JPS58208639A - Proof test method for optical fiber - Google Patents

Proof test method for optical fiber

Info

Publication number
JPS58208639A
JPS58208639A JP9248282A JP9248282A JPS58208639A JP S58208639 A JPS58208639 A JP S58208639A JP 9248282 A JP9248282 A JP 9248282A JP 9248282 A JP9248282 A JP 9248282A JP S58208639 A JPS58208639 A JP S58208639A
Authority
JP
Japan
Prior art keywords
optical fiber
scattered light
test method
tensile load
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9248282A
Other languages
Japanese (ja)
Inventor
Masaharu Niizawa
新沢 正治
Seishiro Ohashi
大橋 晴志郎
Yoji Fukushima
福島 洋治
Tatsuo Teraoka
寺岡 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP9248282A priority Critical patent/JPS58208639A/en
Publication of JPS58208639A publication Critical patent/JPS58208639A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/088Testing mechanical properties of optical fibres; Mechanical features associated with the optical testing of optical fibres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To minimize the deterioration of the strength of an optical fiber by reducing a tensile load immediately while marking a defective part for removing the same when the defective part whose scattered light exceeds the prescribed limit of intensity is detected in a measuring device through which the optical fiber is passed. CONSTITUTION:A heating furnace 1' for a preform 1 which is a material of an optical fiber 2, an integrating sphere 3 which is a device for measuring the intensity of scattered light, and a control device 4 which detects a measured value obtained by the sphere and gives an instruction to a marker 8 and a capstan and proof test device 9, are provided. Since the preform 1 is heated to a temperature of about 2,000 deg.C by the furnace 1', the light thereof is propagated constantly into the optical fiber 2. When the integrating sphere 3 detects a part of the fiber whose scattered light exceeds a set value in its intensity, the device 4 gives an instruction to the device 9 to reduce a tensile load, while counting a time of delay from the distance from the integrating sphere 3 to the marker 8 and from the speed of the optical fiber 2, and said defective part is marked by the marker 8.

Description

【発明の詳細な説明】 り、符に、線引き直後の光ファイバに遍続的に引張り荷
重をクロえて行なわれる光ファイバのプルーテスト方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION In particular, the present invention relates to an optical fiber pull test method in which a tensile load is applied uniformly to the optical fiber immediately after drawing.

光ファイバは、線引きと同時)Cプラスチツクあるいは
金@等の材料で表面を完全に覆うこと(プリコートと呼
ぶ)により強度が飛躍的に向上する。
The strength of optical fibers can be dramatically improved by completely covering the surface of the optical fiber with a material such as C plastic or gold (called precoating) at the same time as drawing.

しかし、光フアイバ母材自身に内在する気泡や異物、あ
るいは表面傷等は、光ファイバに線引きされた状伸でも
そのまま残り、その部分に応力集中がおこり強度の弱い
部分をつくる。
However, bubbles, foreign matter, surface scratches, etc. inherent in the optical fiber base material itself remain as they are even after the optical fiber is drawn and stretched, and stress concentration occurs in those parts, creating a weak part.

このため、長期使用を目的とする光ファイバには、ある
一定の引張り荷重を加え強度の弱い部分をあらかじめ切
断し、その部分は使用しないようにするためのブルーフ
テストが行なわれている。
For this reason, optical fibers intended for long-term use are subjected to a Bruf test in which a certain tensile load is applied to the optical fibers, and weak parts are cut in advance so that those parts are not used.

通常、このブルーフテストは、線引きと同時、あるいは
、線引き後プラスチツク等を押出被覆Lだ後に行なって
いるが、これらの方法には次のような不便さがあった。
Usually, this bruising test is carried out at the same time as the wire drawing or after the plastic or the like is extruded coated after the wire drawing, but these methods have the following inconveniences.

(1)線引きと同時にブルーフテスト方法な゛う方・去
では、低強度部で破妨すると作業が一時中断し作業効率
が悪くなる。
(1) If a blue test method is used at the same time as wire drawing, if a failure occurs in a low-strength part, the work will be temporarily interrupted and work efficiency will be reduced.

(2)縄引き体プラスチツク等を押出破1しだ孝に行な
う方法では、ブルーフテスト工程が追加されるという不
便さのみでなく、環境条件によってはブルーフテストを
行なうことによって大きな剣叶劣化を起す原因にもなっ
ていた。
(2) The method of extrusion-breaking plastic ropes, etc. is not only inconvenient due to the addition of a bruf test step, but also can cause major deterioration due to the bruf test depending on the environmental conditions. It was also the cause.

