JPS58205895A - Atomic power plant - Google Patents

Atomic power plant

Info

Publication number
JPS58205895A
JPS58205895A JP57087866A JP8786682A JPS58205895A JP S58205895 A JPS58205895 A JP S58205895A JP 57087866 A JP57087866 A JP 57087866A JP 8786682 A JP8786682 A JP 8786682A JP S58205895 A JPS58205895 A JP S58205895A
Authority
JP
Japan
Prior art keywords
steam
reactor
heater
turbine
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57087866A
Other languages
Japanese (ja)
Inventor
大地 昭生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57087866A priority Critical patent/JPS58205895A/en
Publication of JPS58205895A publication Critical patent/JPS58205895A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は原子力発電プラントに係り、特に部分負荷運転
時に原子炉出力を抑制するのに好適な原子力発電プラン
トに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear power plant, and particularly to a nuclear power plant suitable for suppressing reactor output during partial load operation.

周知のように、発電プラントでは負荷である発″醒容曾
の変化に対応して原動機、すなわち火力、原子カプラン
トにおいては蒸気タービンの出力をこれに追従する形で
変える運転方法を採用するのが一般的である。この場合
蒸気タービンの出力は定格出力の半分以下に落すことも
珍しくなく、このような部分負荷による運転では蒸気タ
ービンを駆動するのに多量の蒸気を必要としないのも当
然のことである。しかし、蒸気タービンに送られる蒸気
量が減少するとなると、これからの抽出蒸気を加熱蒸気
として用いる原子力発電プラントの給水系統では加熱蒸
気が減少した分給水の温度も下がることになり、この給
水の温度低下が予想以とに大きくなると、次のような不
都合を生じる心配がある。すなわち、沸騰水形原子炉の
炉心は第1図に示されるようにチャンネルボックス1内
に多数の燃料棒2を収容した燃料集合体3を約750体
、ないし880体集めて構成されている。ここで、冷却
材、すなわち給水は炉心の下部よシ燃料集合体30チャ
ンネルへと流れ、そこで核反応によ力発生した熱を受け
て蒸気泡f’fr生成しつつ、L部へ脱出するが、入口
部での給水の温度が低下すると、燃料集合体2の中を流
れている間はなかなか沸騰に至らず、このため蒸気泡f
が減少して炉心全体の蒸気泡fの割合が小さくなる。こ
のことは換言すれば水の割合が多くなることでアシ、冷
却材である給水は同時に減速材としての役目を負ってい
るため、減速拐の密度が定格運転時に比べ高くなυ、結
果として原子炉出力が上昇する方向に変化する。
As is well known, in power generation plants, an operating method is adopted in which the output of the prime mover, that is, thermal power, and in nuclear couplants, the output of the steam turbine is changed in response to changes in the generation capacity, which is the load, in a manner that follows this change. In this case, it is not uncommon for the output of the steam turbine to drop to less than half of the rated output, and it is natural that a large amount of steam is not required to drive the steam turbine in such partial load operation. However, if the amount of steam sent to the steam turbine decreases, in the water supply system of a nuclear power plant that uses the extracted steam as heating steam, the temperature of the feed water will also drop to compensate for the decrease in heating steam. If the temperature drop in the feed water becomes larger than expected, there is a concern that the following problems will occur.In other words, the core of a boiling water reactor has a large number of fuel rods in the channel box 1, as shown in Figure 1. The fuel assembly consists of approximately 750 to 880 fuel assemblies 3 containing 2. Here, the coolant, or feed water, flows from the bottom of the core to the 30 channels of the fuel assemblies 3, where it is used for nuclear reactions. The steam bubbles f'fr are generated in response to the heat generated and escape to the L section, but when the temperature of the feed water at the inlet decreases, it takes a long time to boil while flowing through the fuel assembly 2. Therefore, vapor bubbles f
decreases, and the proportion of steam bubbles f in the entire core becomes smaller. In other words, since the proportion of water increases, the supply water, which is a coolant, also serves as a moderator, so the density of the moderator becomes higher than during rated operation, υ, and as a result, the atomic atom The furnace output changes in the direction of increasing.

しかるに、この状況において求められるのは蒸気タービ
ン側では既に部分負荷運転中であるため、原子炉出力は
抑制する方向でおり、さらに炉心の安定化のためには給
水の沸−は燃料集合体2の入口部において生じるように
することである。そこで、従来、このような場合は第2
図に示されるように負荷が35チヲ超える場合でおれば
、原子炉に付設されている再循環ポンプの給水流量の制
御によシ、またそれ以下であれば制御棒の駆動操作によ
りそれぞれ出力制御を行なっていた。
However, what is required in this situation is that the steam turbine side is already operating at partial load, so the reactor output should be suppressed, and in order to further stabilize the reactor core, boiling of the feed water must be carried out at the fuel assembly 2. The purpose is to ensure that this occurs at the inlet of the system. Therefore, conventionally, in such cases, the second
As shown in the figure, if the load exceeds 35 cm, the output can be controlled by controlling the water supply flow rate of the recirculation pump attached to the reactor, and if it is lower than that, the output can be controlled by driving the control rods. was doing.

