JPS5820820B2 - Vehicle brake control device - Google Patents

Vehicle brake control device

Info

Publication number
JPS5820820B2
JPS5820820B2 JP52118422A JP11842277A JPS5820820B2 JP S5820820 B2 JPS5820820 B2 JP S5820820B2 JP 52118422 A JP52118422 A JP 52118422A JP 11842277 A JP11842277 A JP 11842277A JP S5820820 B2 JPS5820820 B2 JP S5820820B2
Authority
JP
Japan
Prior art keywords
load
rod
shaped spring
vehicle
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52118422A
Other languages
Japanese (ja)
Other versions
JPS54171A (en
Inventor
野村佳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP52118422A priority Critical patent/JPS5820820B2/en
Publication of JPS54171A publication Critical patent/JPS54171A/en
Publication of JPS5820820B2 publication Critical patent/JPS5820820B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hydraulic Control Valves For Brake Systems (AREA)

Description

【発明の詳細な説明】 本発明は主として自動車、特にトラック等において、前
輪及び後輪に対する制動力を積載荷重に応じて可及的に
良好な状態に配分する車両用ブレーキ制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brake control device for a vehicle, mainly for automobiles, particularly trucks, etc., which distributes braking force to front wheels and rear wheels as best as possible according to the load on the vehicle.

一般に自動車の制動に際して、前輪だけ7%0ツク(車
輪が回転せずに路面上を滑る囚態)すると、旋回に際し
て車両が接線力向に流れ、また後輪だけがロックすると
不規則な回頭旋回を起して、共に操向不能に陥りきわめ
て危険である。
Generally, when braking a car, if only the front wheels are locked by 7% (the wheels slide on the road without rotating), the vehicle will flow in the direction of the tangential force when turning, and if only the rear wheels are locked, the car will turn irregularly. This is extremely dangerous as it may cause the vehicle to become inoperable.

すなわち前輪及び後輪に対する制動力の配分は常に4輪
が同時にロックする状態に近づくように行なうことが理
想である。
That is, it is ideal that the braking force be distributed to the front wheels and the rear wheels so that all four wheels are always locked at the same time.

しかし、自動車においては通常、前・後輪に加わる荷重
の配分比が種々の条件で変動するので、常に4輪を同時
にロックするように制動力を設定することは一般にきわ
めて困難であった。
However, in an automobile, the distribution ratio of the load applied to the front and rear wheels usually varies depending on various conditions, so it is generally extremely difficult to set the braking force so that all four wheels are always locked at the same time.

特にトラックにおいては、空車時と積載時とで荷重の配
分比が極端に変動するので、制動力の配分を予め積載状
態に適合させると空車時に早期後輪ロックを生じ、空車
因態に適合させると早期前輪ランク及び制動力不足とな
って不都合である。
In particular, in trucks, the load distribution ratio varies dramatically between when the vehicle is empty and when it is loaded, so if the distribution of braking force is adjusted in advance to the loaded condition, early rear wheel lock occurs when the truck is empty, and it is adapted to the condition when the truck is empty. This is inconvenient because the front wheels rank early and the braking force is insufficient.

従来、荷重変動の少ない乗用車においては、危険度の高
い後輪ロックを防止するためにリヤホイールシリンダへ
の油圧が予め定めた値(これを油圧制御点と言う)に達
すると、以後その油圧の上昇率を減少させる比較的単純
な圧力制御弁が用いられているが、荷重変動の極端なト
ラックにおいては、前記の圧力制御弁の油圧制御点をさ
らに後輪が受ける荷重に応じて変化させる機構の荷重応
答式油圧制御装置(以下、Load Sensing
Pr。
Conventionally, in passenger cars with small load fluctuations, when the oil pressure to the rear wheel cylinder reaches a predetermined value (this is called the oil pressure control point) in order to prevent the highly dangerous rear wheel from locking, the oil pressure is stopped. A relatively simple pressure control valve is used to reduce the rate of climb, but on trucks with extreme load fluctuations a mechanism is used to further vary the hydraulic control point of the pressure control valve in response to the load on the rear wheels. load-responsive hydraulic control device (hereinafter referred to as Load Sensing)
Pr.

Portioningを略してLSP制御装置と言い、
その弁をLSP弁と称する。
Portioning is abbreviated as LSP control device.
This valve is called an LSP valve.

