JPS58205590A - Prevention of scaling in cooling and dust removing column - Google Patents

Prevention of scaling in cooling and dust removing column

Info

Publication number
JPS58205590A
JPS58205590A JP8647482A JP8647482A JPS58205590A JP S58205590 A JPS58205590 A JP S58205590A JP 8647482 A JP8647482 A JP 8647482A JP 8647482 A JP8647482 A JP 8647482A JP S58205590 A JPS58205590 A JP S58205590A
Authority
JP
Japan
Prior art keywords
cooling
gypsum
dust
dust removing
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8647482A
Other languages
Japanese (ja)
Other versions
JPS6340600B2 (en
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Kenji Iwasaki
岩崎 賢治
Susumu Okino
進 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8647482A priority Critical patent/JPS58205590A/en
Publication of JPS58205590A publication Critical patent/JPS58205590A/en
Publication of JPS6340600B2 publication Critical patent/JPS6340600B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the effect of preventing scaling, by supplying hydrogen chloride, etc. until the concn. of Cl<-> ions attains >=4.6 times mole of the amt. exceeding the concn. of the Ca compd. to be introduced into a cooling and dust removing column at which the deposition of gypsum initiates. CONSTITUTION:A waste gas of combustion contg. at least dust and SOx is introduced into a cooling and dust removing column, where the waste gas is brought into contact with cooling and dust removing liquid so as to be humidified and cooled; at the same time, the dust in the waste gas of combustion is removed. Hydrogen chloride, water soluble chloride, etc. are supplied into the cooling and dust removing column until Cl<-> ions attain >=4.6 times mole of the increased amt. of the Ca compd. in the dust contg. the Ca compd. in excess as much as of the concn. at which deposition of gypsum initiates. The waste gas including SOx discharged from the cooling and dust removing column is introdued into an absorption column where the gas is brought into contact with absrobent liquid and the SOx is removed. The crystallization of the gypsum dihyfrate crystal in the cooling and dust removing liquid is prevented by the above-mentioned method.

Description

【発明の詳細な説明】 石炭や油を・燃焼した排ガスはダストや硫黄酸化物など
の環境汚染物質を含み、これを清浄化するための方法と
して、湿式排煙脱硫装置が広く実用I化されている。
[Detailed Description of the Invention] Exhaust gas from burning coal or oil contains environmental pollutants such as dust and sulfur oxides, and wet flue gas desulfurization equipment has been widely put into practical use as a method for cleaning this. ing.

特に広く普及している湿式石灰法排煙脱硫装置では、そ
の実用化上の課題として、吸収塔で溶解度の小さなカル
シウム化合物を取り扱う為、吸収反応に伴なって石膏が
析出し、これが一部スケールとなって装置材料表面に固
着し、ガス及び液の流路を狭隘化さらには閉塞するトラ
ブルが起こらないようにすることが重要であった。
Particularly in the widely used wet lime method flue gas desulfurization equipment, one issue in its practical application is that the absorption tower handles calcium compounds with low solubility, so gypsum precipitates as a result of the absorption reaction, and some of this is scaled. It was important to prevent problems such as sticking to the surface of the device material and narrowing or even clogging the gas and liquid flow paths.

この対策として種晶石膏を含むスラリーヲ使用する方法
が採用され、その効果が認められてぃる〇 一方、近年、燃料転換の必要性から石炭が多く用いられ
るようになってきたことや、大気清浄装置からの排水に
よる2次公害防止対策の強化に伴なって、湿式石灰法排
煙脱硫装置ではあらたにスケール対策が必要であること
を本発明者らは認識するに至った。
As a countermeasure to this problem, a method of using slurry containing seed crystal gypsum has been adopted, and its effectiveness has been recognized.On the other hand, in recent years, coal has been increasingly used due to the need for fuel conversion, and With the strengthening of measures to prevent secondary pollution caused by wastewater from cleaning equipment, the present inventors have come to realize that new scale countermeasures are required in wet lime method flue gas desulfurization equipment.