しかしながら、前者の場合は出力抑制のために給水流量
全滅らしたときに過度的に炉心が不安化することがあり
、特に原子炉内蔵形の再循環ポンプを用いるプラントに
おいてはこの傾向が強まる難点が6’b。一方、後者の
場合は制御の応答性が緩慢でちゃ、スムーズに対処し得
ない欠点がある。
However, in the former case, the reactor core may become excessively unstable when the supply water flow is completely wiped out to suppress output, and this tendency is especially severe in plants that use recirculation pumps built into the reactor. 6'b. On the other hand, in the latter case, the control response is slow and the problem cannot be handled smoothly.

本発明の目的は部分負荷運転における原子炉出力を給水
流量を変えることなく抑制し、これによシ炉心の安定化
に多大に寄与せしめるようにした原子力発電プラントを
提供することにある。
An object of the present invention is to provide a nuclear power plant in which the reactor output during partial load operation is suppressed without changing the feed water flow rate, thereby greatly contributing to the stabilization of the reactor core.

以下、本発明の一実施例を第3図を参照して説明する。An embodiment of the present invention will be described below with reference to FIG.

第3図において、符号1は原子炉であって、この原子炉
1は主蒸気、管2を介してタービン3と結ばれておシ、
このタービン3には負荷となる発電機4が連結されてい
る。さらにタービン3はその排気を回収して再び系内に
循環させる復水器5と連通させている。この復水器5は
復水ポンプ6を介して低圧ヒータ7と連絡させ、この低
圧ヒータ7とタービン3とは第1抽気管8によって互に
結ばれている。さらに低圧ヒータ7は給水ポンプ9を介
して高圧ヒータ10と連絡しておシ、この高圧ヒータ1
0とタービン3とが第2抽気管11によって互に結ばれ
ている。しかして、高圧ヒータ10と原子炉1とを結ぶ
経路にはアディショナルヒータ12が設けられておシ、
このアディショナルヒータ12に対して加熱蒸気を尋ぐ
高温蒸気管13が主蒸気管2から分岐されている。また
、高温蒸気管13には調節弁14が設けられておシ、こ
の調節弁14の制御回路は原子炉1の入口給水温度を検
出する温度検出器15、およびその出力信号を電気信号
に変換して調節弁14に対して弁開度指令信号を与える
調節器16によ多構成されている。さらに高圧ヒータ1
0と原子炉1と結ぶ経路にはアディショナルヒータ12
ヲ迂回するように開閉弁17を有するバイパス管18が
設けられている。なお、図中符号19、および20は主
蒸気止め弁、および蒸気加減弁を、また符号21、およ
び22はヒータ入口弁、およびヒータ山口弁をそれぞれ
示している。
In FIG. 3, reference numeral 1 denotes a nuclear reactor, and this reactor 1 has main steam, which is connected to a turbine 3 via a pipe 2.
A generator 4 serving as a load is connected to this turbine 3. Furthermore, the turbine 3 is in communication with a condenser 5 which recovers the exhaust gas and circulates it back into the system. The condenser 5 is connected to a low pressure heater 7 via a condensate pump 6, and the low pressure heater 7 and the turbine 3 are connected to each other by a first bleed pipe 8. Further, the low pressure heater 7 is connected to a high pressure heater 10 via a water supply pump 9.
0 and the turbine 3 are connected to each other by a second bleed pipe 11. Therefore, an additional heater 12 is provided in the path connecting the high pressure heater 10 and the nuclear reactor 1.
A high-temperature steam pipe 13 that supplies heating steam to the additional heater 12 is branched from the main steam pipe 2. The high-temperature steam pipe 13 is also provided with a control valve 14, and the control circuit of this control valve 14 includes a temperature detector 15 that detects the temperature of the inlet water supply to the reactor 1, and converts its output signal into an electrical signal. The control valve 14 is provided with a regulator 16 which provides a valve opening command signal to the control valve 14. Furthermore, high pressure heater 1
An additional heater 12 is installed on the path connecting 0 and reactor 1.
A bypass pipe 18 having an on-off valve 17 is provided to detour therefrom. In the figure, numerals 19 and 20 indicate a main steam stop valve and a steam control valve, and numerals 21 and 22 indicate a heater inlet valve and a heater Yamaguchi valve, respectively.

次に作用を説明する。Next, the effect will be explained.