)を使用している。しかし、このLSP制御装置は車両
荷重を直接に利用するのでなく、その荷重によってリヤ
アクスルとフレームとの間に生ずる相対変位を直線型特
性を有する単一の棒犬ばねの一端に作用させ、この棒犬
ばねを介してLSP弁に前記の相対変位に応する作用力
を伝達させて後輪制動の油圧制御点を修正するものであ
るので、その制御作用がとかく実大に一致せず効果が十
分でない欠点があった。
) is used. However, this LSP control device does not directly utilize the vehicle load, but rather applies the relative displacement that occurs between the rear axle and the frame due to that load to one end of a single rod dog spring with linear characteristics. Since the actuation force corresponding to the above-mentioned relative displacement is transmitted to the LSP valve via the dog spring to correct the hydraulic control point for rear wheel braking, the control action does not match the actual size and the effect is sufficient. There was a drawback that it was not.

本発明は上記した従来の欠点を解消し、積載荷重の変化
に対応して常に4輪同時ロックに近い良好な制動力配分
を期待しうる車両用ブレーキ制御装置を提供することを
目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide a vehicle brake control device that can always be expected to achieve good braking force distribution close to simultaneous locking of all four wheels in response to changes in payload.

以下に本発明の1実施例を図面によって説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は車両の後輪に近いフレーム、2は
フレーム1に固定されたLSP弁(細部後述)、38は
LSPS2O2突出したピストンピンである。
In FIG. 1, 1 is a frame near the rear wheel of the vehicle, 2 is an LSP valve fixed to the frame 1 (details will be described later), and 38 is a piston pin protruding from LSPS2O2.

一方、3はリヤアクスルハウジングであって、後車輪1
0によって路面に支持されるとともに、重ね板はね等よ
りなるリヤサスペンション(図示しない)を介してフレ
ーム1とは相対運動可能に構成されている。
On the other hand, 3 is a rear axle housing, and the rear wheel 1
0 on the road surface, and is configured to be movable relative to the frame 1 via a rear suspension (not shown) consisting of stacked plates and the like.

4はリヤアクスルハウジング3の一部に固定されたシャ
ックルブラケットで、その一端に剛性シャックル5を枢
着している。
A shackle bracket 4 is fixed to a part of the rear axle housing 3, and a rigid shackle 5 is pivotally attached to one end of the shackle bracket.

6は少し湾曲した枠抜の荷重応答用はねてあって、その
一端はフレーム1に固設したブラケット7にピン8で回
動自在に枢着され、その他端は剛性シャックル5の自由
端部に連節している。
Reference numeral 6 denotes a slightly curved frame cutout for load response, one end of which is rotatably pivoted to a bracket 7 fixed to the frame 1 with a pin 8, and the other end is connected to the free end of the rigid shackle 5. It is connected to

ここで参考までに述べると、上記の構成において、荷重
応答用ばね6がブラケット7における枢支点・□8に近
い箇所でLSPS2O2ストンピン38に直接、接触し
ていたのが従来の油圧制御機構であって、リヤアクスル
ハウジング3とフレーム1との間に、積載重量の変化に
よって主として上下刃向に生ずる相対変位Hをはね6の
一端に作用させ、シその直線型はね特性によって変位に
応する作用力をLSPS2O2達していたのである。
For reference, in the above configuration, in the conventional hydraulic control mechanism, the load response spring 6 was in direct contact with the LSPS2O2 stomp pin 38 at a location near the pivot point □8 on the bracket 7. Then, a relative displacement H that occurs between the rear axle housing 3 and the frame 1 mainly in the vertical blade direction due to a change in the loaded weight is applied to one end of the spring 6, and an action corresponding to the displacement is caused by the linear spring characteristic of the spring 6. The power reached LSPS2O2.

ここに説明する本発明の実施例にのいては、LSPS2
O2用を伝える伝達部材のばね特性を非直線型に改良す
べく、前記のばね6とピストンピン38との・間に補助
部材9を介在させている。
In the embodiment of the invention described herein, LSPS2
In order to improve the spring characteristics of the transmission member for transmitting O2 to a non-linear type, an auxiliary member 9 is interposed between the spring 6 and the piston pin 38.

