JPS5820707A - Production of fluorinated graphite - Google Patents

Production of fluorinated graphite

Info

Publication number
JPS5820707A
JPS5820707A JP56114850A JP11485081A JPS5820707A JP S5820707 A JPS5820707 A JP S5820707A JP 56114850 A JP56114850 A JP 56114850A JP 11485081 A JP11485081 A JP 11485081A JP S5820707 A JPS5820707 A JP S5820707A
Authority
JP
Japan
Prior art keywords
fluorine
graphite
temperature
fluorinated graphite
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56114850A
Other languages
Japanese (ja)
Other versions
JPS6041602B2 (en
Inventor
Yasushi Kida
喜田 康
Hisaharu Nakano
久治 中野
Shiro Moroi
師井 史郎
Akira Sakagami
阪上 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP56114850A priority Critical patent/JPS6041602B2/en
Publication of JPS5820707A publication Critical patent/JPS5820707A/en
Publication of JPS6041602B2 publication Critical patent/JPS6041602B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:A carbon material is treated with fluorine at a specific low temperature and the temperature is raised to a specific level to effect fluorination, thus producing fluorinated graphite at a lower temperature in a short time. CONSTITUTION:A carbon material such as natural graphite, synthetic graphite or petroleum coke is placed in a tightly closed vessel and a fluorine gas is introduced into the vessel, while the temperature of the material is kept at lower than 50 deg.C to effect treatment for about 0.5-24hr. Then, the temperature is raised up to higher than 200 deg.C to effect fluorination. Thus, high-purity fluorinated graphite expressed with a chemical formula of (CF)n or (C2F)n where the ratio of C to F is 1/1-2/1 is readily obtained at low temperature in high yield.

Description

【発明の詳細な説明】 フッ化黒鉛は近来新工業材料として脚光を浴び、例えば
高エネルギー−次電池の活物質として或いは固体潤滑剤
として、潤滑塗料、潤滑共析メッキなど、種々の分野に
活用され、その需要が急増し、量産化が希求されている
[Detailed description of the invention] Fluorinated graphite has recently attracted attention as a new industrial material, and is used in various fields such as, for example, as an active material in high-energy batteries, as a solid lubricant, in lubricating paints, and lubricating eutectoid plating. The demand for this product has increased rapidly, and mass production is desired.

しかしながら、フッ化黒鉛の製造温度は原料である炭素
材料により異るが200〜600℃と高く、反応時間も
5〜100時間という長時間が必要であり、かつフッ素
の腐食性にエリ装置材料も制約を受ける。従って、フッ
化黒鉛が、!ニジ低温で容易に製造できる方法を検討す
ることは経済的な面ニジ非常に重要である。
However, the manufacturing temperature of fluorinated graphite is as high as 200 to 600°C, depending on the carbon material used as the raw material, and the reaction time is as long as 5 to 100 hours.Furthermore, the corrosive nature of fluorine makes it difficult to use the materials used in the equipment. subject to restrictions. Therefore, fluorinated graphite! It is of great economic importance to consider a method that can be easily produced at low temperatures.

従来フッ化黒鉛を低温で、かつ高収率で生成する方法と
しては原料である炭素材料に工夫をしたものを用いるも
のや、他のガスを添加したフッ素ガスを用いるもの等が
多く提案されている。前者に属するものとしては、アン
モニアガス又u水蒸気で賦れた原料炭を用いたもの(特
開昭51−39597 )が挙げられるが、これらの賦
活処理を行なう条件が比較的高温であ、9(900℃以
上)、活性炭とするために高価である欠点をもつ。また
後者に属するものとしては、フッ素に酸素を混入させた
もの(特公昭49−29078)等があるが混入量の調
節が必要で、必要以上に混入すると急激な分解を起こす
ことがある。
Conventionally, many methods have been proposed for producing fluorinated graphite at low temperatures and in high yields, such as using modified carbon materials as raw materials or using fluorine gas added with other gases. There is. Examples of the former category include those using coking coal activated with ammonia gas or steam (Japanese Patent Application Laid-Open No. 51-39597), but the conditions for performing these activation treatments are relatively high temperatures, and 9 (900°C or higher), and has the disadvantage of being expensive because it is activated carbon. Among the latter, there is a method in which fluorine is mixed with oxygen (Japanese Patent Publication No. 49-29078), but the amount of mixing needs to be controlled, and if more than necessary is mixed, rapid decomposition may occur.

