JPS58208606A - Three dimensional position measuring method - Google Patents
Three dimensional position measuring methodInfo
- Publication number
- JPS58208606A JPS58208606A JP9175282A JP9175282A JPS58208606A JP S58208606 A JPS58208606 A JP S58208606A JP 9175282 A JP9175282 A JP 9175282A JP 9175282 A JP9175282 A JP 9175282A JP S58208606 A JPS58208606 A JP S58208606A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- coordinate
- cameras
- dimensional position
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は2組の2次元光位置検出器を組合せて光点の空
間位置を測定する3次元位置計測方式に係り、特に自動
校正機能を備えた3次元光位置計測方式に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a three-dimensional position measurement method that measures the spatial position of a light spot by combining two sets of two-dimensional optical position detectors, and particularly relates to a three-dimensional optical position measurement method with an automatic calibration function. It is related to the method.
従来の3次元光位置計測方式においては、測定対象物の
表面に装着した光点をテレビジョンカメラなどの2次元
光位置検出器を2組用い、それぞれ2次元位置の計測を
行ない、これら計沖値と座標変換データをもとに3次元
位置計測を行なうという方式が採られている。ここで、
光点は発光ダイオード(LED)によるものであったシ
、または、レーザ光によるものであったりする。In the conventional three-dimensional optical position measurement method, two sets of two-dimensional optical position detectors such as television cameras are used to measure the two-dimensional position of a light spot attached to the surface of the object to be measured. A method is adopted in which three-dimensional position measurement is performed based on values and coordinate transformation data. here,
The light spot may be from a light emitting diode (LED) or may be from a laser beam.
そして、変換データは2組のカメラが設置された位置関
係によって決定されるため、光点の計測に先立ち2組の
カメラの位置と光学レンズの中心軸方向を精密に測定す
る必要がある。このことを計測にあたってその都度実行
することは極めて困難であるため、従来は、2組のカメ
ラを台座に装着し、それらの位置関係を固定していた。Since the conversion data is determined by the positional relationship in which the two sets of cameras are installed, it is necessary to precisely measure the positions of the two sets of cameras and the central axis direction of the optical lens prior to measuring the light spot. Since it is extremely difficult to perform this each time a measurement is made, conventionally two sets of cameras have been mounted on a pedestal and their positional relationship has been fixed.
しかしながら、このような計測方式においては、カメラ
を支持する台座が大型とな長、計測を行なわないときに
も大きなスペースを必要とする。また、カメラの位置関
係が伺らかの要因で変化した場合にはその変化を捕捉す
ることが困難であシ、以後は不正確な座標変換データに
もとづく3次元位置計測を行なうことになるという問題
点があった。さらに、測定対象物がロボットのアームの
先端のように複雑な動きをする場合には、アームの先端
がアームにかくれてしまうことが生じ、固定された位置
関係のカメラによる計測は、測定対象物の動きに十分に
適応できないことが生じるという欠点があった。However, in such a measurement method, the pedestal that supports the camera is large and long, and also requires a large space even when measurements are not being performed. In addition, if the positional relationship of the cameras changes due to some unknown factor, it is difficult to capture the change, and from now on, 3D position measurement will be performed based on inaccurate coordinate transformation data. There was a problem. Furthermore, if the object to be measured moves in a complex manner, such as the tip of a robot's arm, the tip of the arm may be hidden behind the arm. This has the disadvantage that it may not be able to adequately adapt to the movements of people.
本発明は以上の点に鑑み、このような問題を解決すると
共に、かかる欠点を除去すべくなされた3次元位置計測
方式を提供するもので、座禅変換データの自動校正の機
能を付与し、2組の2次元光学位置検出器を任意の位置
に設置できるようにしたものである。In view of the above points, the present invention provides a three-dimensional position measurement method designed to solve such problems and eliminate such drawbacks, and provides a function of automatic calibration of zazen conversion data. A set of two-dimensional optical position detectors can be installed at any position.
以下、図面に基づき本発明の実施例を詳細に説明する。Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
第1図は本発明による3次元位置計測方式の一実施例を
示すブロック図で、説明に必要な部分のみを示す。FIG. 1 is a block diagram showing an embodiment of the three-dimensional position measuring method according to the present invention, and only the parts necessary for explanation are shown.