ちなみに、ファイバ表面に存在する壜は、通常雰囲気の
引張り応力のもとでは、水蒸気の働きにより増大し、そ
の程度は、例えば布設応力の3倍の引張り荷重では、′
数秒から数十秒の印加時間で布設応力のもとての30年
分の劣化を引き起こすことが予想される。
Incidentally, the bottle present on the fiber surface increases due to the action of water vapor under the tensile stress of a normal atmosphere, and the extent of this increase is, for example, at a tensile load three times the installation stress, '
It is expected that an application time of several seconds to several tens of seconds will cause deterioration equivalent to 30 years of installation stress.

しかし、この表面傷の増大速度は雰囲気によって大きく
変動し、例えば、水蒸気の全くない雰囲気、あるいは、
液体窒素温度程度の極低温雰囲気では増大が停上する。
However, the rate of increase in surface flaws varies greatly depending on the atmosphere. For example, in an atmosphere with no water vapor, or
The increase stops in an extremely low temperature atmosphere, about the temperature of liquid nitrogen.

本発明は、上記に鑑みてなされたもので、その目的とす
るところは、従来の不便さを解消し、作業性を悪化させ
ることなく、ブルーフテストによる1度劣化を最少限度
に留める光ファイバのブルーフテスト方法を提供するこ
とにある。
The present invention has been made in view of the above, and its purpose is to solve the inconveniences of the conventional optical fiber and to minimize the deterioration of the optical fiber by one degree of Bruf test without deteriorating the workability. The objective is to provide a bruch test method.

本発明は、綱引き直後の光ファイバに連続的に引張り荷
重を加えて行なわれる光ファイバのブルーフテスト方法
において、前記光ファイバを散乱光強度の測定装置内を
眞過させ、前記散乱光強度が一定限度を越えた欠陥部分
を検知した場合には直ちに前記引張り荷重を減じ、かつ
、前記欠陥部分に除去を容易にするだめのマークを施す
ことを特徴とするものである。
The present invention provides an optical fiber bruch test method in which a tensile load is continuously applied to an optical fiber immediately after a tug-of-war, in which the optical fiber is passed through a scattered light intensity measuring device, and the scattered light intensity is constant. If a defective portion exceeding a limit is detected, the tensile load is immediately reduced, and a mark is placed on the defective portion to facilitate removal.

以下、本発明の一実施例を図面に基づいて説明する。図
は本発明を実施する光ファイバのブルーフテスト装置の
系統図で、1は光ファイバ2の素材となる。プリフォー
ム、1′は加熱炉、3は散乱光強度の測定装置である積
分球で、4はその測定値を検知してマーカ8およびキャ
プスタン兼、ブルーフテスト装置9に指令するコントロ
ール装置、5は光ファイバ2の外径測定器、6はプリコ
ート破覆装置で、7はその焼付炉、8はマークを施すマ
ーカ、9は光ファイバ2に連続して引張荷重を加えるキ
ャプスタン兼ブルーフテスト装置、10は光ファイバ2
の券R(4である。
Hereinafter, one embodiment of the present invention will be described based on the drawings. The figure is a system diagram of an optical fiber bruch test device that implements the present invention, and 1 is the material of the optical fiber 2. Preform, 1' is a heating furnace, 3 is an integrating sphere which is a measuring device for scattered light intensity, 4 is a control device that detects the measured value and instructs a marker 8 and a Bruf test device 9 which also serves as a capstan, 5 is a device for measuring the outer diameter of the optical fiber 2, 6 is a precoat breaking device, 7 is a baking furnace thereof, 8 is a marker for making marks, and 9 is a capstan and brush test device that continuously applies a tensile load to the optical fiber 2. , 10 is optical fiber 2
Ticket R (is 4).

次に、この実施例の光ファイバのプルーフテスト方法を
糟、明する。
Next, the optical fiber proof testing method of this embodiment will be explained in detail.