それは、石炭焚き排ガスの如き少なくともダスト硫黄酸
化物を含む燃焼排ガスを冷却除しん塔に導き、冷却除し
ん液と接触させて排ガスを増湿冷却すると共に排ガス中
のダストヲ除去した後、次いで硫黄酸化物を吸収除去す
る吸収塔へ導いて、カルシウム化合物を吸収剤として、
排ガス中の硫黄酸化物を捕集する湿式石灰性排煙脱硫装
置に於いて、該ダスト中に含まれるカルシウム化合物が
冷却除しん塔で、石膏スケールとなって析出する場合が
あること、更には排−水量低減方法として吸収塔からの
余剰排水を冷却除じん塔での蒸発水桶給水の一部として
再利用する方法を採用することによって、その余剰排水
中に含まれるカルシウム化合物が濃縮され、スケールと
なって析出することがあることである。
In this process, combustion exhaust gas containing at least dusty sulfur oxides, such as coal-fired exhaust gas, is introduced into a cooling and dust removal tower, and brought into contact with a cooling and dust removal solution to humidify and cool the exhaust gas, as well as remove dust from the exhaust gas. The substance is guided to an absorption tower where it is absorbed and removed, and calcium compounds are used as an absorbent.
In wet calcareous flue gas desulfurization equipment that collects sulfur oxides in flue gas, calcium compounds contained in the dust may precipitate as gypsum scale in the cooling removal tower; By adopting a method to reduce the amount of wastewater by reusing excess wastewater from the absorption tower as part of the water supply to the evaporation water bucket in the cooling and dust removal tower, the calcium compounds contained in the excess wastewater are concentrated and the scale is reduced. It may precipitate as follows.

即ち、吸収塔からの余剰排水を冷却除しん塔の補給水と
して使用すること及びダストが捕集(1 されることによってもたらされるカルシウム化金物が、
冷却除しん塔内で石膏スケールとなって固着し、ガス及
び液の流路を狭隘化することを防止する対策が必要であ
ることを認識するに至った。
In other words, the calcified metals produced by using the surplus waste water from the absorption tower as make-up water for the cooling and dust removal tower and by collecting the dust,
We have come to recognize the need for measures to prevent gypsum scale from solidifying in the cooling and dust removal tower and narrowing the flow paths for gas and liquid.

従来、石膏スケールを防止する方法として利用されてい
る方法は(1)種晶を加える、(2)ソフトニングによ
りカルシウムイオンを化学的に除去する、(3)排水量
を多くして濃縮度を下げ石膏の結晶化を防止するなどで
あるが、(1)の種晶スラリーを取り扱う場合はスラリ
ーによる摩耗や閉塞を防止する工夫が必要であり厄介で
あること、(2)の方法では工程が複雑で操作が厄介で
あること、さらに(3)の方法では排水量が多く2次公
害対策が必要で経済性を損なうなどの問題がある0本発
明はかかる問題全解決し得る石膏スケール防止法を提供
するもので、冷却除しん塔へ供給されるカルシウム量に
見合って塩化水素又はそれと同等物を冷却除しん塔の冷
却除しん液に添加することを特徴とするものである。し
かも添加する塩化水素の量は化学反応平衡について種々
研究を重ねた結果、カルシウムの石膏として析出する濃
度を越えた量に対し、4.6倍モル以上でスケール防止
効果が顕著になる知見を得た0 塩化水素は化学的作用が強く、塩化水素水には石膏が良
く溶けることは知られている。更に、冷却除しん塔では
排ガス中の硫黄酸化物の一部が冷却除しん液に吸収され
、更に排ガス中の02によって酸化され硫酸が生成する
から石膏が更に良く溶ける。これらを反応式で表わすと
次の通りである。
Conventionally, the methods used to prevent gypsum scale are (1) adding seed crystals, (2) chemically removing calcium ions by softening, and (3) reducing concentration by increasing drainage volume. However, when handling the seed crystal slurry in (1), it is necessary to take measures to prevent wear and blockage caused by the slurry, which is troublesome, and in method (2), the process is complicated. In addition, method (3) requires a large amount of drainage and requires countermeasures against secondary pollution, which impairs economic efficiency.The present invention provides a method for preventing gypsum scale that can solve all of these problems. This method is characterized in that hydrogen chloride or its equivalent is added to the cooling desalting solution of the cooling dessicating tower in proportion to the amount of calcium supplied to the cooling dessicating tower. Moreover, as a result of various studies on the chemical reaction equilibrium, we found that the amount of hydrogen chloride to be added is 4.6 times the molar amount or more compared to the concentration at which calcium precipitates as gypsum, and the scale prevention effect becomes significant. It is known that hydrogen chloride has a strong chemical effect and that gypsum dissolves well in hydrogen chloride water. Furthermore, in the cooling dust removal tower, some of the sulfur oxides in the exhaust gas are absorbed by the cooling dust removal solution, which is further oxidized by 02 in the exhaust gas to produce sulfuric acid, so that the gypsum can be dissolved even better. The reaction formula for these is as follows.

