストランス(
PT)は起動放電電極(20)の近くに配置され、短い
配線になるようにしである。
The circuit element is particularly a discharge element (DZ) consisting of a neon tube.
) is placed at a position such that a part of the discharge light emitted from the cold cathode body (31) reaches the interior of the laser @<10), particularly preferably the electron emitting surface of the cold cathode body (31). Also, pulse transformer (
PT) is placed close to the starting discharge electrode (20), so as to have a short wiring.

次にこのレーザ管装置の動作を説明する。Next, the operation of this laser tube device will be explained.

直流電源を動作させると、レーザ管の陽極−陰極間に約
4 kVの電圧が印加される。同時にこの電源から分岐
された起動電圧発生回路(21)にブリーダ抵抗(R2
)、IJよび(R3)を介してコンデンサ(C1)、(
C2)に夫々充電される。SCHのアノード−ゲート間
内部抵抗は比較的小さいので、放電素子<DZ)にコン
デンサ(C2)の充電電圧に略対応する電圧が印加され
てゆき、この放電素子の放電開始電圧を越えると放電電
流がゲートに流れSCRがターンオンする。するとコン
デンサ(C1)に充電された電荷はSCR及びパルスト
ランス(Pl)の−次巻線を通して流れる。これによっ
てパルストランス(PT)の二次側にパルス状の高電圧
が誘導され、これがレーザ管の陰極と起動放主電極どの
間に印加される。この動作はまIこ−」ンIパンリ(に
1)の型筒の5C)(を介しての放′di電流に対して
、抵fA(R2>を通しての分流′#i流値がS C1
<のり−ンオンを持続できない程小さくなるように(R
2)を設定しであることとともに、ゲートがらアノード
を通る電流は略零となることとによってS ORをター
ンオフさせる。これによって再びコンデンサ(cl)、
(C2)の充電がtifl姶し、上述(7) S CR
17) ターンオンがはじまる。この周期は各ブリーダ
抵抗(R2)、(l(3)、(R4)、コンデンサ(C
1)、<02)、放tjll−(DZ>(7)MlK開
始電圧等によって定まる。これらの値をscRのオン、
オフ、およびパルストランス(P”1’ )の二次側交
番出り電j(の周波数が100〜100011z1好ま
しくは30Q〜eoot+lになるように定める。これ
によってレーザ管の118極に対して起動放電電極(2
0)には正の約1o〜15 kV (尖鍮値)の′R周
波高電t[が印加される。このような高周波高電圧によ
り、レーザ管内にはエンドチューブ(19)のガラス壁
を介し、キャピラリーチューブ(29)内を通って冷陰
極体に達する高周波グロー放電が生ずる。この起動放電
によってレーザ管内封入ガスは励起され、またこの起動
放電によるわずかな発光により冷陰極体も光励起され電
子放出が容易化される。こうしてレーザ管の陽極−陰極
間の主放電がひき起こされる。主放電が起こると主放電
づなわち定常放電による電流が例えば数IAの程度で流
れる。づると、この電流が検出用抵抗(R8)で生ずる
電位差により抵抗(R6)の回路に分流される。
When the DC power supply is operated, a voltage of approximately 4 kV is applied between the anode and cathode of the laser tube. At the same time, a bleeder resistor (R2) is connected to a starting voltage generating circuit (21) branched from this power supply.
), capacitor (C1), ( via IJ and (R3)
C2) respectively. Since the internal resistance between the anode and gate of SCH is relatively small, a voltage approximately corresponding to the charging voltage of the capacitor (C2) is applied to the discharge element <DZ), and when the discharge starting voltage of this discharge element is exceeded, the discharge current increases. flows to the gate and turns on the SCR. Then, the charge charged in the capacitor (C1) flows through the SCR and the second winding of the pulse transformer (Pl). This induces a pulsed high voltage on the secondary side of the pulse transformer (PT), which is applied between the cathode of the laser tube and the starting emitter electrode. This operation is such that for the current discharged through the mold cylinder 5C) of the cylinder I, the shunt current value through the resistor fA (R2>) is S C1
<To make it so small that it cannot sustain the glue-on (R
2) is set, and the current passing from the gate to the anode becomes approximately zero, thereby turning off the SOR. As a result, the capacitor (cl),
The charging of (C2) is tifl, and the above (7) S CR
17) Turn-on begins. This period is determined by each bleeder resistor (R2), (l(3), (R4), capacitor (C
1), <02), release tjll-(DZ>(7) MlK start voltage, etc. These values are determined by turning on scR,
off, and the frequency of the secondary side alternating output voltage j (of the pulse transformer (P"1') is determined to be 100 to 100011z1, preferably 30Q to eoot+l. This causes a starting discharge to the 118 poles of the laser tube. Electrode (2
0), a positive 'R frequency high electric current t[ of approximately 10 to 15 kV (sensitivity value) is applied. Due to such high frequency and high voltage, a high frequency glow discharge is generated in the laser tube, which passes through the glass wall of the end tube (19), passes through the capillary tube (29), and reaches the cold cathode body. The gas sealed in the laser tube is excited by this starting discharge, and the cold cathode body is also photoexcited by a slight amount of light emitted by this starting discharge, facilitating electron emission. This causes a main discharge between the anode and cathode of the laser tube. When the main discharge occurs, a current of several IA flows due to the main discharge, that is, the steady discharge. In other words, this current is shunted to the circuit of the resistor (R6) due to the potential difference generated at the detection resistor (R8).