プリフォーム1は加熱炉1′により2000℃前後に加
熱されているためその光は常に光フアイバ2内に伝播し
ている。この光ファイバ2に含まれる気泡や異物、ある
いは表面に存在する傷等による散乱光は積分球3により
強度が測・定される。この積分球3は直径8Crnの球
体とフォトダイオードとで構成されている。散乱光強度
は光ファイバ2の強度と密接な関係にあり、散乱光強度
がある程度以下の場合はファイバ欠陥がほとんどなく高
強度を維持しているものとする。積分球3において設定
1直以上の散乱光強度部分が検知されると、コノトロー
ル装置4が直ちにキャプスタン兼プループテスト装置9
に指令して引張り荷重を減じるとともに、積分球3から
マーカ8までの距離と光ファイバ2の速度とから遅延時
間を計算し、検知された欠陥部分にマーカ8によりマー
クを廊す。そしてマークされた欠陥部分がキャプスタン
兼ブルーフテスト装置9を通過後欠陥部分が切直除去さ
れ、高強叶の光ファイバ2のみが接合されて巻取機10
に巻取られる。
Since the preform 1 is heated to around 2000° C. by the heating furnace 1', the light is constantly propagating into the optical fiber 2. The intensity of scattered light caused by air bubbles or foreign matter contained in the optical fiber 2 or scratches on the surface is measured by an integrating sphere 3. This integrating sphere 3 is composed of a sphere with a diameter of 8 Crn and a photodiode. The scattered light intensity is closely related to the strength of the optical fiber 2, and when the scattered light intensity is below a certain level, it is assumed that there are almost no fiber defects and high intensity is maintained. When a scattered light intensity part of setting 1 or more is detected in the integrating sphere 3, the control device 4 immediately sends the capstan and proof test device 9
At the same time, a delay time is calculated from the distance from the integrating sphere 3 to the marker 8 and the speed of the optical fiber 2, and a mark is placed on the detected defective part using the marker 8. After the marked defective portion passes through a capstan and bruch test device 9, the defective portion is cut and removed, and only the high-strength optical fiber 2 is spliced into a winder 10.
It is wound up.

この場合において、光ファイバ2に対して印加した引張
荷重は500g〜2 K9程度で、光ファイバ2の断線
事故は皆無であった。
In this case, the tensile load applied to the optical fiber 2 was approximately 500 g to 2 K9, and there were no breakage accidents of the optical fiber 2.

なお、この方法は、光ファイバ2の欠陥部分全検知する
散乱光g、度の測定装置内、すなわち積分球3の内部を
、水蒸気を含まない雰囲気、あるいは液体!素温度の極
低温に冷却された雰囲気に保った状弗で行なわれたもの
であるが、積分球3の内部を、ドライアイスを用いて一
り0℃〜−30℃程変ニ・冷却した状態で行なった場合
にも相当の効果が得られた。
Note that this method uses an atmosphere that does not contain water vapor or a liquid! The experiment was carried out in an atmosphere kept at an extremely low temperature, which is the same as the elemental temperature. Considerable effects were obtained even when it was carried out in this state.

以上説明したように、本発明によれば、光ファイバの塵
引きに1峨いて実施できるので作業性がよく、シかも、
ブルーフテストによる強度劣化を防止できるという実用
的効果を奏することができる。
As explained above, according to the present invention, the workability is good because it can be carried out with one extra step to remove dust from the optical fiber.
A practical effect can be achieved in that strength deterioration due to Bruf test can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の光ファイバのブルーフテスト方
法を実施する装置の系統図である。
The figure is a system diagram of an apparatus for carrying out an optical fiber brunch test method according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、@引きci+の光ファイバに連続的に引張り荷重を
加えて行なわれる光ファイバのブルーフテスト方法にお
いて、前記光ファイバを散乱光強掌の測定@電内を通過
させ、前記散乱光強度が一足限間を越えた欠陥部分を検
知した場合には直ちに前記引張り荷重を減じ、かつ、前
記欠陥部分に除去を容易に−するだめのマークを施すこ
とを特徴とする光ファイバのブルーフテスト方法。 2 前記散乱光強度の測定装置内が、水蒸気を含まない
雰囲気あるいは液体窒素温度の極低温に冷却された雰囲
気に保たれている特許請求の範囲第1項記載の光ファイ
バのブルーフテスト方法。
[Scope of Claims] 1. In an optical fiber bruch test method in which a tensile load is continuously applied to an optical fiber of @pull ci+, the optical fiber is passed through @Dennai for measurement of scattered light intensity, An optical fiber characterized in that when a defective portion where the scattered light intensity exceeds a limit is detected, the tensile load is immediately reduced, and a mark is placed on the defective portion to facilitate removal. Bruch test method. 2. The optical fiber Bruf test method according to claim 1, wherein the inside of the scattered light intensity measuring device is maintained in an atmosphere that does not contain water vapor or an atmosphere that is cooled to a cryogenic temperature of liquid nitrogen temperature.
JP9248282A 1982-05-31 1982-05-31 Proof test method for optical fiber Pending JPS58208639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9248282A JPS58208639A (en) 1982-05-31 1982-05-31 Proof test method for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9248282A JPS58208639A (en) 1982-05-31 1982-05-31 Proof test method for optical fiber

