JPS58205501A - Depositing method of electrolyte salts - Google Patents

Depositing method of electrolyte salts

Info

Publication number
JPS58205501A
JPS58205501A JP8799582A JP8799582A JPS58205501A JP S58205501 A JPS58205501 A JP S58205501A JP 8799582 A JP8799582 A JP 8799582A JP 8799582 A JP8799582 A JP 8799582A JP S58205501 A JPS58205501 A JP S58205501A
Authority
JP
Japan
Prior art keywords
water
salts
electrolyte salts
electrolyte
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8799582A
Other languages
Japanese (ja)
Inventor
Takeshi Iwatsuka
岩塚 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP8799582A priority Critical patent/JPS58205501A/en
Publication of JPS58205501A publication Critical patent/JPS58205501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To deposit electrolyte salts efficiently from a soln. of electrolyte salts by maintaining the degree of supersaturation necessary for depositing the electrolyte salts from said soln. continuously with an electrodialysis device. CONSTITUTION:The waste washing water 1' which is passed through a filter A so as to be removed of suspended solids is mixed with the desalted water 5 from an electrodialysis device D and the mixture is fed to a reverse osmosis device B. The nonpermeated liquid 4 wherein electrolyte salts are concentrated to a certain extent is fed into an intermediate vessel C. The liquid 4 in the vessel C is desalted in the device D and the treated water 5 is circulated to the inlet of the device B. On the other hand, the concentrated soln. 6 of the device D is circulated through a concentrate vessel E to the device D. The concentrated soln. 7 in the vessel E is fed to a crystallization vessel F, where the soln. 7 is cooled indirectly with the cooling water 8 produced in a refrigerator I to supersaturate the dissolved salts and the salts corresponding to the supersaturation in the soln. 7 are deposited by crystal growth.

Description

【発明の詳細な説明】 電解質塩類を電解質塩類溶液から固体として析出する方
法としては従来から蒸発濃縮法。
[Detailed Description of the Invention] Conventionally, the method of precipitating electrolyte salts as a solid from an electrolyte salt solution has been the evaporation concentration method.

析出分離法などがある。Examples include precipitation separation methods.

蒸発濃縮法は蒸発温度までの顕熱以外に蒸発に要する潜
熱を必要とするため、対象溶液の液量が多い場合には膨
大な熱エネルギーが必要となる。そのだめ蒸発に要する
熱エネルギーを軽減させるために、蒸発操作の、前段に
対象溶液の濃縮工程を設け5例えば逆浸透法。
The evaporative concentration method requires latent heat required for evaporation in addition to sensible heat up to the evaporation temperature, so if the amount of the target solution is large, an enormous amount of thermal energy is required. Therefore, in order to reduce the thermal energy required for evaporation, a step of concentrating the target solution is provided before the evaporation operation5, for example, reverse osmosis.

電気透析法あるいはイオン交換樹脂法などであらかじめ
対象溶液の減容を計っている。
The volume of the target solution is reduced in advance using electrodialysis or ion exchange resin methods.

一方析出分離法は溶解固形物質あるいは電解質塩類を溶
媒中から温度差による溶解度の違いを利用して析出する
操作であり、特に晶析操作では種晶あるいは自然発生核
の結晶成長により析出分離させている。これらの析出操
作は溶質の溶解度を利用するため、継続して行なうには
操作温度に対する過飽和度を何らかの方法によって逐次
与える必要があり。
On the other hand, the precipitation separation method is an operation in which dissolved solid substances or electrolyte salts are precipitated from a solvent by taking advantage of differences in solubility caused by temperature differences.In particular, in crystallization operations, precipitation and separation are performed by crystal growth of seed crystals or naturally occurring nuclei. There is. Since these precipitation operations utilize the solubility of the solute, in order to perform them continuously, it is necessary to sequentially provide a degree of supersaturation relative to the operating temperature by some method.

一般的な方法としては溶媒の蒸発あるいは冷却操作によ
って過飽和度を与えている。
Generally, supersaturation is achieved by evaporation or cooling of the solvent.

ただし冷却操作で溶質を析出すると、当該析出した溶質
に相当する分だけ液濃度が下がシ、析出操作を継続する
には溶液中の溶媒の蒸発を行ない、過飽和度を与えるこ
とが必要である。したがって従来では電解質塩類を電解
質塩類溶液から固体として析出する操作においては必ず
蒸発操作を必要としていた。
However, when a solute is precipitated by a cooling operation, the liquid concentration decreases by an amount corresponding to the precipitated solute, and in order to continue the precipitation operation, it is necessary to evaporate the solvent in the solution and give a degree of supersaturation. . Therefore, in the past, an evaporation operation was always required in the operation of precipitating electrolyte salts as a solid from an electrolyte salt solution.

本発明は蒸発工程を行なうことなく電解質塩類溶液から
効率よく電解質塩類を析出させることを目的とするもの
で、電解質塩類溶液から電解質塩類を析出するのに必要
な過飽和度を、電気透析装置で継続的に与えることを特
徴とする。すなわち本発明は電解質塩類溶液を濃縮して
電解質塩類を固体として析出するにあたり、電解質塩類
溶液を電気透析装置で濃縮する第一工程と、濃縮した電
解質塩類濃厚溶液を溶解飽和温度以下に冷却して電解質
塩類の一部を析出させる第二工程と、析出させた電解質
塩類を電解質塩類濃厚溶液から分離する第三工程とから
なり、電解質塩類を分離した電解質塩類濃厚溶液を電気
透析装置の濃縮側に循環通流して、再び第一工程、第二
行なうことなく電解質塩類を析出することを特徴とする
電解質塩類の析出方法である。
The purpose of the present invention is to efficiently precipitate electrolyte salts from an electrolyte salt solution without performing an evaporation step. It is characterized by giving. That is, in concentrating an electrolyte salt solution to precipitate the electrolyte salt as a solid, the present invention includes a first step of concentrating the electrolyte salt solution using an electrodialysis device, and cooling the concentrated electrolyte salt concentrated solution to a temperature below the dissolution saturation temperature. It consists of a second step in which a part of the electrolyte salts are precipitated, and a third step in which the precipitated electrolyte salts are separated from the electrolyte salt concentrated solution. This is a method for depositing electrolyte salts, which is characterized in that electrolyte salts are deposited without performing the first and second steps again through circulation.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