抵抗(R6)を流れる電流がSCRのゲー1−からアノ
ードへ流れるため、放電素子(DZ)の動作に無関係に
SCRはターンオンされる。これによってコンデンサ(
C1)の両端電圧は略零となったまま持続されSCRに
よる交番電圧の発生は停止し、パルストランス(PT)
の二次側出力も零となる。゛すなわちレーザ管の主放電
の開始と同時に起動電圧の発生は自動的に停止する。し
たがって起動放電電極(20)には高周波型LILが印
1ノ11されない。
Since the current flowing through the resistor (R6) flows from the gate 1- of the SCR to the anode, the SCR is turned on regardless of the operation of the discharge element (DZ). This allows the capacitor (
The voltage across C1) remains approximately zero, the generation of alternating voltage by the SCR stops, and the pulse transformer (PT)
The secondary side output of will also be zero. That is, the generation of the starting voltage automatically stops at the same time as the main discharge of the laser tube starts. Therefore, the high frequency type LIL is not marked on the starting discharge electrode (20).

この構成ににって、パルストランスの二次巻線を流れる
起動放電電流は、μ△のオーダであり巻線はJrfII
IIのしのを使用しつる。このためパルスニーランスは
極めて小形になしえて、起動型口発生回路の各素子とと
もにレーザ管収納ボックス内の■ンドチコーブ外周に一
緒に組込むことが可能とイ〈−)た。しかも陽極に直接
連通するがわの■ンドチコー1の外周に起動放電電極を
配置しこれと冷陰極体との間に起動電圧を印加チること
により、レーザ管の主放電路のJべてを通る起動放電を
11「シめうるため、起動特性が非常にすぐれ−(いる
。特に前回の配線の如く冷陰極体に対して起動放電電極
が常に正となるように起動型バーを印加づると、極めて
安定に起動づることがわかった。本発明者らの実測でG
よJべて0.5秒以下で]二放電へ起動させることがで
きることを確かめた。なおまた、この高周波起動F#i
lfはヘリウム・ネオンガスレーザ管の場合、前述の周
波数範囲にづると非常に安定に起動放電を起こすことも
確認できた。
With this configuration, the starting discharge current flowing through the secondary winding of the pulse transformer is on the order of μ△, and the winding is Jrf II
Vine using Shino II. For this reason, the pulse knee lance can be made extremely small and can be installed together with each element of the activation type mouth generation circuit on the outer periphery of the laser tube storage box. Furthermore, by arranging a starting discharge electrode on the outer periphery of the conductor 1 that communicates directly with the anode, and applying a starting voltage between this electrode and the cold cathode body, the entire main discharge path of the laser tube can be It has very good starting characteristics because it can reduce the starting discharge that passes by 11".Especially if you apply a starting bar so that the starting discharge electrode is always positive with respect to the cold cathode body as in the previous wiring. It was found that the startup was extremely stable.Actual measurements by the inventors showed that G
It was confirmed that it was possible to start up to two discharges in less than 0.5 seconds. Furthermore, this high frequency starting F#i
It was also confirmed that in the case of a helium-neon gas laser tube, lf causes a very stable starting discharge within the above-mentioned frequency range.