HO4+ CaSO4−2)(20(固) −>  C
a” 十H8O4+ 01−+ 2H20−・1llH
2S04+CaSO4・2H20(固) −+ Oa”
 + 2H8O4−+ 2H20−・・t21ところが
ダスト中に含まれるOaO、MgO、Na2o。
HO4+ CaSO4-2) (20 (solid) -> C
a” 10H8O4+ 01-+ 2H20-・1llH
2S04+CaSO4・2H20 (solid) −+ Oa”
+ 2H8O4-+ 2H20-...t21 However, OaO, MgO, and Na2O contained in the dust.

K2O,NH4OH,などのアルカリ成分が水に溶解し
OH−イオンを生成し、そのOH−がH804−を中租
SO42−’に生成することにより、逆に石膏の析出の
   マ   の   Cし (1)(2)の石膏溶解反応と(3)〜(7)の石膏析
出反応が併発する冷却除しん塔では、単純な量論関係で
石膏が析出するか溶解するかを判断することは困難であ
る〇 冷却除しん塔へ供給されるカルシウム量に見合って塩化
水素を冷却除しん液に添加し、石膏が析出しないように
する為の条件としては、今回の本発明者らの研究によれ
ば第1図の相関が得られることがわかった。
Alkaline components such as K2O, NH4OH, etc. dissolve in water and generate OH- ions, and the OH- generates H804- into SO42-', which in turn causes the precipitation of gypsum. ) In a cooling desaturation tower where the gypsum dissolution reaction in (2) and the gypsum precipitation reactions in (3) to (7) occur simultaneously, it is difficult to judge whether gypsum will precipitate or dissolve based on simple stoichiometric relationships. According to the research conducted by the present inventors, the conditions for adding hydrogen chloride to the cooling removal solution in proportion to the amount of calcium supplied to the cooling removal tower and preventing gypsum from precipitating are as follows: It was found that the correlation shown in Figure 1 was obtained.

即ち、カルシウム化合物がそれ単独で石膏を析出し始め
る点を越えたカルシウム供給量の増加量に対し4.6倍
モルの塩化水素を供給すると丁度石膏飽和状態が維持さ
れ、4.6倍モル以上の塩化水素を供給すれば石膏未飽
和状態となって石膏スケールは防止できること、反対に
46倍モル未満の塩化水素が供給される場合には石膏過
飽和状態となって、石膏が析出し、スケールトラブルを
誘発することを第1図は示している。
That is, if 4.6 times the mole of hydrogen chloride is supplied to increase the amount of calcium supplied beyond the point at which the calcium compound starts to precipitate gypsum by itself, the gypsum saturation state is maintained exactly, and the increase in calcium supply exceeds the point where the calcium compound starts to precipitate gypsum by itself. If hydrogen chloride is supplied, the gypsum becomes unsaturated and gypsum scale can be prevented.On the other hand, if less than 46 times the mole of hydrogen chloride is supplied, the gypsum becomes supersaturated and gypsum precipitates, causing scale problems. Figure 1 shows that this induces

更に詳しく説明すると、第1図はガス量1.000.O
D Om3N/H(乾燥基準)中に、ダスト濃度275
mり7m3N 、  SOx濃度800 ppm f含
む排ガスを、冷却除しん塔で冷却除しん液と接触させな
がら、吸収塔からのカルシウム化合物を含んだ余剰排水
を冷却除しん塔に供給した時の石膏の飽和度が100%
になる塩化水素添加量を求めた結果の相関図を表わすも
ので、温度は48℃、H2SO4生成量77モル/Hで
ある。
To explain in more detail, FIG. 1 shows a gas amount of 1.000. O
Dust concentration 275 in D Om3N/H (dry basis)
Exhaust gas containing 7 m3N and SOx concentration of 800 ppm f is brought into contact with a cooling desalinating solution in a cooling scavenging tower, while surplus wastewater containing calcium compounds from the absorption tower is supplied to the cooling scavenging tower. 100% saturation
This figure shows a correlation diagram of the results of determining the amount of hydrogen chloride added, where the temperature is 48° C. and the amount of H2SO4 produced is 77 mol/H.