■1通常運転時 原イ炉1から送られる高温、高圧の蒸気、すなわち主蒸
気は主蒸気管2を通ってタービン3に入シ、ここでター
ビン軸に直結されている発電機4を駆動して仕事を終え
る。続いてタービン3の排気は復水器5に回収され、こ
こで図示しないポンプによって送られる冷却水と熱交換
して復水となる。この復水は復水ボンプロによって抽出
され、低圧ヒータ7に送られ、ここで第1抽気管8を介
して送られるタービン3の抽出蒸気によって第1次の加
熱が行なわれる。さらに復水は給水ポンプ9によって高
圧ヒータ10へと送られ、この高圧ヒータlOにおいて
第2次の加熱が行なわれるが、ここでの復水は給水と呼
び名を変える。高圧ヒータ10では給水が第2抽気管]
1¥i−通して送られる抽気によってさらに高温に加熱
される。続いて給水はヒータ入口弁21の手前において
アデインヨナシヒータ12ヲ迂回し、バイパス管18を
通って原子炉1に入り、ここで再度熱せられて蒸気とな
シ、L述したサイク/I/を繰シ返す。なお、この間調
節弁14は全閉されておシ、アデイ7ヨナシヒータ12
への蒸気の流れはない。
■1 During normal operation, high-temperature, high-pressure steam sent from the raw metal reactor 1, that is, main steam, passes through the main steam pipe 2 and enters the turbine 3, where it drives the generator 4 that is directly connected to the turbine shaft. and finish the work. Subsequently, the exhaust gas from the turbine 3 is collected in a condenser 5, where it exchanges heat with cooling water sent by a pump (not shown) and becomes condensed water. This condensate is extracted by a condensate bomber and sent to a low pressure heater 7, where primary heating is performed by extracted steam from the turbine 3 sent via a first bleed pipe 8. Further, the condensate is sent to the high-pressure heater 10 by the water supply pump 9, and secondary heating is performed in this high-pressure heater IO, but the condensate here is called "supply water". In the high pressure heater 10, the water supply is the second bleed pipe]
1¥i- It is further heated to a high temperature by the bleed air sent through it. Next, the feed water bypasses the heater 12 before the heater inlet valve 21 and enters the reactor 1 through the bypass pipe 18, where it is heated again and turned into steam. Repeat. Note that during this time, the control valve 14 is fully closed, and the heater 12 is closed.
There is no flow of steam to.

■0部分負荷運転時 通常運転から部分負荷運転に移行すると、ヒータ入口弁
21、およびヒータ出口弁22が全開され、またバイパ
ス管18の経路にある開閉弁17が全閉される。この間
、タービン3へ送られる蒸気量は蒸気加減弁20の開度
が狭められて少なくなっておシ、タービン3から低圧ヒ
ータ7、および高圧ヒータ10に送られる蒸気も減少し
ている。かくして給水の温度は定格運転時に比べ、かな
シ低下することが免れないが、ここで調節弁14を開い
て主蒸気の一部を高温蒸気管13を通してアディショナ
ルヒータ12に導く。すなわち、原子炉1から送られる
主蒸気の一部はタービン30入口よpも器内圧力を低く
設定されたアディショナルヒータ12に高温蒸気管13
全通して流れ、ここを通る給水に熱を与える。これによ
p給水の温度は炉心内における沸騰を促進するように高
められ、原子炉出力が抑制される。この間給水流量は特
に変化させず、給水温度だけを温度検出器15、および
調節器16によp主蒸気抽出流−3tfr&えて制御す
る。
(2) During zero partial load operation When the normal operation shifts to partial load operation, the heater inlet valve 21 and the heater outlet valve 22 are fully opened, and the on-off valve 17 located in the path of the bypass pipe 18 is fully closed. During this time, the amount of steam sent to the turbine 3 decreases because the opening degree of the steam control valve 20 is narrowed, and the amount of steam sent from the turbine 3 to the low pressure heater 7 and the high pressure heater 10 also decreases. Although the temperature of the feed water is thus inevitably lower than during rated operation, the control valve 14 is opened to introduce a portion of the main steam to the additional heater 12 through the high-temperature steam pipe 13. That is, a part of the main steam sent from the reactor 1 is sent to the high temperature steam pipe 13 to the additional heater 12 whose internal pressure is set lower than the inlet of the turbine 30.
It flows all the way through and gives heat to the water supply that passes through it. As a result, the temperature of the p-feed water is increased to promote boiling within the reactor core, and the reactor power is suppressed. During this period, the feed water flow rate is not particularly changed, and only the feed water temperature is controlled by the temperature detector 15 and the regulator 16 by adjusting the main steam extraction flow -3tfr&.