すなわち、この補助部材9はその背部9a内面で棒犬の
ばね6のほぼ図示左半部に対して逐次係合可能なように
断面U字形のつの犬をなし、図示左端の基部においてブ
ラケット7に前記のピン8によってばね6・とともに回
動自在に取りつけられ、その背部9a外面の一部でピス
トンピン38に接している。
That is, this auxiliary member 9 has a U-shaped cross section so that the inner surface of its back portion 9a can be successively engaged with substantially the left half of the stick spring 6 in the drawing, and the auxiliary member 9 forms a dog with a U-shaped cross section so that it can be successively engaged with the substantially left half of the stick spring 6 in the drawing, and the base of the left end in the drawing is attached to the bracket 7. It is rotatably attached together with the spring 6 by the aforementioned pin 8, and a part of the outer surface of its back portion 9a is in contact with the piston pin 38.

なお補助部材9がばね6のたわみに伴ってはね6に逐次
係合すべき背部9aの湾曲形状は積載荷重の変化に伴っ
て生ずる前記の相対変位によってばね・6が単独でたわ
む場合に比して、ピストンピン38に及ぼす押力を正比
例型でなく、軽荷重時のみならず荷重の変化する全領域
において適度に制御しうるように、ばね6が単独でたわ
む場合の曲率と異なる曲率に形成されている。
Note that the curved shape of the back portion 9a of the auxiliary member 9, which should be successively engaged with the spring 6 as the spring 6 deflects, is different from that in the case where the spring 6 is deflected alone due to the above-mentioned relative displacement caused by a change in the load. In order to control the pushing force exerted on the piston pin 38 not in a directly proportional manner, but in an appropriate manner not only during light loads but also in all ranges where the load changes, the curvature is different from the curvature when the spring 6 deflects alone. It is formed.

なお、この補助部材9の形状は車両の諸元によって設定
されるものであるから、本実施例の図示形状に限定され
るものではない。
Note that the shape of this auxiliary member 9 is determined depending on the specifications of the vehicle, so it is not limited to the shape illustrated in this embodiment.

次に前記のLSPS2O2わち、荷重応答式油圧制御弁
の構造と作用とを説明する。
Next, the structure and operation of the aforementioned LSPS2O2, that is, the load responsive hydraulic control valve, will be explained.

第2図において、21はLSPS2O2筒箱形のケーシ
ングで、その内部は隔板22によって上室23と主室2
4とに分れている。
In FIG. 2, 21 is a LSPS2O2 cylindrical box-shaped casing, the interior of which is separated by a partition plate 22 between an upper chamber 23 and a main chamber 2.
It is divided into 4 parts.

25は隔板22中央の弁孔27にその弁脚26を挿通し
た弁体であって、上側をコイルはね28に押圧されて弁
の閉塞可能である。
Reference numeral 25 denotes a valve body whose valve leg 26 is inserted into a valve hole 27 at the center of the partition plate 22, and the upper side thereof is pressed by a coil spring 28 to close the valve.

29は主室24の上部内周面に嵌合する大径ピストンで
、−力、30は小径ピストンで、ケーシング21の底板
部21aより主室24内に突出する同心の円筒因壁体3
3の内周面に嵌合している。
29 is a large-diameter piston that fits into the upper inner circumferential surface of the main chamber 24, and 30 is a small-diameter piston, which is a concentric cylindrical wall body 3 that protrudes into the main chamber 24 from the bottom plate portion 21a of the casing 21.
It fits into the inner peripheral surface of No.3.

31は大径ピストン29と小径ピストン30とをつなぐ
中間のステムで、これら3者は一体となって主室24内
を上下可能である(以下、この3者を合せてピストン体
32と称する。
Reference numeral 31 denotes an intermediate stem connecting the large-diameter piston 29 and the small-diameter piston 30, and these three members can move up and down in the main chamber 24 as a unit (hereinafter, these three members are collectively referred to as the piston body 32).

)いま主室24の内、大径ピストン29より上側の空間
部分を中室24a、同じく下側の空間部分を下室24b
と称すると、34は上室23と下室24bとを連通ずる
流路、35は中室24aにおける油の出入路でリヤホイ
ールシリンダ(図示しない)に連結され、36は下室2
4bにおける油の出入路でマスクシリンダ(図示しない
)に連結されている。
) Now, in the main chamber 24, the space above the large diameter piston 29 is called the middle chamber 24a, and the space below the large diameter piston 29 is called the lower chamber 24b.
In other words, 34 is a flow path that communicates the upper chamber 23 and the lower chamber 24b, 35 is an oil inlet/output path in the middle chamber 24a and is connected to a rear wheel cylinder (not shown), and 36 is a flow path that communicates the upper chamber 23 and the lower chamber 24b.
It is connected to a mask cylinder (not shown) through an oil inlet/outlet passage at 4b.