また起動電圧発生回路素子を起動放電電極に近接して設
番°jであるため、高周波高電圧回路1kを短かくでき
、波形歪が生じに(いのでこの点でも効率よく起動させ
ることができる。なおバラスト抵抗もレーザ管の陽極に
近づけて接続しているためケーブルなどによる線間浮遊
容惜をみかけ土小さくできて有利である。また直流電源
とレーザ管収納ボックスとを接続するケーブルは3〜4
kVに耐えるケーブルでよいため、安全であり、操作し
やすく、且つ経済的である。
In addition, since the starting voltage generating circuit element is installed close to the starting discharge electrode, the high frequency high voltage circuit 1k can be shortened, and waveform distortion can be avoided (this also makes it possible to start efficiently). Since the ballast resistor is also connected close to the anode of the laser tube, it is advantageous because it can reduce the amount of stray capacitance between the lines due to cables, etc. Also, the cable connecting the DC power supply and the laser tube storage box is 3. ~4
Since the cable can withstand kV, it is safe, easy to operate, and economical.

なお放電素子(DZ)としてネオン管のような放電発光
素子を用いれば、簡略であるとともにこれを上述のよう
にその発光放電光がレーザ管内のとくに冷陰極体主面に
到達しうる位置に置くことにより、この発光光線による
冷陰極体の励起も行なわれ、起動特性がより一層改善さ
れる。この点通常、レーザ管は内部が暗い収納ボックス
内に取付1ノられるためある程度長時間この暗い所に不
動作状態で放置されていると冷陰極体からイΔン化電了
が出にくい状態になっ(起動特性が劣化Jる傾向をもつ
のが一般的(・ある。しかしながら本発明によれば起動
放電によるグローや、ネオン管による発光光線によって
直ちに冷陰極体が光励起されて良好な起動特性が得られ
る。
Note that it is simple to use a discharge light emitting element such as a neon tube as the discharge element (DZ), and it is also placed at a position within the laser tube where the discharge light can reach the main surface of the cold cathode body, as described above. As a result, the cold cathode body is excited by the emitted light, and the starting characteristics are further improved. In this regard, since the laser tube is usually installed in a storage box with a dark interior, if it is left in a non-operating state in this dark place for a certain period of time, it will be difficult for the cold cathode body to conduct electricity. However, according to the present invention, the cold cathode body is immediately photoexcited by the glow caused by the starting discharge or by the light emitted from the neon tube, resulting in good starting characteristics. can get.

放電素子はネオン管のほかダイアックやツェl−ダイA
′−ドなども使用しつる。またSCHに代えて他のib
制御電極付電流制御素子を使用しつる。 本発明はまた
、レーザ管の陽極を接地電位とし、陰極に餉の高電圧を
印加して動作させる方式に6適用できる。このような場
合(よ接地電位の陽極がわにパルストランスの二次側の
一方の極を接続し、他方の極を冷陰極体とめ接連通ずる
方のエンドチューブの外周に巻いた起動放電電極に接続
して用いればよい。これによって起動放電は陽極と起動
tli電電極電極間に生ずる。 またレーザ管収納ボッ
クス内に装着する起動電汁発−1回路索子鮮をプリント
基板とともに絶縁樹脂で一体にモールドして取付けても
よい。これによって耐電圧特性はさらに改善され、また
各素子を密接配置できるので装置の小形化にさらに有利
である。
In addition to neon tubes, discharge elements include DIAC and TEL-DAI A.
You can also use ``-do''. Also, other ib can be used instead of SCH.
Uses a current control element with control electrodes. The present invention can also be applied to a method in which the anode of the laser tube is set to ground potential and a high voltage is applied to the cathode for operation. In such a case (one pole of the secondary side of the pulse transformer is connected to the anode at a ground potential, and the other pole is connected to the cold cathode body. It can be used by connecting them together.This causes a starting discharge to occur between the anode and the starting tli electrode.In addition, the starting electric power generator-1 circuit cable, which is installed inside the laser tube storage box, is integrated with the printed circuit board using insulating resin. The device may be attached by molding.This further improves the withstand voltage characteristics and allows the elements to be placed closely together, which is more advantageous for downsizing the device.