Publications (1)

Publication Number Publication Date
JPS58208639A true JPS58208639A (en) 1983-12-05

Family

ID=14055522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9248282A Pending JPS58208639A (en) 1982-05-31 1982-05-31 Proof test method for optical fiber

Country Status (1)

Country Link
JP (1) JPS58208639A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186960A2 (en) * 1984-12-24 1986-07-09 Sumitomo Electric Industries Limited Method for inspecting an optical fiber
JPH05170476A (en) * 1991-05-27 1993-07-09 Sumitomo Electric Ind Ltd Automatic screening device for optical fiber
WO2001051911A1 (en) * 1999-12-28 2001-07-19 Corning Incorporated Method and apparatus for tensile testing and rethreading optical fiber during fiber draw
KR100762035B1 (en) * 2001-05-30 2007-09-28 삼성토탈 주식회사 Apparatus for measuring extension of polymer
CN112710451A (en) * 2020-12-09 2021-04-27 江苏永鼎股份有限公司 Online defect marking device of wire drawing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186960A2 (en) * 1984-12-24 1986-07-09 Sumitomo Electric Industries Limited Method for inspecting an optical fiber
JPH05170476A (en) * 1991-05-27 1993-07-09 Sumitomo Electric Ind Ltd Automatic screening device for optical fiber
WO2001051911A1 (en) * 1999-12-28 2001-07-19 Corning Incorporated Method and apparatus for tensile testing and rethreading optical fiber during fiber draw
JP2003519792A (en) * 1999-12-28 2003-06-24 コーニング インコーポレイテッド Method and apparatus for performing a tensile test on an optical fiber during fiber drawing and reinserting the same
KR100761194B1 (en) * 1999-12-28 2007-10-04 코닝 인코포레이티드 Method and apparatus for tensile testing and rethreading optical fiber during fiber draw
KR100762035B1 (en) * 2001-05-30 2007-09-28 삼성토탈 주식회사 Apparatus for measuring extension of polymer
CN112710451A (en) * 2020-12-09 2021-04-27 江苏永鼎股份有限公司 Online defect marking device of wire drawing

Similar Documents

Publication Publication Date Title
US20110274397A1 (en) Tight-buffered optical fiber having improved fiber access
JPS58208639A (en) Proof test method for optical fiber
CA1127890A (en) Optical fibres and coatings therefor
US4594088A (en) Method and apparatus for making, coating and cooling lightguide fiber
DE69429199T2 (en) Airtight sealing structure with low melting point glass for use in the fiber guide part of an optical device and method for airtight sealing with low melting point glass
Glaesemann Optical fiber mechanical reliability
EP0034670B1 (en) A glass optical fibre and a method of coating a plastic coated glass fibre with metal
BE889923A (en) METHOD AND APPARATUS FOR CONTROLLING THE DIAMETER OF GLASS FIBERS DURING MANUFACTURE
US5271073A (en) Optical fiber sensor and method of manufacture
JP2635475B2 (en) Optical fiber coating forming method
France et al. Plastic coating of glass fibers and its influence on strength
FR1428609A (en) Method and apparatus for the production of very small diameter glass fibers
BRPI0722295A2 (en) METHOD OF EVALUATING AN OPTICAL FIBER, AND OPTICAL FIBER STRETCHING EQUIPMENT.
DE3584524D1 (en) METHOD AND DEVICE FOR MANUFACTURING FLEXIBLE CABLE PROTECTIVE TUBES WITH CABLE TAKE-IN WIRE.
GB2104225A (en) Testing plastics coatings on optical fibres
Caddock et al. Stress-corrosion failure envelopes for E-glass fibre bundles
JPS60186430A (en) Method and apparatus for drawing optical fiber
JPH01107865A (en) Coloring device for optical fiber
JPS5846098Y2 (en) Optical fiber drawing equipment
DE3381116D1 (en) CARBON FIBER BUNDLE WITH HIGH TENSILE STRENGTH AND EXTENSION AND METHOD FOR THE PRODUCTION THEREOF.
US20210230058A1 (en) Method for manufacturing an optical fiber
CN215893681U (en) Single mode fiber packaging structure
SU638894A1 (en) Mineral wool fibre quality determining device
EP0597627A1 (en) Optical transmission media having enhanced strength retention capabilities
JPH02304335A (en) Adhesive strength testing method for optical fiber