37は大径ピストン29とケーシング底板部21aとの
間に装着されるコイルはねて、ピストン体32を図示上
刃に押動するように作用するが、大径ピストン29をし
て油の出入路35を閉鎖させることはなく、また大径ピ
ストン29は最上位に近い位置に達すると、弁脚26に
接して弁体25を押し上げ、弁25を開放する作用をす
る。
A coil 37 is installed between the large-diameter piston 29 and the casing bottom plate 21a and acts to push the piston body 32 toward the upper blade shown in the figure. The passage 35 is not closed, and when the large diameter piston 29 reaches a position close to the uppermost position, it contacts the valve foot 26 and pushes up the valve body 25, thereby opening the valve 25.

38は前述のピストンであって、小径ピストン30の下
面に固定され、ケーシング21の底板部21aを貫通し
て図示下刃に突出し、前記の補助部材9を介してばね6
と接触状態を保つ。
38 is the aforementioned piston, which is fixed to the lower surface of the small-diameter piston 30, penetrates the bottom plate portion 21a of the casing 21, projects to the lower blade shown in the figure, and is connected to the spring 6 via the auxiliary member 9.
maintain contact with.

いま、このLSPS2O2用を分り易くするため、制動
力の理想配分線について述べる。
Now, in order to make this LSPS2O2 application easier to understand, the ideal distribution line of braking force will be described.

マスクシリンダから前輪及び後輪のブレーキシリンダに
至る油圧管路に油圧制御弁が全く配設されていない場合
には、前輪制動力(又は同油圧)Ffと後輪制動力(又
は同油圧)Frとは等しく、その関係は第3図にOD線
で示したように通常、勾配45゜の直線で表わされる。
If no hydraulic control valve is installed in the hydraulic conduit from the mask cylinder to the front and rear brake cylinders, the front wheel braking force (or the same oil pressure) Ff and the rear wheel braking force (or the same oil pressure) Fr is equal, and the relationship is usually expressed by a straight line with a slope of 45°, as shown by the OD line in FIG.

ところが実際には、車両の走行中にブレーキをかけると
、積荷を含む車両の全重量の重心が前方に移動したと同
じような作用を生じ、減速時の前輪荷重は全重量及び減
速度に比例する荷重移動分だけ静止時より増加し、逆に
後輪荷重は同じ荷重移動分だけ減少する。
However, in reality, applying the brakes while the vehicle is moving produces an effect similar to that of moving the center of gravity of the vehicle, including its cargo, forward, and the front wheel load during deceleration is proportional to the total weight and deceleration. The rear wheel load increases by the same amount of load movement compared to when it is at rest, and conversely, the rear wheel load decreases by the same amount of load movement.

このような事象と4輪同時ロックを前提として、前・後
輪における制動力理想配分線すなわち4輪同時ロック曲
線を第3図に記入すると、例えば空車時には曲線a、定
積時には曲線b、中間量の積載時には曲線c (−fl
J )のようになることが知られている。
If we draw the ideal braking force distribution line for the front and rear wheels, that is, the four-wheel simultaneous lock curve, in Figure 3, assuming such an event and simultaneous locking of all four wheels, for example, when the car is empty, curve a, when the load is constant, curve b, and in the middle. When loading the amount, the curve c (-fl
J) is known to occur.

すなわち、前記のOD直線による制動力の配分では実状
に適合せず、少くともこの直線をそれぞれ図示AE 、
BF 、CG線のように屈折して理想配分線a、b、c
に近づけることが要求される。
In other words, the braking force distribution according to the above-mentioned OD straight line does not suit the actual situation, and at least this straight line is
BF, refracted like CG line to ideal distribution lines a, b, c
required to be close to.

要するにこの作用を果たすものがLSP弁を含む油圧制
御装置である。
In short, a hydraulic control device including an LSP valve performs this function.

引き続いて、図によって前記実施例の作用とその効果を
説明する。
Subsequently, the operation and effects of the embodiment will be explained with reference to figures.

まず、第2図に示したLSP弁2において、大径ピスト
ン29、ステム31及び小径ピストン30の断面積をそ
れぞれSo、S2゜S3とし、コイルはね37の弾性力
をF2、ピストンピン38に外部のはね6等から作用す
る押力をFlとする。
First, in the LSP valve 2 shown in FIG. 2, the cross-sectional areas of the large-diameter piston 29, stem 31, and small-diameter piston 30 are respectively set as So and S2°S3, and the elastic force of the coil spring 37 is applied to F2 and the piston pin 38. Let Fl be the pushing force acting from the external spring 6 or the like.