図において、1および2は半導体装置検出器と光学レン
ズとを一体化した第1および第2のカメラ、3および4
はそれぞれ第1および第2のカメラ1.2のカメラ台座
、5および6はそれぞれ第1および第2のカメラ1.2
の出力を入力とする第1および第2の2次元位置計測部
、7は第1および第2の2次元位置検出部5.6の出力
を入力とする主演算部、8はモード選択スイッチ、9は
3次元座標表示部、10は乗算回路部、11は3点Pa
、Pb、Pcの基型位置に装着して発光ダイオード(L
ED)とその支持部からなる基皐牢壜器、12は測定対
象物に装着するLED、 13 jd LED駆動回路
部、14は座標変換データと演算の途中段階の計算値を
格納する記憶要素である。なお、LED12におけるP
は3次元座標値を示す。In the figure, 1 and 2 are first and second cameras that integrate a semiconductor device detector and an optical lens; 3 and 4;
are the camera pedestals of the first and second cameras 1.2, respectively, and 5 and 6 are the camera pedestals of the first and second cameras 1.2, respectively.
7 is a main calculation unit that receives the outputs of the first and second two-dimensional position detectors 5.6, 8 is a mode selection switch, 9 is a three-dimensional coordinate display section, 10 is a multiplication circuit section, and 11 is a three-point Pa
, Pb, and Pc to form a light emitting diode (L
ED) and its supporting part; 12 is an LED to be attached to the object to be measured; 13 is an LED drive circuit; 14 is a storage element for storing coordinate transformation data and calculated values at intermediate stages of calculation. be. In addition, P in LED12
indicates a three-dimensional coordinate value.
そして、基座標系での座標位置が既知な3つの光点の2
次元位置計測値から座標変換データを校正し、この校正
した座標変換データを用いて光戸の空間位置を計測する
ように構成されている。Then, 2 of the three light points whose coordinate positions in the base coordinate system are known
The coordinate transformation data is calibrated from the dimensional position measurement value, and the spatial position of the light door is measured using the calibrated coordinate transformation data.
つぎに、この第1図に示す実施例の動作を説明する。本
発明を適用した3次元計測装歓は計測モードと校正モー
ドとがあり、これはモード選択スイッチ8によって選択
される。Next, the operation of the embodiment shown in FIG. 1 will be explained. The three-dimensional measurement system to which the present invention is applied has a measurement mode and a calibration mode, which are selected by a mode selection switch 8.
まず、計測モードのときには、LED駆動回路部13か
らの信号によって発光するLED12の光を第1および
第2のカメラ1,2によって捕捉し、この第1および第
2のカメラ1.2の出力を入力とする第1および第2の
2次元位置計測部5,6で各々のカメラに固定したカメ
ラ座標系で表示されたXaとy軸の座標値(x’、yl
)と(x2.y2)を策忠する。ここで、カメラ座伴系
の2軸は光学レンズの中心軸と一致させている。したが
って、2@の座標値は全く求めることはできない。そし
て、主演算部7では、これら2次元位置計測値をM=(
Xl、y’ 、x2ry”)T(Tは1雪を意味する)
とし、記憶要素14に格納していた座標変換データV、
1’(3X4行列)、、w2(3xtベクトル)と力・
ら基座標系で表示した3次元座標値P==(x。First, in the measurement mode, the first and second cameras 1 and 2 capture the light emitted by the LED 12 in response to a signal from the LED drive circuit section 13, and the outputs of the first and second cameras 1 and 2 are captured. The Xa and y axis coordinate values (x', yl
) and (x2.y2). Here, the two axes of the camera companion system are made to coincide with the central axis of the optical lens. Therefore, the coordinate value of 2@ cannot be determined at all. Then, the main calculation unit 7 converts these two-dimensional position measurement values into M=(
Xl, y', x2ry") T (T means 1 snow)
and the coordinate transformation data V stored in the storage element 14,
1' (3x4 matrix), w2 (3xt vector) and force・
The three-dimensional coordinate value P==(x.