塩化水素を添加しない時は該ダスト及び前記余剰水から
もたらされるカルシウム化合物のモル供給速度が12.
5モル/Hになった時が石膏の析出開始点であることを
示し、12.5モル/H以上のカルシウムが供給される
場合は、カルシウム供給増加量に対し4.6倍モルの塩
化水素を供給すると石膏の飽和度が100%に維持され
ることを示している。即ち図中の石膏飽和線の傾きは1
74.6である。この図から明らかなようにカルシウム
と当量の塩化水素を供給するだけでは、石膏のスケール
を完全に防止するのに不足することがわかり、単純な量
論関係で石膏の溶解、析出が判定できないことを示すも
のである。
When no hydrogen chloride is added, the molar supply rate of calcium compounds resulting from the dust and surplus water is 12.
5 mol/H indicates the start point of gypsum precipitation, and if 12.5 mol/H or more of calcium is supplied, 4.6 times the mol of hydrogen chloride relative to the increased amount of calcium supply. It is shown that the saturation of gypsum is maintained at 100% by supplying . In other words, the slope of the gypsum saturation line in the figure is 1
It is 74.6. As is clear from this figure, simply supplying hydrogen chloride in an amount equivalent to calcium is insufficient to completely prevent gypsum scaling, and gypsum dissolution and precipitation cannot be determined based on simple stoichiometric relationships. This shows that.

第1図の塩化水素供給量がゼロの時石膏飽和になるカル
シウム供給量は1.2.5 mol/Hが得られる。こ
れはダスト濃度の増減及びダスト中のカルシウム以外の
アルカリ成分量の変化によって変動するものであるが、
石膏飽和線の傾きははソ46が満たされる結果が得られ
た。
When the amount of hydrogen chloride supplied in FIG. 1 is zero, the amount of calcium supplied to saturate the gypsum is 1.2.5 mol/H. This varies depending on increases and decreases in dust concentration and changes in the amount of alkaline components other than calcium in the dust.
A result was obtained in which the slope of the gypsum saturation line satisfies the condition 46.

なお第1図の結果は冷却除じん塔からの抜き出し液が1
o m37Hとした時の定常状態での物質収支及び平衡
計算から求められたものである。
The results shown in Figure 1 indicate that the liquid extracted from the cooling dust removal tower is 1
It was determined from steady-state mass balance and equilibrium calculations when 0 m37H.

更に、冷却除しん液にC1−イオンを所望濃度にする方
法として、塩化水素以外に塩化カルシウムを除く水溶性
の塩化物(例えばNaCt、 KCl。
Furthermore, as a method for achieving a desired concentration of C1- ions in the cooled desalting solution, in addition to hydrogen chloride, water-soluble chlorides other than calcium chloride (e.g., NaCt, KCl) can be used.

A7Ct3. Mg0t2などの工業的にも比較的安価
に人に水溶液中では塩化水素は解離してH+イオンとC
7−イオンとが生成し、それら各イオンが本発明に有効
であることから、他の塩化物からもたらされるCl−イ
オンがH+4オンと別々に供給されても、冷却除しん液
中では同じ効果が得られたもあと考えられる。但し、塩
化カルシウムはCZ−イオンを供給すると同時にCa2
+イオンも当量供給してしまうので、別途供給されるカ
ルシウム化合物からもたらされるCa2+イオンに対し
て任意の当量比でcl−イオンを調整できないことから
、本発明の効果を得ることができなかった。
A7Ct3. In an aqueous solution, hydrogen chloride dissociates into H+ ions and C
7- ions are generated, and each of these ions is effective in the present invention, so even if Cl- ions brought from other chlorides are supplied separately from H+4 ions, the same effect will be achieved in the cooling descaling solution. It is also possible to obtain this. However, calcium chloride supplies CZ- ions and at the same time Ca2
Since + ions are also supplied in an equivalent amount, the effects of the present invention could not be obtained because Cl - ions could not be adjusted in any equivalent ratio to Ca 2+ ions provided from a separately supplied calcium compound.