以1述べたように本発明はプラントの部分負荷運転時に
おいても給水温度の低下が起こらず、これによって引き
起こされる炉心の不安定化現象を未然に回避し得るとい
う優れた効果を奏するものでおる。
As described above, the present invention has the excellent effect that the feed water temperature does not decrease even during partial load operation of the plant, and the destabilization of the reactor core caused by this can be avoided. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炉心内における給水の流れ等金示す説明図、第
2図は原子力発電プラントにおける出力−流量制御の関
係を示す線図、第3図は本発明による原子力発電プラン
トの一実施例を示す系統図′である。 l・・・原子炉     2・・・主蒸気管3・・・タ
ービン    5・・・復水器7・・・低圧ヒータ  
 9・・・給水ポンプ10・・・高圧ヒータ    1
2・・・アディショナノル七−タ13・・・高温蒸気管
  14・・・調節弁15・・・温度検出器  16・
・・調節器17・・・開閉弁    18・・・バイパ
ス管(7317)代理人弁理士 則 近 慧 佑(はが
1名)第1図 第2図 0 36%   /θθχ 給2に織1
Fig. 1 is an explanatory diagram showing the flow of feed water in the reactor core, Fig. 2 is a diagram showing the relationship between output and flow rate control in a nuclear power plant, and Fig. 3 is an example of a nuclear power plant according to the present invention. Fig. 1 is a systematic diagram ′ shown in FIG. l...Reactor 2...Main steam pipe 3...Turbine 5...Condenser 7...Low pressure heater
9... Water supply pump 10... High pressure heater 1
2...Additional controller 13...High temperature steam pipe 14...Control valve 15...Temperature detector 16.
...Regulator 17...Opening/closing valve 18...Bypass pipe (7317) Attorney Kei Chika (1 person) Figure 1 Figure 2 0 36% /θθχ Supply 2 to Ori 1

Claims (1)

【特許請求の範囲】[Claims] 高圧ヒータと原子炉とを結ぶ経路に設けられ、通常運転
時はこれを迂回して給水を高圧ヒータよシ直接原子炉へ
導くバイパス管を有するアディショナルヒータと、この
アディショナルヒータに前記原子炉よシ送給される蒸気
を加熱媒体として導く高温蒸気管と、この高温蒸気管の
経路内にあって前記アディショナルヒータに導入される
蒸気の流量を弁開度を弯えることによシ調節する調節弁
とを具備してなる原子力発電プラント。
An additional heater is provided in the path connecting the high-pressure heater and the reactor, and has a bypass pipe that bypasses this during normal operation and leads the feed water directly from the high-pressure heater to the reactor. A high-temperature steam pipe that guides the supplied steam as a heating medium, and a control valve that is located in the path of this high-temperature steam pipe and that adjusts the flow rate of the steam introduced into the additional heater by increasing the valve opening degree. A nuclear power plant equipped with
JP57087866A 1982-05-26 1982-05-26 Atomic power plant Pending JPS58205895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087866A JPS58205895A (en) 1982-05-26 1982-05-26 Atomic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087866A JPS58205895A (en) 1982-05-26 1982-05-26 Atomic power plant

Publications (1)

Publication Number Publication Date
JPS58205895A true JPS58205895A (en) 1983-11-30

Family

ID=13926794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087866A Pending JPS58205895A (en) 1982-05-26 1982-05-26 Atomic power plant

Country Status (1)

Country Link
JP (1) JPS58205895A (en)

Similar Documents

Publication Publication Date Title
JPH03124902A (en) Combined cycle power plant and operating method therefor
US20080181349A1 (en) Nuclear Power Plant and Operation Method Thereof
JP2005506539A (en) Operation method of nuclear power plant
CN114543074B (en) DC coal-fired generator set starting system
JPS58205895A (en) Atomic power plant
JPH08233989A (en) Reactor power plant and operation method
JPS5993103A (en) Nuclear power generating plant
JP4349133B2 (en) Nuclear power plant and operation method thereof
JP4449620B2 (en) Nuclear power plant and operation method thereof
JP4399381B2 (en) Operation method of nuclear power plant
JPS61160088A (en) Scram avoidance overall control system
JPS5999396A (en) Atomic power plant
JP4556883B2 (en) Reactor power controller
JP3010086B2 (en) Cogeneration power plant
JPS5819240B2 (en) Fast breeder reactor inlet sodium temperature control method and device
JPS6152503A (en) Pressure-change once-through boiler and operating method thereof
JPH05272306A (en) Exhaust heat utilizing power generation control device
JP2000056081A (en) Reactivity compensating method for reactor by feed water temperature control
JPH0610621A (en) Repowering system of steam power generation facility
JPS5848880B2 (en) pressure tube reactor
JPS5862401A (en) Steam generator
JPH11166403A (en) Turbine bypass steam supply device
JP2006208238A (en) Operation method for nuclear power plant
JPH09112807A (en) Deaerator protection device for exhaust gas recombustion system
JPS5843303A (en) Mixed pressure type waste heat recovery boiler