ここで空車時にはフレーム1とリヤアクスルハウジング
3との間に上下刃向の変位なく、Fl−0と仮定すれば
、このLSP弁2はそのケーシング21内の油圧がある
設定値より低いときには、弁体25が開放位置にある。
Here, if it is assumed that there is no vertical displacement between the frame 1 and the rear axle housing 3 when the vehicle is empty, and that Fl-0, then this LSP valve 2 will act as a valve body when the oil pressure in its casing 21 is lower than a certain set value. 25 is in the open position.

この因態でブレーキペダルを踏み始めると、マスクシリ
ンダの油圧Pmは下室24bから流路34を通って上室
23に伝わり、上室23から中室24bを経て、そのま
まりヤホイールシリンダに伝わる。
When the brake pedal is started to be depressed under this condition, the hydraulic pressure Pm of the mask cylinder is transmitted from the lower chamber 24b through the flow path 34 to the upper chamber 23, and from the upper chamber 23 via the middle chamber 24b, it is directly transmitted to the wheel cylinder. .

この際、弁体25を開放状態に維持するにはピストン体
32に働く押し上げ力(下式左辺)が押下げ力(下式右
辺)より大きいか等しいことから、次式が成立する。
At this time, in order to maintain the valve body 25 in the open state, the push-up force acting on the piston body 32 (the left side of the equation below) is greater than or equal to the push-down force (the right-hand side of the equation below), so the following equation holds true.

pm (St S 2 )+ F 2≧Pm S 1
+ Pm (S、−Sρこれを整理して、 すなわち空車犬態のとき、式(1)が成立する油圧Pm
の範囲で弁体25は開いており、マスクシリンダの油圧
Pmはリヤホイールシリンダにそのまま作用する。
pm (St S 2 ) + F 2 ≧ Pm S 1
+ Pm (S, -Sρ) Putting this in order, in other words, when the car is empty, the oil pressure Pm for which formula (1) holds true is
The valve body 25 is open in the range of , and the oil pressure Pm of the mask cylinder directly acts on the rear wheel cylinder.

ブレーキペダルがさらに強く踏まれて、油圧Pmが急速
に上昇して、 の因態に達すると、ピストン体32は下方へ動き、弁体
25がコイルばね28に押されて弁路27を閉じ、次の
関係式が成立する。
When the brake pedal is depressed even more strongly and the oil pressure Pm rapidly rises to reach the condition described below, the piston body 32 moves downward, the valve body 25 is pushed by the coil spring 28, and the valve passage 27 is closed. The following relational expression holds true.

ここにPwは中室24aよりリヤホイールシリンダに通
ずる油圧である。
Here, Pw is the hydraulic pressure that communicates from the middle chamber 24a to the rear wheel cylinder.

PwS1+Pm(S3−82)=Pm(SI S2)
+F2これを整理して 微分して すなわちマスクシリンダの油圧Pmが空車状態に対して
設定した式(2)を満足する値に達して弁路21が閉じ
ると、それ以後は式(4)が示すように、リヤホイール
シリンダの油圧Pwはマスクシリンダの油圧Pm−これ
はフロントホイールヅリンダの油圧に等しい。
PwS1+Pm(S3-82)=Pm(SI S2)
+F2 By rearranging and differentiating this, when the oil pressure Pm of the mask cylinder reaches a value that satisfies the equation (2) set for the empty vehicle state and the valve passage 21 is closed, from then on, equation (4) is shown. Thus, the rear wheel cylinder oil pressure Pw is equal to the mask cylinder oil pressure Pm - which is equal to the front wheel cylinder oil pressure.

−より圓い値に制御され、第3図において空車状態に対
する油圧配分線1−S は設定された油圧制御点Aから 3を勾配と一田一 するAE線のように油清する。
In FIG. 3, the oil pressure distribution line 1-S for the empty car condition distributes the oil like the AE line that connects the set oil pressure control points A to 3 with the slope.

AE線はLSPのない場合のAD線に比べて、はるかに
理想配分線aに近いものである。
The AE line is much closer to the ideal distribution line a than the AD line without LSP.