また塩化物の供給源として海水を利用して゛も効果があ
った。海水ケ利用する場合は冷却除しん塔での蒸発濃縮
によってcl−濃度が高くなりすぎるので、蒸発補給水
には水道水を利用し、海水はカルシウム化合物の冷却除
しん塔への供給量に見合う分だけ供給した。塩化水素は
CZ−−と共にH+も当量含んでいるのに対し、海水は
H+は少ない。しかし、排ガス中の硫黄酸化物の一部が
冷却除じん液に吸収される為、おのずとH″は硫黄酸化
物から供給されたので、塩化水素を供給した時と同じス
ケール防止効果が得ちれた。
Using seawater as a source of chloride was also effective. If seawater is used, the Cl concentration will become too high due to evaporation concentration in the cooling tower, so tap water is used as evaporation make-up water, and the seawater is suitable for the amount of calcium compounds supplied to the cooling tower. I supplied just enough. Hydrogen chloride contains an equivalent amount of H+ as well as CZ--, whereas seawater contains less H+. However, since some of the sulfur oxides in the exhaust gas are absorbed by the cooling dust remover, H'' is naturally supplied from the sulfur oxides, so the same scale prevention effect as when hydrogen chloride is supplied cannot be obtained. Ta.

即ち、海水中に含着れるCZ−と排ガス中に含着れる硫
黄酸化物からもたらされるH+が、塩化水素全供給した
時と同じ効果を発揮したものと考えられる。
In other words, it is thought that H+ produced from CZ- contained in seawater and sulfur oxide contained in exhaust gas exerted the same effect as when all hydrogen chloride was supplied.

本発明方法によれば、例えば、カルシウム化合物を含む
ダストが硫黄酸化物の一部と共に冷却除しん塔で捕集さ
れ石膏が析出する場合や、吸収塔からのカルシウム化合
物を含んだ余剰排水を冷却除しん塔の補給水として利用
することによって、濃縮による石膏析出が起こる場合に
、塩化水素、塩化カルシウムを除く水溶性塩化物、海水
から選ばれた少なくとも一つを加えることによって石膏
析出が起こりに〈〈なり、カルシウム供給増加量に対1
2て4.6倍モル以上ノat−イオンとなるよう塩化水
素あるいはその同等物を加えることによって完全に石膏
析出が防止できるもので、従来のように厄介な種晶調整
やソフトニングが不要で、スラリーハンドリング。
According to the method of the present invention, for example, when dust containing calcium compounds is collected together with a part of sulfur oxides in a cooling tower and gypsum is precipitated, or when excess wastewater containing calcium compounds from an absorption tower is cooled. When gypsum precipitation occurs due to concentration when used as make-up water for a dust removal tower, gypsum precipitation can be prevented by adding at least one selected from hydrogen chloride, water-soluble chlorides other than calcium chloride, and seawater. 〈〈, 1 for each increase in calcium supply
By adding hydrogen chloride or its equivalent to 4.6 times the mole or more of atomic ions, gypsum precipitation can be completely prevented, eliminating the need for troublesome seed crystal adjustment and softening as in conventional methods. , slurry handling.

ID−ジョン、閉塞、スラッジ廃棄物の増大。ID-John, blockage, increase in sludge waste.

工程の煩雑さなどが無くなる上に、すぐれたスケール防
止効果が得られる。
In addition to eliminating the complexity of the process, it also provides excellent scale prevention effects.

実施例1 湿式石灰石貴注排煙脱硫パイロットプラントに於いて、
石炭燃焼灰275 mf/ m3N % 硫黄酸化物8
00 ppm f含む石炭焚き排ガス2000m3N/
H’i液ガス比21/m3Nで冷却除しん液をスプレー
する冷却除しん塔に導入した。排ガスの増湿冷却に伴っ
て蒸発する水を補給するため石膏分離上澄液f 40 
t/Hで供給する一方、冷却除しん液の一部を連続的に
20t/Hで系外へ抜き出しながら、定常状態運転を維
持した。
Example 1 In a wet limestone injection flue gas desulfurization pilot plant,
Coal combustion ash 275 mf/m3N% Sulfur oxides 8
Coal-fired exhaust gas containing 00 ppm f 2000m3N/
It was introduced into a cooling dust removal tower that sprays a cooling dust removal solution at a H'i liquid-gas ratio of 21/m3N. Gypsum separation supernatant liquid F40 is used to replenish water that evaporates as exhaust gas is humidified and cooled.
While supplying at a rate of t/h, a portion of the cooling desalting solution was continuously drawn out of the system at a rate of 20 t/h, maintaining steady state operation.