3’ * Z ) ”を下記(1)式で計算する。3’ * Z )” is calculated using the following formula (1).
P = W I M+W 2
自・・・−(1)ただし、乗算は演算の高速化を
図るため、乗算回路部10で行なっている。そして、主
演算部7は3次元座標値Pを計算後、その結果を3次元
座標表示部9に表示すると井に、LED駆動回路部13
にLED発光指令信号を送出し、再びLED12を発光
させる。P = W I M + W 2
- (1) However, multiplication is performed in the multiplication circuit section 10 in order to speed up the calculation. After calculating the three-dimensional coordinate value P, the main calculation unit 7 displays the result on the three-dimensional coordinate display unit 9.
An LED light emission command signal is sent to the LED 12 to cause the LED 12 to emit light again.
以上の動作がモード選択スイッチ8によりモー・ド切り
換えが行なわれるまで繰シ返される。The above operation is repeated until the mode is changed by the mode selection switch 8.
つぎに1校正モードのときには、基準座標器11上の3
点P )、 * P B e P oにあるLED t
−111次発光させ、第1および第2のカメラ1,2で
計測し、以下に示すように座標変換データの自動校正を
行なう。Next, when in the 1 calibration mode, 3 on the reference coordinate instrument 11
LED t at point P ), * P B e P o
The -111st order light is emitted, measured by the first and second cameras 1 and 2, and the coordinate transformation data is automatically calibrated as shown below.
第2図は座標系の説明図である。基座標系をOX +
3’ t Zとし、第1のカメラ1に固定した座標系を
0□−X1+3’1+Z1とし、第2のカメラ2に固定
した座標系を02 X2+72+Z2とする。ここで
、各カメラ座標器の2軸は光学レンズの中心軸と一致し
ている。そして、1.jをOX*7+Zの原点からOi
X ij 3’ i l Z lの原点へのベクト
ルを0Xy7*Zで表示したもの、任隔の光点をOX
r y+ Zで表示したベクトルをP ” (X 、7
+)T とし、0−X 、y、、z、で表示したペ
クト1 1、 1 1
ルをS’ −(xj+ 戸+ z iゾ とすると、次
式の関係が成立する。FIG. 2 is an explanatory diagram of the coordinate system. Base coordinate system OX +
3'tZ, the coordinate system fixed to the first camera 1 is 0□-X1+3'1+Z1, and the coordinate system fixed to the second camera 2 is 02X2+72+Z2. Here, the two axes of each camera coordinate device coincide with the central axis of the optical lens. And 1. Oi from the origin of j to OX*7+Z
X ij 3' i l Z The vector to the origin of l is expressed as 0Xy7*Z, and the light points at arbitrary intervals are OX
The vector expressed as ry+Z is P” (X, 7
+) T and the vectors 1 1, 1 1 expressed by 0-X, y,, z, are S' - (xj+ door + z i zo), then the relationship of the following equation holds true.
P=L’+E’S’ 、 (i=1.2) ・・
・・(2)ここで、Eiは座標変換行列である。そして
、OX + 7 + Zの原点を平行移動させて0l−
xl。P=L'+E'S', (i=1.2)...
...(2) Here, Ei is a coordinate transformation matrix. Then, translate the origin of OX + 7 + Z to 0l-
xl.
Yi+7.iの原点と一致させ、これをX軸まわりに0
1回転、y@まわりにψi回転、2軸まわりにφ1回転
後に0l−xi、74 、ziに一致させたとすると、
座標変換行列E1は次式で記述できる。Yi+7. Coincide with the origin of i, and set it to 0 around the X axis.
If we make it match 0l-xi, 74, zi after one rotation, ψi rotation around y@, and φ1 rotation around the second axis,
The coordinate transformation matrix E1 can be described by the following equation.