本発明者らは原料炭素材料を選ばず、いかなる炭素原料
でも簡単な処理で反応率をあげる方法について種々研究
を重ねた結果、原料炭素材料を予め50℃以下で前処理
することにより、容易に低温で高収率にてC:F=1:
1〜.2:1の組成をもつ化学式(CF)n又は(C2
F)nで表わされる高純度のフッ化黒鉛を製造できるこ
とを見い出し本発明を完成させた。
The inventors of the present invention have repeatedly conducted various studies on how to increase the reaction rate of any carbon material by simple treatment regardless of the raw material carbon material. C:F=1: at low temperature and high yield
1~. Chemical formula (CF)n or (C2
The present invention was completed by discovering that it is possible to produce high-purity fluorinated graphite represented by F)n.

本発明に用いられる炭素材料は、天然黒鉛2人造黒鉛1
石油コークスなど通常200℃以上でフッ化黒鉛を生成
する炭素材料に有効である。
The carbon material used in the present invention consists of two parts of natural graphite, one part of artificial graphite, and one part of artificial graphite.
It is effective for carbon materials that normally produce fluorinated graphite at temperatures above 200°C, such as petroleum coke.

本発明者らの研究によれば活性炭のような反応性の大き
い炭素材料は高温でフッ素と接触させると急激に反応し
、激しい分解が伴うために必然的に室温以下のマイルド
な反応条件でフッ素化しなければならないことが判明し
すでに日比誌(A 8p、1082〜1086.197
8 )に報告した。
According to research by the present inventors, highly reactive carbon materials such as activated carbon react rapidly when brought into contact with fluorine at high temperatures, resulting in severe decomposition. Hibishi (A 8p, 1082-1086.197)
8).

一方天然黒鉛9人造黒鉛9石油コークスなどほのためフ
ッ化黒鉛の製造は200℃以上で行なわれていた。しか
しながら本発明者らはこれらの炭素材料について50℃
以下においても重量増加が起こり、炭素材の約10%近
くがフッ素と結合(反応)し何らかの化合物を形成する
ことがわかった。即ち50℃以下ではフッ化黒鉛の生成
は起らないけれどもフッ素との接触によってフッ素と炭
素との遷移状態の反応生成物が形成されることが明らか
となった。しかも驚くべきことにこの低温フッ素処理さ
れた炭素材料を用いて通常の200℃以上でのフッ素と
の反応に供給すれば未処理の炭素材を使用する場合に比
べ反応速度が向上し、しかも短時間で、フッ化黒鉛を製
造することができる。この予備的なフッ素処理の温度の
下限は特に臨界的ではないが、効果と経済性から考えて
一100℃位である。
On the other hand, the production of natural graphite, artificial graphite, petroleum coke, and other fluorinated graphite was carried out at temperatures above 200°C. However, the present inventors found that these carbon materials were
It was found that weight increases also occurred in the following cases, and that nearly 10% of the carbon material combined (reacted) with fluorine to form some kind of compound. That is, it has become clear that although fluorinated graphite does not occur at temperatures below 50° C., a reaction product in a transition state between fluorine and carbon is formed by contact with fluorine. Surprisingly, if this low-temperature fluorine-treated carbon material is used to react with fluorine at a temperature of 200°C or higher, the reaction rate will be faster and faster than when untreated carbon material is used. In an hour, fluorinated graphite can be produced. Although the lower limit of the temperature of this preliminary fluorine treatment is not particularly critical, it is approximately -100°C from the viewpoint of effectiveness and economy.