次に積載囚態のときには、上記の関係式に外部のばね6
等からピストン38に伝わる押力F1が加わり、弁体2
5が閉じる油圧制御点の前後における条件式は空車時の
式(1)及び(2)に対して次のようになる。
Next, when in a loaded state, the external spring 6 is added to the above relational expression.
Pushing force F1 transmitted to the piston 38 from etc. is applied, and the valve body 2
The conditional expressions before and after the hydraulic control point where 5 closes are as follows for equations (1) and (2) when the vehicle is empty.

弁閉塞前 弁閉塞後 すなわち、油圧制御点(どおける油圧は積載重量の増加
に伴う相対変位に応じて、リヤアクスルハウジング3よ
りばね6等を介してピストンピン38に伝えられる押力
F1の増加に従って大きくなり、第3図においては油圧
配分線の屈折点がAD線上を上昇する。
Before the valve is closed After the valve is closed, that is, the hydraulic pressure at the hydraulic control point (at the hydraulic control point) changes according to the relative displacement due to the increase in the loaded weight, and according to the increase in the pushing force F1 transmitted from the rear axle housing 3 to the piston pin 38 via the spring 6 etc. In FIG. 3, the bending point of the hydraulic pressure distribution line rises above the AD line.

式(2)′が成立する油圧制御点以後の関係式にも押力
F1の項が加わり、次の式(3)′となる。
The term of the pushing force F1 is also added to the relational expression after the hydraulic control point where the equation (2)' holds true, resulting in the following equation (3)'.

微分して ここで、式(4)と式(4)′と−を比較すれば、油圧
制御点以後の油圧配分比Pwは積載時も空車時と同m じであるから、図において屈折後の配分線の勾配は変化
せず、従って定積状態に対する油圧配分線は式(1)′
の等式が満足するB点よりAE線に平行してBF線のよ
うに屈折し、理想配分線すに近い状態となる。
If we differentiate and compare Equation (4) and Equation (4)' and -, we can see that the hydraulic pressure distribution ratio Pw after the hydraulic pressure control point is the same when loaded as when empty. The slope of the distribution line does not change, so the hydraulic pressure distribution line for the constant volume state is expressed by equation (1)'
From point B, where the equation is satisfied, it is refracted parallel to the AE line like the BF line, and the state is close to the ideal distribution line.

すなわち、空車及び定積囚態に対する屈折点A及びBの
値は車両の諸元に基づいて両極値として設定できるが、
変化する中間量の積載人態に対しては、従来の単一ばね
6では中間の屈折点の値が一義的に決まって補整し得な
いので、4輪同時ロックの理想配分線に最適に近似する
とは限らない。
In other words, the values of the inflection points A and B for an empty vehicle and a constant volume prison can be set as extreme values based on the specifications of the vehicle;
For loading conditions with intermediate loads that change, the value of the intermediate bending point cannot be uniquely determined and compensated for with the conventional single spring 6, so it is optimally approximated to the ideal distribution line for simultaneous locking of four wheels. Not necessarily.

これに対して、本発明の実施例においては、積載重量の
変化によって、ばね6の図示右端連節部6aがフレーム
1に対し、リヤアクスルハウジング3とともに相対変化
し、ばね6が図において上刃にたわむと、ばね6の図示
左方の部分が補助部材9の背部9a内面に逐次なじんで
行き、両者係合部分の右端が図中、右へ移動するので、
ピストンピン38の受ける押力F1はリヤアクスルハウ
ジング3の前記の相対変位に正比例して変化せず、この
補助部材9のばね6に対する湾曲形状を4輪同時に17
9曲線の変化の様子を考慮して適切に定めることによっ
て、中間量の積載犬態に対して・も第3図において理想
配分線Cに最適に近い屈折点Cを取るようにすることが
できる。
On the other hand, in the embodiment of the present invention, the right end joint portion 6a of the spring 6 in the drawing changes relative to the frame 1 together with the rear axle housing 3 due to a change in the loaded weight, and the spring 6 moves to the upper blade in the drawing. When the spring 6 is deflected, the left part of the spring 6 in the figure gradually adapts to the inner surface of the back part 9a of the auxiliary member 9, and the right end of the engaging part of both moves to the right in the figure.
The pushing force F1 received by the piston pin 38 does not change in direct proportion to the above-mentioned relative displacement of the rear axle housing 3, and the curved shape of the auxiliary member 9 relative to the spring 6 is changed to 17 at the same time on all four wheels.
9. By appropriately determining the change in the curve, it is possible to take the inflection point C that is optimally close to the ideal distribution line C in Fig. 3 even for an intermediate amount of loaded dog. .