=6θ】■らφ1
曝
偏5t11Sinφi+amθi su+ψ1cxea
φ1”Sinθi 5illφj −CO3θi Si
Mψ1(ifflφi(
・・・・・(3)
この行列は直交行列でちるから、逆行列は転電行(E’
)−””(Ei) 7e、’k] * * 11
@ 11 (4,)とすると、行列の各要素には、次
の関係式が成立している。=6θ】■raφ1 Exposure deviation 5t11Sinφi+amθi su+ψ1cxea
φ1”Sinθi 5illφj −CO3θi Si
Mψ1(ifflφi(...(3) Since this matrix is an orthogonal matrix, the inverse matrix is the inverted row (E'
)−””(Ei) 7e,'k] * * 11
@ 11 (4,), the following relational expression holds true for each element of the matrix.
そして、基葦座標器11上の3点P A I P B+
P *をOi X i + 7 i + Z i
で表示したものをS 。Then, the three points P A I P B+ on the basic reed coordinate machine 11
Oi X i + 7 i + Z i
What is displayed is S.
Si、Sl とすると、上記(2)式:り次の関係が成
′BC
立する。When Si and Sl are used, the following relationship holds true in equation (2) above.
PA=Li+EiSAiIPB=Li+EiSB’
IP =Ll+EIS @1111
@11(8)ここで、Qi 会PA−PB+ Q2Q
PB po IN、1△S 1S ir N’仝s ’
−s 1 とし、l== ム B
2B C[:(1−+Q−+11.’l]
” 、 N、’=[:ni、nj 、n; ]”。PA=Li+EiSAiIPB=Li+EiSB'
IP = Ll + EIS @1111
@11 (8) Here, Qi meeting PA-PB+ Q2Q
PB po IN, 1△S 1S ir N'仝s'
−s 1 and l==mu B
2B C[:(1-+Q-+11.'l]
", N,'=[:ni, nj, n; ]".
3x 工Y JZ
コ コX コy
コ2(j=1.2)とすると、次式が成立する。3x Engineering Y JZ
Coco X Coy
2 (j=1.2), the following equation holds true.
(Ej) Qj=\i (1=1,2.j=1,2
)・・・・・(9)
さらIc。(Ej) Qj=\i (1=1,2.j=1,2
)...(9) Sara Ic.
bl ”’ q1yq2z’llz”2y ” 2=q
IZq2X Q2zqlz’b3””Q1zq2y
Q1vq2y ”・・0・00)(i=l 、
2) ***・11上℃ii
iii 1c3=n1yq2z
−q1zn2y′e4:n1yq2y−qlyn2y(
i=l 、 2) 会****(1
;5とおく。そして、上記(9)式から次式が導くこと
ができる。bl ”'q1yq2z'llz”2y ” 2=q
IZq2X Q2zqlz'b3""Q1zq2y
Q1vq2y ”...0.00) (i=l,
2) ***・11℃ ii
iii 1c3=n1yq2z
-q1zn2y'e4:n1yq2y-qlyn2y(
i=l, 2) meeting****(1
; Set it as 5. Then, the following equation can be derived from the above equation (9).
e’ =(e’+b ei)/b re’ =(−十b
3ez、)/b212 1 211
1 13・・・・・(1階
この(13)式を上記(5)式に代入すると、elの2
次1
方程式が導かれ、その解は、
・幸・争・(圓
となる。同様にe 、e 、e も上記(6)
式と(9)21 22 23
式から次式で記述できる。e' = (e'+b ei)/b re' = (-ten b
3ez, )/b212 1 211
1 13... (first floor) Substituting this equation (13) into the above equation (5), we get 2 of el.
The following 1 equation is derived, and its solution is ・Happy・Strong・(Yen.Similarly, e , e , and e are also given in (6) above.
From the equation and (9) 21 22 23, it can be written as the following equation.
・−−伊・j5)
@22=(e′3+yb2e21)/b1r @、3=
(eニー1(13べ、)/l)、 * @ (16+こ
こで上記(141、(151式の士の符号は上記で7)
式を満足する方を選択する。また、基準座標器12上の
3点PA、PB、Poの値は既知であり、SA!+ S
F、i。・--Italy・j5) @22=(e'3+yb2e21)/b1r @, 3=
(e knee 1 (13 be,) / l), * @ (16 + here the above (141, (the sign of 151 is 7 above)
Select the one that satisfies the formula. Furthermore, the values of the three points PA, PB, and Po on the reference coordinate instrument 12 are known, and SA! +S
F.i.