本発明においては、原料炭素を50℃以下でフッ素ガス
を使用して05〜24時間処理するのが好ましく処理方
法は原料炭素材料を密閉容器に仕込み、フッ素ガスを導
入して処理する方法や、流動層中に原料炭素を仕込みフ
ッ素ガスで流動させ処理する方法など適宜な方法が採用
できる。
In the present invention, it is preferable to treat the raw material carbon using fluorine gas at 50° C. or lower for 05 to 24 hours, and the treatment method is to charge the raw material carbon material into a closed container and introduce fluorine gas for treatment. Any suitable method can be employed, such as a method in which raw carbon is charged into a fluidized bed and treated by being fluidized with fluorine gas.

またフッ素化は特に制限はないが操作上からは大気圧以
下が好適であシ、製造装置は既存のものでよく、生成物
の構成元素であるフッ素の使用であるため生成物の純度
にも全く影響はない。
There are no particular restrictions on fluorination, but from an operational point of view it is preferable to use atmospheric pressure or lower, existing production equipment may be used, and since fluorine, which is a constituent element of the product, is used, the purity of the product may be affected. There is no effect at all.

以下、実施例により本発明を更に詳細に説明するが、本
発明の範囲は実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited to the Examples.

実施例1〜2.比較例1 反応装置には耐フッ素用熱天秤を用いた。原料炭素には
平均粒径10μの天然黒鉛を使用した。
Examples 1-2. Comparative Example 1 A fluorine-resistant thermobalance was used as a reaction apparatus. Natural graphite with an average particle size of 10 μm was used as the raw material carbon.

この黒鉛501n9を熱天秤に秤取し、フッ素をフッ素
ボンベよシ熱天秤内に導入し、フッ素圧を760mmH
gに保ちながら、下記条件にてフッ素処理をし、その後
15℃、/m i nにて昇温し、反応温度を380℃
に保つ友。その時の時間−重量増加曲線を第1図に示す
This graphite 501n9 was weighed on a thermobalance, fluorine was introduced into the thermobalance from a fluorine cylinder, and the fluorine pressure was adjusted to 760 mmH.
Fluorine treatment was carried out under the following conditions while maintaining the temperature at
A friend to keep. The time-weight increase curve at that time is shown in FIG.

予備フッ素処理条件 (フッ素圧760叫Hg ) A:  −60℃ 、 35時間処処 理、  20℃ 、 4時間処理 C: 未処理 また未処理の結果も示す。これらの黒鉛が完全にフッ素
化された時の生成時間とフッ素含有率を表1に示す。
Preliminary fluorine treatment conditions (fluorine pressure 760 Hg) A: -60°C, 35 hours treatment, 20°C, 4 hours treatment C: Untreated and untreated results are also shown. Table 1 shows the generation time and fluorine content when these graphites are completely fluorinated.

フッ素処理することにエリ、反応速度は増大し、容易に
高いフッ素化率のフッ化黒鉛を得ることができる。
By fluorine treatment, the reaction rate increases and fluorinated graphite with a high fluorination rate can be easily obtained.

実施例3〜4.比較例2 反応装置は実施例1と同様である。原料炭素は平均粒径
15μの石油コークスを使用し、下記条件にてフッ素処
理をし、その後、15℃/ min K′て昇温し、反
応温度を280℃に保った。その時の時間−重量増加曲
線を第2図に示す。
Examples 3-4. Comparative Example 2 The reaction apparatus is the same as in Example 1. Petroleum coke with an average particle size of 15 μm was used as raw material carbon, and it was subjected to fluorine treatment under the following conditions. Thereafter, the temperature was raised at 15° C./min K′, and the reaction temperature was maintained at 280° C. The time-weight increase curve at that time is shown in FIG.

予備フッ素処理条件 (フッ素圧 760鵡Hg ) A’:20℃ 、 15時間処理 B’:20℃ 、 4時間処理 C:未処理 未処理の結果も示す。Preliminary fluorine treatment conditions (Fluorine pressure 760 Hg) A': 20℃, 15 hours treatment B': 20℃, 4 hours treatment C: Untreated Raw results are also shown.

