JPS58205840A - Assay of copper in copper-stainless steel-bismuth alloy - Google Patents
Assay of copper in copper-stainless steel-bismuth alloyInfo
- Publication number
- JPS58205840A JPS58205840A JP8801382A JP8801382A JPS58205840A JP S58205840 A JPS58205840 A JP S58205840A JP 8801382 A JP8801382 A JP 8801382A JP 8801382 A JP8801382 A JP 8801382A JP S58205840 A JPS58205840 A JP S58205840A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- sample
- assay
- calibration curve
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/3103—Atomic absorption analysis
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、銅−ステンレス−ビスマス合金中の銅の分析
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for analyzing copper in a copper-stainless steel-bismuth alloy.
従来、銅合金中の銅の分析方法として、電解型がある。Conventionally, there is an electrolytic method for analyzing copper in copper alloys.
例えば、Cuが0.01%以上0.5チ未満といった微
量の銅を含む合金の場合、鉄を添加する方法がJIS
G 1257 (鉄及び鋼の原子吸光分析方法)に
規定されている。For example, in the case of an alloy containing a trace amount of copper, such as 0.01% or more and less than 0.5% Cu, the method of adding iron is JIS
Specified in G 1257 (Atomic absorption spectrometry method for iron and steel).
本発明は、銅の含有量が例えば50チといった比較的高
い合金中の銅の分析を迅速に行うことのできる分析方法
を提供しようとするものである。The present invention aims to provide an analysis method that can rapidly analyze copper in an alloy having a relatively high copper content, such as 50 tchi.
本発明に係る分析方法は、試料の溶解に王水を用いると
ともに、これにHClを加えて加熱し、分取後、原子吸
光光度計を用いて、検量線法によシ試料中の銅の分析を
行なうことを特徴とするものである。The analysis method according to the present invention uses aqua regia to dissolve the sample, adds HCl to it and heats it, and after fractionation, uses an atomic absorption spectrophotometer to analyze copper in the sample using the calibration curve method. It is characterized by conducting analysis.
第1図は、本発明に係る分析方法の一例を示すフローシ
ートである。まず、試料たる銅合金を、0.2g採取し
、王水20−を用いて溶解する。なお、試料の溶解に、
塩酸、硝酸、塩酸−加圧ルツボ、塩酸−フツ化水素−加
圧ルツボ等を試みた力瓢試料の溶解はできず、また、王
水、塩酸−過酸化水素では、王水による場合が最も良好
であった。FIG. 1 is a flow sheet showing an example of the analysis method according to the present invention. First, 0.2 g of a copper alloy as a sample is taken and dissolved using 20% of aqua regia. In addition, for dissolving the sample,
Hydrochloric acid, nitric acid, hydrochloric acid-pressure crucible, hydrochloric acid-hydrogen fluoride-pressure crucible, etc., were used to dissolve the sample. It was good.
ここで蒸発乾固寸前にHCL 10 m/、H,020
mを加えて加熱する。試料溶解後、100tnt一定と
し、1〇−分増、再び100−一定とし、1〇−分取、
HCL2.O−添加し、100−一定とし、これを原子
吸光光度計を用いて、327.4%mで測定し、検量線
法によって、試料中の銅の分析を行なう。Here, just before evaporation to dryness, add HCL 10 m/, H,020
Add m and heat. After dissolving the sample, keep it constant at 100 tnt, increase by 10 minutes, keep it constant at 100 again, take 10 minutes,
HCL2. Add O to make the sample constant at 100, measure it at 327.4% m using an atomic absorption spectrophotometer, and analyze copper in the sample using the calibration curve method.
第2図は銅の検量線である。この検量線は、Cu(0,
5,0,8,1,0,1,5q)KHct2−を加え、
水で100−一定にしたものを用いて作製したもので、
I=11.8C+0.13で表わされる。なお相関係数
r=o、9997、濃度換算の標準偏差Sc−〇、10
ppmである。この検量線は、2〜15 ppm間で
直線を示し、#1ソ原点を通り、非常に精度が良いこと
が認められる。原子吸光光度計で分析を行うに際し、分
析線を、2〜15 ppm間において、222.57%
m、249.22%m、244.16%mと種々変えた
ところ、これらの場合はいずれも感度不足であった。、
また、324.74%m ではスケールオーバし、32
7.4%mの分析線を用いるのが最も良好であつた。Figure 2 is a copper calibration curve. This calibration curve is Cu(0,
5,0,8,1,0,1,5q) Add KHct2-,
It was made using water adjusted to a constant value of 100.
It is expressed as I=11.8C+0.13. Note that correlation coefficient r=o, 9997, standard deviation of concentration conversion Sc-〇, 10
It is ppm. This calibration curve shows a straight line between 2 and 15 ppm, passes through the #1 origin, and is recognized to have very high accuracy. When performing analysis with an atomic absorption spectrophotometer, the analytical line is 222.57% between 2 and 15 ppm.