石膏分離上澄液は石膏が飽和状態に壕で溶解した液であ
り、冷却除しん塔での水分蒸発によって濃縮されるので
石膏結晶が析出した。この時の溶解カルシウムは125
ミリモル/lであった。
The gypsum separation supernatant liquid is a liquid in which gypsum is dissolved in a saturated state in a trench, and as it is concentrated by water evaporation in a cooling tower, gypsum crystals are precipitated. Dissolved calcium at this time is 125
It was mmol/l.

そこで次にダスト中に含まれるカルシウム化合物を分析
によって求めるとCa= Q、 54ミリモル/グであ
り、石膏分離上澄液中のカルシウムはCa=18ミリモ
ル/lであったので11、ソの供給計全計算し1015
ミリモル/I(’e得、これから塩化水素を添加しない
時の石膏飽和溶解濃度と系外抜き出し流量から求められ
る溶解石膏抜き出し量250ミリモル/Hk差し引くと
、カルシウム供給増加量765ミリモル/Hが得られる
。この値の4.6倍モルに相当する5519ミリモル/
Hの塩化水素を添加し、平常状態運転全維持した所、冷
却除しん液中の石膏結晶が消滅し、スケールトラブルの
ない運転が達成できた。
Next, when the calcium compounds contained in the dust were determined by analysis, Ca = Q, 54 mmol/g, and the calcium in the gypsum separation supernatant was 18 mmol/l, so the supply of 11, Total calculation: 1015
mmol/I ('e obtained, by subtracting 250 mmol/Hk of the amount of dissolved gypsum extracted from the saturated dissolved concentration of gypsum without adding hydrogen chloride and the flow rate extracted from the system, an increase in calcium supply of 765 mmol/H is obtained. 5519 mmol/corresponding to 4.6 times this value by mole
When hydrogen chloride (H) was added and normal operation was maintained, the gypsum crystals in the cooled desalting solution disappeared, and operation without scale problems was achieved.

塩化水素は燃料の種類によっては排ガス中に含まれる場
合があるので、かかる場合は塩化水素添加量をその分だ
け低減することができる。
Since hydrogen chloride may be contained in exhaust gas depending on the type of fuel, in such a case, the amount of hydrogen chloride added can be reduced by that amount.

また、塩化水素の添加方法は、冷却除しん液にCZ−イ
オンが所望濃度に調整されれば良いことから、排ガス中
に塩化水素ガスを注入する方法や塩化水素水を直接、冷
却除しん液に添加する方法の他、排ガスに同伴してカル
シウム化合物が供給されない場合には石膏分離上澄液に
塩化水素をpT(調整しながら加え、石膏分離上澄液に
含まれるカルシウム化合物濃度の約4.6倍モル濃度の
塩化水素となした後で冷却除しん塔へ補給漬る方法が調
整しやすく便利であった0
In addition, the method of adding hydrogen chloride is to adjust the CZ- ions to the desired concentration in the cooling descaling solution. In addition to the method of adding hydrogen chloride to the gypsum separation supernatant when calcium compounds are not supplied together with the exhaust gas, hydrogen chloride is added to the gypsum separation supernatant while adjusting the concentration of about 4 pT of the calcium compound concentration contained in the gypsum separation supernatant. .The method of replenishing the hydrogen chloride to a 6-fold molar concentration and then replenishing it to the cooling and desaturation tower was convenient and easy to adjust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成の要となる冷却除しん液の2水石
膏結晶の飽和溶解線を、塩化水素供給量とカルシウム化
合物供給量の相関関係から求めたものである。 復代理人  内 1)  明 復代理人  萩 原 亮 −
FIG. 1 shows the saturated dissolution line of dihydrate gypsum crystals in the cooling destaining solution, which is the key to the structure of the present invention, determined from the correlation between the amount of hydrogen chloride supplied and the amount of calcium compound supplied. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 少な〈ともダストと硫黄酸化物を含む燃焼排ガスを、冷
却除じん液と接触させて排ガスを増湿冷却すると共に該
燃焼排ガス中のダストヲ除去する冷却除しん塔と、次い
で冷却除じん塔から排出された硫黄酸化物を含む排ガス
を吸収液と接触させて該硫黄酸化物を除去する吸収塔か
ら構成される湿式排ガス処理装置に於いて、核冷却除し
ん塔にもたらされるカルシウム化合物の石膏析出開始濃
度を越えた増加量に対し4.6倍モル以上のCZ−イオ
ン濃度となるよう、塩化水素,塩化カルシウムを除く水
溶性塩化物,海水から選ばれた少なくとも1つを供給し
、該冷却除しん液中での2水石膏結晶の晶析を防止する
ことを特徴とする冷却除しん塔スケール防止方法。
Combustion exhaust gas containing at least a small amount of dust and sulfur oxides is brought into contact with a cooling dust removal liquid to humidify and cool the exhaust gas and remove dust from the combustion exhaust gas, and then discharged from the cooling dust removal tower. In a wet exhaust gas treatment device consisting of an absorption tower that removes sulfur oxides by bringing the flue gas containing sulfur oxides into contact with an absorption liquid, gypsum precipitation of calcium compounds brought to the nuclear cooling removal tower begins. At least one selected from hydrogen chloride, water-soluble chlorides other than calcium chloride, and seawater is supplied so that the CZ-ion concentration is 4.6 times the mole or more with respect to the increased amount exceeding the concentration, and the cooling removal is performed. A method for preventing scale in a cooling and dust removal tower, characterized by preventing crystallization of dihydrate gypsum crystals in a solution.
JP8647482A 1982-05-24 1982-05-24 Prevention of scaling in cooling and dust removing column Granted JPS58205590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8647482A JPS58205590A (en) 1982-05-24 1982-05-24 Prevention of scaling in cooling and dust removing column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8647482A JPS58205590A (en) 1982-05-24 1982-05-24 Prevention of scaling in cooling and dust removing column