So+の各xy座標値は検出されるから、bl、b2゜
1iii −
b3およびc 、c aC+Cは士%Q fl ol
〜(i 2’式で計算できる。したがって、(Ei)″
T゛行列の第1行と第2行が上記63)〜(16)式の
代数計算で求められる。Since each xy coordinate value of So+ is detected, bl, b2゜1iii - b3 and c, c aC+C are %Q fl ol
〜(i It can be calculated using the 2′ formula. Therefore, (Ei)″
The first and second rows of the T matrix are obtained by the algebraic calculations of equations 63) to (16) above.
つぎに、Liをカメラ座せで表示すると、crt)TL
iとなり、これを上記(8)式で計−蒐すると、(El
)7L1=(Ej)TPA−81仝(’ X + i)
’ +工Z)T ・自・・07)となる。ここで、(
Ei)Tの第1行とフ2行が計〜l −1〜i
孟されているづλら、JxとAyが計算できる。1zは
ここでは必要としない、
そして、基座標系のベクトルPをカメラ座標系で表示す
ると(Ei)TP となり、上記伐)式から(Ei)T
P=Si+(Ei)TLi (i=1.2)・・拳
・争0団
となる。ここで、
とすると、上記0団式は
UP=M+V −−−6−(1
9となる。このUと■の各要素はこれまで示した計算式
によって求められ、Mは位置計算値である。Next, when Li is displayed with the camera seated, crt) TL
i, and when this is calculated using the above equation (8), (El
)7L1=(Ej)TPA-81仝('X+i)
' + engineering Z) T ・auto・07). here,(
Ei) Jx and Ay can be calculated since the first and second rows of T have a total of ~l-1~i. 1z is not needed here, and when the vector P in the base coordinate system is expressed in the camera coordinate system, it becomes (Ei)TP, and from the above equation, (Ei)T
P=Si+(Ei)TLi (i=1.2)...There will be 0 groups of fists and fights. Here, if , then the above 0 group formula is UP=M+V ---6-(1
It becomes 9. Each element of U and ■ is obtained by the calculation formula shown above, and M is a position calculation value.
この(19j式は3つの未知パラメータに対し4つの式
が8シ、冗長となるが、2次元位置の計測誤差と途中の
計算誤差を考慮して、II M+V−UP 11を最小
とするように3次元座標値Pを定めることとし、次式で
その3次元座標値Pを計算する。This (Formula 19j) is redundant as it has 4 equations for 3 unknown parameters, but taking into consideration the measurement error of the two-dimensional position and the calculation error during the process, we tried to minimize II M+V-UP 11. A three-dimensional coordinate value P is determined, and the three-dimensional coordinate value P is calculated using the following equation.
P=(UTU)−10T(M+V)
ただし、上記II * IIはベクトル*の要素を2乗
したその総和の平方根を意味する。したがって、座標変
換データW1と座標変換データW2はそれぞれ次式で記
述される。P=(UTU)-10T(M+V) However, the above II*II means the square root of the sum of squares of the elements of vector *. Therefore, the coordinate transformation data W1 and the coordinate transformation data W2 are each described by the following equations.
W1=[UTU]−1U”
W2”CU U) U V
これによって、空間にある光点の3次元計測値は第1お
よび第2のカメラ1,2による2次元位置計測値から上
記(1)式により算出することができることになる。そ
して、較正モードでは以上に示した計算を主演算部7で
行ない、座標変換データを校正し、その値は記憶要素1
4に格納される。W1=[UTU]-1U” W2”CU U) U V As a result, the three-dimensional measured value of the light point in space can be calculated from the two-dimensional position measured values by the first and second cameras 1 and 2 as described in (1) above. This means that it can be calculated using the formula. In the calibration mode, the calculation shown above is performed in the main calculation unit 7 to calibrate the coordinate transformation data, and the value is stored in the storage element 1.
It is stored in 4.
以上のように、校正モードと計測モードが選択でき、3
次元光位置計測に先立ち、座憚変換データを校正するこ
とによp高精度な3次元位置計測が実現できる。As mentioned above, calibration mode and measurement mode can be selected, and 3
Prior to dimensional optical position measurement, highly accurate three-dimensional position measurement can be realized by calibrating the conversion data.