これらの黒鉛が完全にフッ素化される生成時間とフッ素
含有率を表2に示す。フッ素化処理をすることにより、
反応速度は大きくなり、容易に高いフッ素化率のフッ化
黒鉛を得ることができる。
Table 2 shows the generation time and fluorine content until these graphites are completely fluorinated. By performing fluorination treatment,
The reaction rate increases, and fluorinated graphite with a high fluorination rate can be easily obtained.

表17.化黒鉛の生成時間とフッ素含■率表2 7フ化
黒鉛の生成時間とフッ素含肩率実施例5 反応装置は直径58 tan 、高さ260mmのニッ
ケル製反応器と外部加熱用ヒーターとから成っている。
Table 17. Formation time and fluorine content of 7-fluoride graphite Table 2 Formation time and fluorine shoulder content of 7-fluoride graphite Example 5 The reaction apparatus consisted of a nickel reactor with a diameter of 58 tan and a height of 260 mm and an external heater. ing.

黒鉛(平均粒径:20μ)51を反応器に入れ、反応器
内を真空脱気した後、フッ素を導入し、大気圧に保ち、
4時間、20℃で放置した。その後、5 ’C/min
にて加熱し、反応温度を380℃に保ち、200時間反
応せた。生成した試料のフッ素含有率は51.2%であ
り、黒鉛は完全にフッ素化され、生成物はフッ化黒鉛(
C2F)nである。
Graphite (average particle size: 20μ) 51 was placed in a reactor, the inside of the reactor was vacuum degassed, fluorine was introduced, and the pressure was kept at atmospheric pressure.
It was left at 20°C for 4 hours. After that, 5'C/min
The reaction temperature was maintained at 380° C., and the reaction was continued for 200 hours. The fluorine content of the produced sample was 51.2%, and the graphite was completely fluorinated, and the product was fluorinated graphite (
C2F)n.

比較例3 反応装置および原料黒鉛は実施例1と同一であるO 黒鉛5gを反応器に入れ、真空脱気した後、加熱し38
0℃に保った。その後、徐々にフッ素を入れ大気圧に保
ち、200時間反応せた。生成した試料のフッ素含有率
は47.9%であったが、まだ未反応黒鉛が残っていた
Comparative Example 3 The reactor and raw material graphite were the same as in Example 1. 5 g of graphite was placed in a reactor, vacuum degassed, and heated to 38
It was kept at 0°C. Thereafter, fluorine was gradually added thereto, maintained at atmospheric pressure, and reacted for 200 hours. Although the fluorine content of the produced sample was 47.9%, unreacted graphite still remained.

比較例4 反応装置、原料黒鉛、反応方法は実施例3と同一であJ
、380℃で38時間反応させた、生成した試料のフッ
素含有率は50,0%で、黒鉛は完全にフッ素化されて
いた。
Comparative Example 4 The reaction apparatus, raw material graphite, and reaction method were the same as in Example 3.
The fluorine content of the resulting sample, which was reacted at 380° C. for 38 hours, was 50.0%, and the graphite was completely fluorinated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、原料黒鉛を予備的フッ素処理した
ものとしないものを昇温してフッ素化反応させた時の時
間−重量増加の関係曲線を示す。 第1図 ■ 第2図 98藺 (hr)
FIGS. 1 and 2 show time-weight increase relationship curves when raw graphite subjected to preliminary fluorine treatment and those not subjected to preliminary fluorine treatment were subjected to a fluorination reaction by raising the temperature. Figure 1 ■ Figure 2 98 times (hr)

Claims (2)