すなわち、補助部材9を介在させることによって、相対
変位による作用をLSPS2O2える伝達部材のはね特
性を適性な曲線型に改良すると、LSPS2O2ストン
ピン38に及ぼす押力F1は可及的に理想に近い犬態で
増加し、この相対変位量Hに対する屈折点油圧Pの関係
は第4図における線iのように滑らかな曲線となり、し
かも補助部材9の背部の形状を変更することにより、種
々の場合に対応可能である。
That is, by intervening the auxiliary member 9, if the spring characteristics of the transmission member that absorbs the effect of relative displacement on the LSPS2O2 are improved to an appropriate curved shape, the pushing force F1 exerted on the LSPS2O2 stompin 38 will be as close to the ideal as possible. The relationship between the relative displacement amount H and the inflection point oil pressure P becomes a smooth curve like the line i in FIG. It is possible.

なお、第4図における直線iiは従来における単一ばね
による同関係線を示し、適合性に欠けるものである。
Incidentally, the straight line ii in FIG. 4 shows the same relation line based on a conventional single spring, which lacks compatibility.

要するに、本発明はトラック等の車両において、リヤホ
イールシリンダにかける制動油圧を後輪が受ける荷重に
相関して制御すべく車両のフレームに設けた油圧制御弁
(LSP弁)に対し、前記の荷重によって該フレームと
リヤアクスルハウジングとの間に生ずる相対変位に応す
る作用力を可及的に滑らかな曲線型特性をもって変動す
るように、非単−直線型のはね特性を有する補助部材付
きの荷重応答用伝達部材によって伝達するものであるか
ら、従来の油圧制御装置が2点における荷重条件下の油
圧制御点しか適正に定め得なかったのに比して、多くの
荷重条件下において可及的に適性な油圧制御点の設定を
なしうるので、車両の前輪及び後輪に対する制動力を減
速度による荷重移動分を含めた後輪荷重に応じて可及的
に良好な大態に配分することが可能で、これによって特
に荷重に変化の多いトラック等の車両における油圧制御
弁の作用を一段と効果的にするものである。
In short, the present invention provides a hydraulic control valve (LSP valve) provided in the frame of the vehicle to control the braking hydraulic pressure applied to the rear wheel cylinder in correlation with the load received by the rear wheels in a vehicle such as a truck. A load with an auxiliary member having a non-linear spring characteristic so that the acting force corresponding to the relative displacement occurring between the frame and the rear axle housing varies with a curved characteristic as smooth as possible. Since it is transmitted by a response transmission member, conventional hydraulic control devices could only properly determine hydraulic control points under load conditions at two points, but it is possible to determine hydraulic control points under many load conditions as much as possible under many load conditions. Since it is possible to set hydraulic control points suitable for This makes the operation of the hydraulic control valve even more effective especially in vehicles such as trucks where the load often changes.

さらに本発明のブレーキ制御装置は荷重−たわみ関係が
連続して曲線因に変化する流体サスペンションを備えた
車両にも特に効果的に適用することができる。
Furthermore, the brake control device of the present invention can be particularly effectively applied to vehicles equipped with a fluid suspension in which the load-deflection relationship changes continuously in a curvilinear manner.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図イは実施例の正面
図、同図口は同図イにおけるX−X断面図、第2図は油
圧制御弁の縦断説明図、第3図は前輪制動力と後輪制動
力の関係を示す説明線図、第4図はフレームに対するリ
ヤアクスルハウジングの相対変位と油圧制御点油圧の関
係を示す説明・線図である。 1・・・・・・フレーム、2・・・・・・油田制御弁(
LSP’)弁、3・・・・・・リヤアクスルハウジング
、6・・・・・・荷重応答用ばね、9・・・・・・補助
部材。
The drawings show an embodiment of the present invention, and FIG. 1A is a front view of the embodiment, the opening of the figure is a cross-sectional view taken along line X-X in FIG. 4 is an explanatory diagram showing the relationship between the front wheel braking force and the rear wheel braking force, and FIG. 4 is an explanatory diagram showing the relationship between the relative displacement of the rear axle housing with respect to the frame and the oil pressure at the hydraulic control point. 1... Frame, 2... Oil field control valve (
LSP') valve, 3...Rear axle housing, 6...Load response spring, 9...Auxiliary member.