以上のように本発明によれば、装置を小形化しうるとと
もに起動特性の良好なレーナ管装置が得られる。
As described above, according to the present invention, it is possible to obtain a Lehner tube device that can be made smaller and has good starting characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示ず回路図、第2図はその適
用例を示す概略図、第3図はその鮫部断面図、第4図は
さらにその要部斜視図である。 (10) ・・・レーザ管、(11) ・・・直流電源
、 (13・・・ケーブル、(21)・・・起動電圧発
生回路、  (19)、(24) ・・・エンドチュー
ブ、(29)・・・キャピラリーデユープ、  (17
)・・・陽極、(18)・・・陰極、  (20) ・
・・起動放電電極、(D7)・・・放電素子、  (P
 T )・・・パルストランス、〈22)・・・ボック
ス。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram showing an example of its application, FIG. 3 is a sectional view of the shark part thereof, and FIG. 4 is a perspective view of the main part thereof. (10)...Laser tube, (11)...DC power supply, (13...Cable, (21)...Starting voltage generation circuit, (19), (24)...End tube, ( 29)...Capillary duplex, (17
)... Anode, (18)... Cathode, (20) ・
... Starting discharge electrode, (D7) ... Discharge element, (P
T)...Pulse transformer, <22)...Box.

Claims (7)

【特許請求の範囲】[Claims] (1)管内に設【ノられたキャピラリーチューブによっ
て陽極−陰極間の主放電路が形成され、キャビラリーヂ
]−ブのまわりに同軸状に筒状の冷陰極体が設けられ口
つ與空容器の両端外方にそれぞれミラーをもつ2rンド
チ1−1が突設されてなるガス・レーリ゛管と、このレ
ーザ管の陽極−陰極間に付勢直流電圧をりえる直流電源
回路と、放電起動高電圧を生成する起動電1f発生回路
とを具備し、この起動電圧発生回路の出ツノの一方の極
を上記レーザ管の陽極又は陰極に接続し他方の極を4=
vピラリ−チューブによる主放電路を介して起動放電路
が形成されるようにJンドヂューブの外側に近接して設
けられた起動数置用電極に接続してなることを特徴とす
るガス・レーザ管装置。
(1) A capillary tube installed inside the tube forms the main discharge path between the anode and the cathode, and a cylindrical cold cathode body is installed coaxially around the tube. A gas Rayleigh tube consisting of a 2R dot 1-1 with mirrors protruding from both ends, a DC power supply circuit for applying an energizing DC voltage between the anode and cathode of the laser tube, and a discharge starting height. A starting voltage 1f generating circuit that generates a voltage is provided, one pole of the output horn of this starting voltage generating circuit is connected to the anode or cathode of the laser tube, and the other pole is connected to the anode or cathode of the laser tube.
A gas laser tube characterized in that it is connected to a starting position electrode provided close to the outside of a J dub such that a starting discharge path is formed via a main discharge path formed by a V-pilary tube. Device.
(2)起動電圧発生回路は、100ないし100011
zの交番電圧を発生する高周波発生回路およびこの交番
電圧をパルストランスにより電圧りる電圧回路を具備し
てなる特許請求の範囲第1項記載のガス・レーザ管装置
(2) Starting voltage generation circuit is 100 to 100011
2. A gas laser tube device according to claim 1, comprising a high frequency generating circuit for generating an alternating voltage of z and a voltage circuit for generating the alternating voltage by a pulse transformer.
(3)高周波発生回路は制御電極付電流制御素子を有し
、その!III III Ii極に抵抗、コンデンサ、
および放電素子による充放電電圧が印加されて駆動され
る特許請求の範囲第1項または第2項記載のガス・レー
ザ管装置。
(3) The high frequency generation circuit has a current control element with a control electrode, and! III III Resistor, capacitor on Ii pole,
The gas laser tube device according to claim 1 or 2, which is driven by applying a charging/discharging voltage by a discharge element.
(4)レーザ管の陽極−陰極間の主放電による放電電流
を検知して起動電圧発生回路の交番電圧発生を自動停止
する回路を設番プてなる特許請求の範囲第1項記載のガ
ス・レーザ管装置。
(4) The gas according to claim 1, comprising: a circuit that detects the discharge current caused by the main discharge between the anode and cathode of the laser tube and automatically stops the alternating voltage generation of the starting voltage generation circuit; Laser tube equipment.
(5)レーザ管の陽極−陰極間を流れる主放電電流の一
部を電流制御素子の制御lIl電極に印加して高周波発
生回路の交番電圧発生を停止するようにした特許請求の
範囲第2項、第3項、または第4項記載のガス・レーザ
管装置。
(5) A part of the main discharge current flowing between the anode and cathode of the laser tube is applied to the control lIl electrode of the current control element to stop the alternating voltage generation of the high frequency generation circuit (claim 2) , the gas laser tube device according to item 3 or item 4.
(6)放電素子がネオン管である特許請求の範囲第3項
記載のカス・レーザ管装置。
(6) The cass laser tube device according to claim 3, wherein the discharge element is a neon tube.
(7)ネオン@庖、これによって光する放電光hレーザ
管の管内に到達可能な位置に設けてなる特許請求の範囲
第6項記載のガス・レーザ管装置。
(7) The gas laser tube device according to claim 6, which is provided in a position where a discharge light emitted by neon light can reach the inside of the laser tube.
JP9820181A 1981-06-26 1981-06-26 Gas laser tube device Pending JPS582087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9820181A JPS582087A (en) 1981-06-26 1981-06-26 Gas laser tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9820181A JPS582087A (en) 1981-06-26 1981-06-26 Gas laser tube device