【特許請求の範囲】[Claims] (1)  炭素材料とフッ素とを反応させるフッ化黒鉛
の製造方法において、炭素材料を50℃以下でフッ素処
理した後、反応温度を上げて200℃以上でフッ素化反
応を行なうことを特徴とするフッ化黒鉛の製造方法。
(1) A method for producing fluorinated graphite in which a carbon material and fluorine are reacted, which is characterized in that the carbon material is treated with fluorine at a temperature of 50°C or lower, and then the reaction temperature is raised to perform a fluorination reaction at a temperature of 200°C or higher. Method for producing fluorinated graphite.
(2)室温以下でのフッ素処理を0.5〜24時間行な
うことを特徴とする特許請求の範囲第1項4.B域の製
造方法。
(2) The fluorine treatment is carried out for 0.5 to 24 hours at room temperature or below.Claim 4. Manufacturing method for region B.
JP56114850A 1981-07-22 1981-07-22 Manufacturing method of fluorinated graphite Expired JPS6041602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114850A JPS6041602B2 (en) 1981-07-22 1981-07-22 Manufacturing method of fluorinated graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114850A JPS6041602B2 (en) 1981-07-22 1981-07-22 Manufacturing method of fluorinated graphite

Publications (2)

Publication Number Publication Date
JPS5820707A true JPS5820707A (en) 1983-02-07
JPS6041602B2 JPS6041602B2 (en) 1985-09-18

Family

ID=14648264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114850A Expired JPS6041602B2 (en) 1981-07-22 1981-07-22 Manufacturing method of fluorinated graphite

Country Status (1)

Country Link
JP (1) JPS6041602B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068559A (en) * 1983-09-24 1985-04-19 Central Glass Co Ltd Active material for battery
JPS60206566A (en) * 1984-03-31 1985-10-18 Hitachi Zosen Corp Square boxing method
JPH0368664A (en) * 1989-08-09 1991-03-25 Mitsubishi Materials Corp Surface-modified black carbon powder and production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068559A (en) * 1983-09-24 1985-04-19 Central Glass Co Ltd Active material for battery
JPS60206566A (en) * 1984-03-31 1985-10-18 Hitachi Zosen Corp Square boxing method
JPH0368664A (en) * 1989-08-09 1991-03-25 Mitsubishi Materials Corp Surface-modified black carbon powder and production thereof

Also Published As

Publication number Publication date
JPS6041602B2 (en) 1985-09-18

Similar Documents

Publication Publication Date Title
US3885023A (en) Preparation of iron carbide (Fe{hd 3{b C)
JPS6220127B2 (en)
US1520437A (en) Process of catalyzing gaseous reactions
JPS6241706A (en) Production of graphite intercalation compound
JPS5820707A (en) Production of fluorinated graphite
US3929918A (en) Synthesis of fluorographite
WO1989010328A3 (en) Low temperature synthesis of graphite based carbon fluoride and carbon fluoride chloride
JPS58135116A (en) Manufacture of swollen graphite particle
US2461018A (en) Production of titanium nitride
US4278442A (en) Method for reducing caking property of coal
JPH0788209B2 (en) Ultra fine particle fluorinated graphite with excellent water and oil repellency
JPH0139965B2 (en)
US2534676A (en) Preparation of compounds of uranium and nonmetals
JPS60186407A (en) Preparation of finely powdered zirconium nitride
JPH10509942A (en) Vanadium oxide having an average vanadium oxidation state of at least +4 but lower than +5, essentially free of V 2 O 5, preferably essentially V 6 O 13 Vanadium oxide consisting of ▼, VO 2 or any mixture thereof from NH 4 VO 3
JPS5842849B2 (en) Method for producing lower perfluoroalkane
US2461020A (en) Production of tantalum nitride
JPS6135123B2 (en)
US2615232A (en) Production of metallic fluorides
US2526584A (en) Manufacture of silver monofluoride
US4069301A (en) Method of making titanium disulfide
US2791489A (en) Method of removing carbon from a mixture of barium oxide and carbon
US2259248A (en) Process for the production of sulphuryl chloride
US2222931A (en) Process for producing tetrachlorethylene
JPS6351467A (en) Production of high-purity carbon black