When various changes were made to m, 249.22%m, and 244.16%m, the sensitivity was insufficient in all of these cases. ,
Also, at 324.74%m, there is overscale and 324.74%m.
It was best to use the 7.4% m analysis line.
第6図は分解試薬の影響を調べた線図である、試料を王
水で溶解し100分の1に希釈すると、酸濃度が低下し
て、ビスマスなどが析出し測定の妨げとなる。一方酸濃
度が低ければ低いはど酸自身の影響は少くなる。塩酸0
.24〜0.36 Nにした時の銅への影響は、第6図
に示すように約5チ程度の回収率の低下をみた。しかし
添加量による有意差は認められない。従って、検量線に
塩酸を添加して、試料の酸濃度と合せることとした。FIG. 6 is a diagram examining the influence of decomposition reagents. When a sample is dissolved in aqua regia and diluted to 1/100, the acid concentration decreases and bismuth etc. precipitate, interfering with measurements. On the other hand, the lower the acid concentration, the less the influence of the acid itself. Hydrochloric acid 0
.. When the pressure was set to 24 to 0.36 N, the effect on copper was that the recovery rate decreased by about 5 cm, as shown in Figure 6. However, no significant difference was observed depending on the amount added. Therefore, it was decided to add hydrochloric acid to the calibration curve to match the acid concentration of the sample.
第4図〜第8図は試料に共存する元素の影響を調べた線
図で、第4図は鉄、第5図はニッケル、第6図はクロム
、第7図はモリブデン、第8図はビスマスのそれぞれの
銅の回収率を示している。Figures 4 to 8 are diagrams examining the influence of elements coexisting in the sample. Figure 4 is iron, Figure 5 is nickel, Figure 6 is chromium, Figure 7 is molybdenum, and Figure 8 is The recovery rate of copper for each bismuth is shown.
これらの結果から明らかなように1回収率はいずれも許
容範囲内であり、銅への影響はないことがわかった、次
に組成が、(Cu : 0.967wg、 Fe:
o、aIlv、 Ni : 0.08W、 Cr :
0.2”%’、 Mo :0.02■、 Bt : 0
.1v、 Hct 2mg)/100mgの疑似試料を
10個作製し、Cuの回収率を調べた結果、Cuの回収
率は平均で100.8%、変動係数0、45 %で、・
十分満足できる結果が得られた。As is clear from these results, the 1 recovery rate was all within the allowable range, and it was found that there was no effect on copper.Next, the composition was (Cu: 0.967 wg, Fe:
o, aIlv, Ni: 0.08W, Cr:
0.2"%', Mo: 0.02■, Bt: 0
.. 1v, Hct 2mg)/100mg were prepared, and the recovery rate of Cu was investigated. As a result, the recovery rate of Cu was 100.8% on average, and the coefficient of variation was 0.45%.
A fully satisfactory result was obtained.
また、金属標準銅と8u8304 を約1:1に混ぜ本
発明に係る方法によ95回の測定を行なった結果では、
銅の回収率99.2 % 、変動係数1.3チとな妙、
実用上満足できることが確認された。また、実試料6個
について分析した結果では、平均値46.8 % 、変
動係数0.94 %であった。In addition, the results of 95 measurements conducted using the method of the present invention by mixing metal standard copper and 8u8304 at a ratio of approximately 1:1 show that
Copper recovery rate is 99.2%, coefficient of variation is 1.3ch,
It was confirmed that it is practically satisfactory. Furthermore, the results of analysis of six actual samples showed an average value of 46.8% and a coefficient of variation of 0.94%.
以上説明した。ように、本発明に係る分析方法によれば
、銅の含有率が5〇チ前後といった比較的高い合金中の
銅の分析を迅速に行うことができる。This has been explained above. As described above, according to the analysis method according to the present invention, it is possible to rapidly analyze copper in an alloy having a relatively high copper content of around 50%.
第1図は本発明に係る分析方法の一例を示すフローシー
ト図、第2図はCuの検量線図、第3図は分解試薬の影
響を調べた線図、第4図〜第8図は共存元素の影響につ
いて調べた線図である。
代理人 弁理士 木 村 三 朗
第1図
試料Figure 1 is a flow sheet diagram showing an example of the analysis method according to the present invention, Figure 2 is a calibration curve diagram for Cu, Figure 3 is a diagram examining the influence of decomposition reagents, and Figures 4 to 8 are It is a diagram in which the influence of coexisting elements was investigated. Agent Patent Attorney Sanro Kimura Sample Figure 1
Claims (2)
を加えて加熱し、分取後原子吸光光度針を用いて、検量
線法により前記試料中の銅の分析を行なうことを特徴と
する銅−ステンレス−ビスマス合金中の銅の分析方法。(1) Use aqua regia to dissolve the sample and add HCl to it.