Publications (1)

Publication Number Publication Date
JPS582087A true JPS582087A (en) 1983-01-07

Family

ID=14213382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9820181A Pending JPS582087A (en) 1981-06-26 1981-06-26 Gas laser tube device

Country Status (1)

Country Link
JP (1) JPS582087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002938A1 (en) * 1986-10-15 1988-04-21 Fanuc Ltd High-frequency electric discharge excited laser
WO1988002936A1 (en) * 1986-10-14 1988-04-21 Fanuc Ltd Laser device excited by rf discharge

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988002936A1 (en) * 1986-10-14 1988-04-21 Fanuc Ltd Laser device excited by rf discharge
EP0285673A1 (en) * 1986-10-14 1988-10-12 Fanuc Ltd. Laser device excited by rf discharge
EP0285673B1 (en) * 1986-10-14 1994-09-21 Fanuc Ltd. Laser device excited by rf discharge
WO1988002938A1 (en) * 1986-10-15 1988-04-21 Fanuc Ltd High-frequency electric discharge excited laser
JPS6398171A (en) * 1986-10-15 1988-04-28 Fanuc Ltd High frequency discharge excited laser
EP0287677A1 (en) * 1986-10-15 1988-10-26 Fanuc Ltd. High-frequency electric discharge excited laser
EP0287677B1 (en) * 1986-10-15 1992-08-26 Fanuc Ltd. High-frequency electric discharge excited laser

Similar Documents

Publication Publication Date Title
US5883471A (en) Flashlamp pulse shaper and method
US3914648A (en) Flashlamp discharge circuit
EP0049465B1 (en) Apparatus and method for starting high intensity discharge lamps
US4005333A (en) Apparatus for increasing output efficiency of an optically pumped Nd:YAG laser
US3679998A (en) Laser flashtube triggering arrangement
EP1280386A2 (en) Discharge lamp ignition device, equipment and image forming apparatus
US4379982A (en) Low energy starting aid for high intensity discharge lamps
US4151446A (en) Electronic flash apparatus
JPS6246178Y2 (en)
JPS582087A (en) Gas laser tube device
JP3432017B2 (en) Strobe circuit
JPH0418715B2 (en)
US3708758A (en) Laser pumping apparatus
JPH09502305A (en) Pulsed gas laser
US4158155A (en) Ignition circuit for extinguishing tubes in electronic flash equipment
JPS5933276B2 (en) Laser device
JP3088057B2 (en) Flash lamp trigger circuit
JPH0278199A (en) Pulse x-ray source driving device
JP2830404B2 (en) Gas laser device
JPS6325989A (en) Gas laser
EP0049466A2 (en) Low energy starting aid for high intensity discharge lamps
JPH0436476B2 (en)
JPS5820478B2 (en) Light emission method of xenon discharge tube
JP2726058B2 (en) Laser device
JPH1041081A (en) Discharge lamp lighting device