Claims (1)

【特許請求の範囲】[Claims] 1 トラック等の車両におけるリヤホイ−ルシンダの制
御油圧を後輪が受ける荷重に相関して制御すべく設けた
油圧制御弁に対し、荷重応答用伝達部材として一端を車
両のフレーム等のばね上部材に枢着され他端をリャアク
スルノr’)ランク等のばね下部材に連結されたほぼ直
状の棒犬ばね部材を連係されたブレーキ制御装置におい
て、該棒状ばね部材の前記他端を剛性シャンクルを介し
てばね下部材に連節させるとともに、該棒状ばね部材の
前記一端の枢着部に同軸的に枢着させて該棒状ばね部材
の前記油圧制御弁側の表面にほぼ沿って延びる湾曲状補
助部材を設け、該補助部材と棒状ばね部材との接触部位
を後輪の受ける荷重の増加に伴う該棒状ばね部材の変形
に相関して該補助部材の自由端に向かって連続的に変化
するように構成したことを特徴とする車両用ブレーキ制
御装置。
1. For a hydraulic control valve that is installed to control the control hydraulic pressure of the rear wheel cinder in a vehicle such as a truck in relation to the load that the rear wheel receives, one end is connected to a sprung member such as the frame of the vehicle as a load response transmission member. In a brake control device that is connected to a substantially straight rod-shaped spring member that is pivotally mounted and whose other end is connected to an unsprung member such as a rear axle (r') rank, the other end of the rod-shaped spring member is connected to the rear axle no. a curved auxiliary member articulated to the unsprung member, coaxially pivoted to the pivot portion at the one end of the rod-shaped spring member, and extending substantially along the surface of the rod-shaped spring member on the hydraulic control valve side; and the contact area between the auxiliary member and the rod-shaped spring member is configured to continuously change toward the free end of the auxiliary member in correlation with the deformation of the rod-shaped spring member as the load applied to the rear wheel increases. A vehicle brake control device characterized by comprising:
JP52118422A 1977-09-30 1977-09-30 Vehicle brake control device Expired JPS5820820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52118422A JPS5820820B2 (en) 1977-09-30 1977-09-30 Vehicle brake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52118422A JPS5820820B2 (en) 1977-09-30 1977-09-30 Vehicle brake control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2074074A Division JPS50112669A (en) 1974-02-21 1974-02-21

Publications (2)

Publication Number Publication Date
JPS54171A JPS54171A (en) 1979-01-05
JPS5820820B2 true JPS5820820B2 (en) 1983-04-25

Family

ID=14736239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52118422A Expired JPS5820820B2 (en) 1977-09-30 1977-09-30 Vehicle brake control device

Country Status (1)

Country Link
JP (1) JPS5820820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100735A (en) * 2006-10-19 2008-05-01 Sanyo Electric Co Ltd Damping body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933453A (en) * 1972-07-28 1974-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933453A (en) * 1972-07-28 1974-03-27

Also Published As

Publication number Publication date
JPS54171A (en) 1979-01-05

Similar Documents

Publication Publication Date Title
US3233947A (en) Load responsive vehicle-brake regulator
US3802750A (en) Load-sensing and instruction-transmitting mechanism for cooperation with a hydraulic wheel brake system of a powered vehicle
US4284307A (en) Hydraulic pressure control valve assembly for automotive hydraulic brake system
US4212500A (en) Antiskid brake control arrangement for vehicle wheels
JPS5820820B2 (en) Vehicle brake control device
US3035870A (en) Ratio changing means for fluid actuated brakes
US3701616A (en) Braking force regulating assembly
US3768876A (en) Proportioning valve with load sensing blend back
US4325582A (en) Hydraulic pressure control valve assembly for automotive hydraulic brake system
US3989312A (en) Control valve assemblies for use in fluid pressure braking systems
US2846030A (en) Automatic brake applicator for trailers
JP2900187B2 (en) Motorcycle braking system
CA1085434A (en) Dual air-control brake and related brake systems
US4245868A (en) Control valve assembly
US4180295A (en) Brake proportioning means
US5141086A (en) Controller for rear brakes
JPH0411893Y2 (en)
US5916141A (en) Tandem master cylinder of brake system in an automobile
JP3307147B2 (en) Load sensing valve device
US4268092A (en) Hydraulic braking systems
JPS6171259A (en) Brake gear for car
JPS6122056Y2 (en)
JPH065280Y2 (en) Load-responsive braking hydraulic pressure control device
GB2080899A (en) Load responsive valve for regulating pressure in vehicle dual- circuit pneumatic brake system
JP2932003B2 (en) Motorcycle braking system