Publications (2)

Publication Number Publication Date
JPS58205590A true JPS58205590A (en) 1983-11-30
JPS6340600B2 JPS6340600B2 (en) 1988-08-11

Family

ID=13887959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8647482A Granted JPS58205590A (en) 1982-05-24 1982-05-24 Prevention of scaling in cooling and dust removing column

Country Status (1)

Country Link
JP (1) JPS58205590A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589895U (en) * 1992-05-15 1993-12-07 株式会社クボタ Centrifugal blower

Also Published As

Publication number Publication date
JPS6340600B2 (en) 1988-08-11

Similar Documents

Publication Publication Date Title
EP0603345A1 (en) Water compositions
US4000991A (en) Method of removing fly ash particulates from flue gases in a closed-loop wet scrubbing system
JP3573950B2 (en) Exhaust gas desulfurization method
KR100848286B1 (en) Scale Preventer and Scale Preventing Method for Wastewater Disposal Facility in Flue Gas Desulfurization System Using Sodium Hypochlorite
JPH1157397A (en) Gas purifying method
JP4330693B2 (en) Treatment method for fluorine-containing wastewater
NO178288B (en) Process for removing hydrogen sulphide from fluid streams and using a chelate degradation inhibitor, as well as aqueous solution for use in the process
JPH02152522A (en) Treatment of exhaust gas
JPH0788325A (en) Treatment of waste gas and device therefor
JPS58205590A (en) Prevention of scaling in cooling and dust removing column
JP2989352B2 (en) Treating apparatus for fly ash-containing flue gas desulfurizing and absorbing solution
JP2014516308A (en) Method for monitoring and controlling the chemical reaction of a ZLD process in a power plant
US4178348A (en) Process for removing sulfur oxides in exhaust gases
KR20060001283A (en) Wastewater disposal method in flue gas desulfurization system by using scale preventer
JP2678212B2 (en) Wet desulfurization method and apparatus
KR100573184B1 (en) Scale Preventer for Wastewater Disposal Facility in Flue Gas Desulfurization System
JPS5898126A (en) Desulfurization of stack gas
JP3358892B2 (en) Mixing method of dust collection ash and drainage and drainage of heavy oil fuel fired boiler
JPH11128659A (en) Device for treating waste gas in starting coal gasification plant
JPH0929058A (en) Solidification of desulfurized drain with coal ash
JP2001149744A (en) Scale controlling method in wet stack gas desulfurizing device
JP2607871B2 (en) Wet flue gas desulfurization equipment
JPH07116457A (en) Method and apparatus for controlling flue gas wet desulfurization treatment
CA2792760A1 (en) System for treating selenium-containing liquid, wet flue gas desulfurization device, and method for treating selenium-containing liquid
JP2940981B2 (en) Wet exhaust gas desulfurization apparatus and wet exhaust gas desulfurization method