1. A method for analyzing copper in a copper-stainless steel-bismuth alloy, which comprises adding and heating the sample, and after fractionation, using an atomic absorption spectrometer needle, the copper in the sample is analyzed by a calibration curve method.
うにした特許請求の範囲第1項記載の銅−ステンレス−
ビスマス合金中の銅の分析方法。(2) Copper stainless steel according to claim 1, in which hydrochloric acid is added to the calibration curve to match the acid concentration of the sample.
Method for analyzing copper in bismuth alloys.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8801382A JPS58205840A (en) | 1982-05-26 | 1982-05-26 | Assay of copper in copper-stainless steel-bismuth alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8801382A JPS58205840A (en) | 1982-05-26 | 1982-05-26 | Assay of copper in copper-stainless steel-bismuth alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58205840A true JPS58205840A (en) | 1983-11-30 |
Family
ID=13930956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8801382A Pending JPS58205840A (en) | 1982-05-26 | 1982-05-26 | Assay of copper in copper-stainless steel-bismuth alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58205840A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104764704A (en) * | 2015-04-22 | 2015-07-08 | 阳谷祥光铜业有限公司 | Method for determining copper phase in flash converting furnace slag |
-
1982
- 1982-05-26 JP JP8801382A patent/JPS58205840A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104764704A (en) * | 2015-04-22 | 2015-07-08 | 阳谷祥光铜业有限公司 | Method for determining copper phase in flash converting furnace slag |
CN104764704B (en) * | 2015-04-22 | 2017-10-24 | 阳谷祥光铜业有限公司 | Copper thing molybdenum determination method in flash blowing clinker |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Narin et al. | The uses of 1-(2-pyridylazo) 2-naphtol (PAN) impregnated Ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry | |
Whewell et al. | The kinetics of the solvent extraction of copper (II) with LIX reagents—I Single drop experiments | |
Magnusson et al. | Solvent extraction procedures combined with back-extraction for trace metal determinations by atomic absorption spectrometry | |
Feng et al. | Determination of arsenic, antimony, selenium, tellurium and bismuth in nickel metal by hydride generation atomic fluorescence spectrometry | |
Alexander et al. | Spectrophotometric determination of traces of nickel | |
Itagaki et al. | Determination of trace amounts of gold and silver in high-purity iron and steel by electrothermal atomic absorption spectrometry after reductive coprecipitation | |
Chanvaivit et al. | Matrix independent determination of hydride-forming elements in steels by hydride generation-inductively coupled plasma atomic emission spectrometry | |
Boisvert et al. | Re-examination of the determination of palladium, platinum and rhodium in rocks by nickel sulphide fire assay followed by graphite furnace atomic absorption measurements | |
JPS58205840A (en) | Assay of copper in copper-stainless steel-bismuth alloy | |
Sahuquillo et al. | Extractable chromium determination in soils by AAS | |
Gahler et al. | Colorimetric determination of nickel with alpha-furildioxime | |
Whiteley Jr et al. | Analysis of chromates for traces of Cr (III) by solvent extraction and inductively coupled plasma atomic emission spectrometry | |
Thompson et al. | Communication. Enhanced sensitivity in the determination of mercury by inductively coupled plasma atomic-emission spectrometry | |
Tissot et al. | Sensitive method for the determination of molybdenum in natural groundwater at sub-ppb levels using DLLME coupled with ETAAS | |
Lechotycki | Factors affecting the determination of molybdenum and vanadium in aqua regia digests of soil by graphite furnace atomic absorption spectrometry | |
Headridge et al. | The determination of mobile nitrogen in steel using an ammonium ion-selective electrode | |
Jones | The determination of small amounts of nickel in steel | |
Milner et al. | The microchemical analysis of ferrous and non-ferrous alloys | |
Elliott et al. | The determination of copper in certain high-alloy steels | |
Matsusaki et al. | Electrothermal atomic absorption spectrometric determination of trace lead, copper and manganese in aluminum and its alloys without preliminary separation | |
Sun et al. | Ascorbic acid as effective chemical modifier for cobalt determination in nickel-based alloys by electrothermal atomic absorption spectrometry with longitudinal Zeeman background correction | |
Maiorova et al. | Separation of iron and chromium in the form of insoluble fluorides for ICP-AES determination of trace arsenic in nickel heat-resistant alloys | |
JPH03105249A (en) | Analyzing method of arsenic in steel | |
Stobart | The colorimetric determination of traces of lead in heat-resistant nickel-chromium alloy steel | |
Jaselskis et al. | Determination of metal cyanide and thiocyanate complexes by Kjeldahl-Gunning and Carius sealed tube digestion methods |