以上の説明から明らかなように、本発明によれば、座標
変換データの自動校正の機能を付与することによって、
計測装置の設置場所や2組の2次元位置検出器の位置関
係を計測条件に適するようf廻することが容易となり、
また、2組の2次元位置検出器を同定する大きな台座を
必要としないので、実用上の効果は極めて大である。ま
た、計測する毎に自動校正を行なうことによって、誤差
が累積されないので高精度な3次元位置計測ができると
いう点において極めて有効である。As is clear from the above description, according to the present invention, by providing the function of automatic calibration of coordinate transformation data,
It becomes easy to change the installation location of the measuring device and the positional relationship between the two sets of two-dimensional position detectors to suit the measurement conditions.
Further, since a large pedestal for identifying two sets of two-dimensional position detectors is not required, the practical effect is extremely large. Further, by performing automatic calibration every time a measurement is performed, errors are not accumulated, which is extremely effective in that highly accurate three-dimensional position measurement can be performed.
第1図は本発明による3次元位置計測方式の一実施例を
示すブロック図、第2図は第1図に示す実施例の動作説
明に供する座標系の説明図である。
1.2・龜・・カメラ、5,6−・・・2次元位置計測
部、7・・拳・主演算部、8・・e・モード選択スイッ
チ、9・ψ・・3次元座標表示部、10・・−・乗算回
路部、11・・−畳基単座標器、12寺・・・発光ダイ
オード(LED )、13・・・・LED駆動回路部、
14@・・・記憶要素。
第1図
第2図
V。FIG. 1 is a block diagram showing an embodiment of the three-dimensional position measuring method according to the present invention, and FIG. 2 is an explanatory diagram of a coordinate system used to explain the operation of the embodiment shown in FIG. 1.2・Camera, 5,6−・2D position measurement unit, 7・Fist・Main calculation unit, 8・e・Mode selection switch, 9・ψ・3D coordinate display unit , 10... Multiplication circuit unit, 11... Tatami base single coordinate unit, 12... Light emitting diode (LED), 13... LED drive circuit unit,
14@...Memory element. Figure 1 Figure 2 Figure V.
Claims (1)
測定する3次元位置計測において、基座標系での座標位
置が既知な3つの光点の2次元位置計測値から座標変換
データを校正し、この校正した座標変換データを用いて
前記光点の空間位置を計測するようにしたことを特徴と
する3次元位置計測方式。In three-dimensional position measurement that measures the spatial position of a light spot by combining two sets of two-dimensional optical position detectors, coordinate conversion data is obtained from the two-dimensional position measurement values of three light spots whose coordinate positions in the base coordinate system are known. A three-dimensional position measuring method characterized in that the spatial position of the light spot is measured using the calibrated coordinate transformation data.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9175282A JPS58208606A (en) | 1982-05-29 | 1982-05-29 | Three dimensional position measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9175282A JPS58208606A (en) | 1982-05-29 | 1982-05-29 | Three dimensional position measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58208606A true JPS58208606A (en) | 1983-12-05 |
Family
ID=14035264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9175282A Pending JPS58208606A (en) | 1982-05-29 | 1982-05-29 | Three dimensional position measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58208606A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60183509A (en) * | 1984-03-02 | 1985-09-19 | Hitachi Ltd | Visual sense device |
JPS62291505A (en) * | 1986-06-10 | 1987-12-18 | Sumitomo Metal Ind Ltd | Measurement of inside surface shape of container |
JPS63128203A (en) * | 1986-11-18 | 1988-05-31 | Nippon Steel Corp | Optical position measuring method for object |
JPH01297501A (en) * | 1988-05-26 | 1989-11-30 | Central Jidosha Kk | Measuring method and device lof light receiving for through-hole, for three dimensional position of single or plural through-hole |
JPH0480607A (en) * | 1990-07-23 | 1992-03-13 | Kajima Corp | Noncontact measuring method and device for displacement of swinging object |
JPH05314243A (en) * | 1992-04-03 | 1993-11-26 | Sony Corp | Three-dimensional shape restoring method |
EP0829701A1 (en) * | 1993-05-24 | 1998-03-18 | Metronor As | Method and system for geometry measurement |
US6603865B1 (en) | 2000-01-27 | 2003-08-05 | President Of Nagoya University | System for optically performing position detection and data communication |
JP2010175536A (en) * | 2009-01-16 | 2010-08-12 | Nec (China) Co Ltd | Method, device and system for calibrating positioning device |
-
1982
- 1982-05-29 JP JP9175282A patent/JPS58208606A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60183509A (en) * | 1984-03-02 | 1985-09-19 | Hitachi Ltd | Visual sense device |
JPS62291505A (en) * | 1986-06-10 | 1987-12-18 | Sumitomo Metal Ind Ltd | Measurement of inside surface shape of container |
JPS63128203A (en) * | 1986-11-18 | 1988-05-31 | Nippon Steel Corp | Optical position measuring method for object |
JPH01297501A (en) * | 1988-05-26 | 1989-11-30 | Central Jidosha Kk | Measuring method and device lof light receiving for through-hole, for three dimensional position of single or plural through-hole |
JPH0480607A (en) * | 1990-07-23 | 1992-03-13 | Kajima Corp | Noncontact measuring method and device for displacement of swinging object |
JPH05314243A (en) * | 1992-04-03 | 1993-11-26 | Sony Corp | Three-dimensional shape restoring method |
EP0829701A1 (en) * | 1993-05-24 | 1998-03-18 | Metronor As | Method and system for geometry measurement |
US6603865B1 (en) | 2000-01-27 | 2003-08-05 | President Of Nagoya University | System for optically performing position detection and data communication |
JP2010175536A (en) * | 2009-01-16 | 2010-08-12 | Nec (China) Co Ltd | Method, device and system for calibrating positioning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Renaud et al. | Simplifying the kinematic calibration of parallel mechanisms using vision-based metrology | |
JP5599524B2 (en) | Automatic measurement of dimensional data by laser tracker | |
US9355453B2 (en) | Three-dimensional measurement apparatus, model generation apparatus, processing method thereof, and non-transitory computer-readable storage medium | |
US10310054B2 (en) | Relative object localization process for local positioning system | |
CN109579766A (en) | A kind of product shape automatic testing method and system | |
US10704891B2 (en) | Method and apparatus for determining the 3D coordinates of an object | |
US11554506B2 (en) | Device and method for measuring repeated positioning precision of robotic arm | |
EP3974767B1 (en) | Calibration method for computer vision system and three-dimensional reference object for use in same | |
WO2018043524A1 (en) | Robot system, robot system control device, and robot system control method | |
JPS58208606A (en) | Three dimensional position measuring method | |
JPH09311021A (en) | Method for measuring three-dimensional shape using light wave range finder | |
WO2018097784A1 (en) | Measurement system and method of an industrial robot | |
Yamauchi et al. | Calibration of a structured light system by observing planar object from unknown viewpoints | |
TW200841981A (en) | Laser array measurement system for testing three dimensional positioning performance, measuring three dimensional orbit and straightness of arbitrary axis | |
US20140368664A1 (en) | System and method for measuring tracker system accuracy | |
Ye et al. | A calibration trilogy of monocular-vision-based aircraft boresight system | |
JP7116108B2 (en) | Robot arm positioning accuracy measurement system | |
Skalski et al. | Metrological analysis of microsoft kinect in the context of object localization | |
Nieves et al. | Development of a position sensitive device and control method for automated robot calibration | |
JP4472432B2 (en) | Coordinate transformation coefficient acquisition method, coordinate transformation coefficient acquisition device, and computer program | |
Yang et al. | Beam orientation of EAST visible optical diagnostic using a robot-camera system | |
TWI745205B (en) | Device and method for measuring repeated positioning accuracy of mechanical arm | |
Rodriguez-Miranda et al. | Robot end effector positioning approach based on single-image 2D reconstruction | |
US20240123611A1 (en) | Robot simulation device | |
JPS6217604A (en) | Calibration of auxiliary light for 3-dimensional measurement |