電気透析法はイオン交換膜を介してイオンを移行させる
操作であるが、カチオン膜とアニオン膜を併せ使うこと
によって溶液中の溶解質塩類を脱塩させる一方、濃縮さ
せることができ、脱塩側と濃縮側の濃度比を一般的には
17100位にすることができる。しかも濃縮側の濃度
は濃縮液の液量調整により容易に制御できる。本発明は
この電気透析法の濃縮倍率の大きさと濃縮液の濃度調整
の容易さに着目し、電気透析装置によりまず電解質塩類
を含む溶液を濃厚溶液に濃縮し1次いで当該濃厚溶液中
の電解質塩類を冷却操作により析出させ1次いで当該塩
類を分離した後に残留する電解質溶液を再び電気透析装
置で濃縮することにより、溶媒の蒸発操作を伴なわずに
電解質塩類を固体として順次析出できることを見いだし
たことにある。
Electrodialysis is an operation in which ions are transferred through an ion-exchange membrane, but by using both a cation membrane and an anion membrane, it is possible to desalinate and concentrate solute salts in a solution. Generally, the concentration ratio on the concentration side can be set to about 17,100. Furthermore, the concentration on the concentrated side can be easily controlled by adjusting the volume of the concentrated liquid. The present invention focuses on the large concentration ratio of this electrodialysis method and the ease of adjusting the concentration of the concentrated solution. It has been discovered that electrolyte salts can be sequentially precipitated as a solid without evaporation of the solvent by precipitating the electrolyte by a cooling operation, then separating the salts, and then concentrating the remaining electrolyte solution again using an electrodialysis device. It is in.

次に本発明方法の実施態様を金属表面処理工場から発生
する洗浄廃水の処理工程に用いた場合を一例として図面
に従って以下に説明する。
Next, an embodiment of the method of the present invention will be described below with reference to the drawings, taking as an example a case where the method is used in a process for treating cleaning wastewater generated from a metal surface treatment factory.

図面は本発明方法のフローシートであるが。The drawing is a flow sheet of the method of the present invention.

Aは濾過器、B′は逆浸透装置、Cは中間槽。A is a filter, B' is a reverse osmosis device, and C is an intermediate tank.

Dは電気透析装置、Eは濃縮水槽、Fは晶析槽、Gは遠
心分離器、Hは熱交換器、■は冷凍機を示す。
D is an electrodialysis device, E is a concentrated water tank, F is a crystallization tank, G is a centrifugal separator, H is a heat exchanger, and ■ is a refrigerator.

電解質塩類を含む洗浄廃水1をまづ濾過器Aに通し懸濁
物質を除去し2M濁物質を除去した洗浄廃水1′を電気
透析装置りからの脱塩処理水5と混合し、この混合水2
を逆浸透装置Bに送る。逆浸透装置Bでは混合水2のう
ち洗浄廃水1′とほぼ同容量の液量を透過水3として回
収し、電解質塩類をある程度濃縮した非透過液4を中間
槽Cに送る。次に中間槽Cの非透過液4を電気透析装置
りで脱塩処理し、脱塩処理水5は前述したごとく逆浸透
装置Bの入口に循環する。一方電気透析装置りの濃縮側
に通流する濃厚溶液6は濃縮水槽Eを介して電気透析装
置りを循環さ−せ、非透過液昼中の塩類を順次濃厚溶液
6に移行させて。
Washing wastewater 1 containing electrolyte salts is first passed through a filter A to remove suspended substances, and washing wastewater 1' from which 2M turbid substances have been removed is mixed with desalinated water 5 from the electrodialysis equipment, and this mixed water is 2
is sent to reverse osmosis equipment B. In the reverse osmosis device B, an amount of the mixed water 2 that is approximately the same volume as the cleaning waste water 1' is recovered as permeated water 3, and a non-permeated liquid 4 in which electrolyte salts are concentrated to some extent is sent to the intermediate tank C. Next, the non-permeate liquid 4 in the intermediate tank C is desalted using an electrodialysis device, and the desalted water 5 is circulated to the inlet of the reverse osmosis device B as described above. On the other hand, the concentrated solution 6 flowing to the concentration side of the electrodialysis apparatus is circulated through the electrodialysis apparatus via the concentration water tank E, and the salts in the non-permeated liquid are sequentially transferred to the concentrated solution 6.

塩類の濃縮を行なう。次に、濃縮水槽Eの濃厚溶液7を
晶析槽Fに送り、当該濃厚溶液7を冷凍機Iで発生した
冷却水8で間接的に冷却し、溶解塩類を過飽和の状態に
し、濃厚溶液7中の過飽和に相当する量の塩類を結晶成
長により析出する。
Concentrate salts. Next, the concentrated solution 7 in the concentrated water tank E is sent to the crystallization tank F, and the concentrated solution 7 is indirectly cooled with the cooling water 8 generated by the refrigerator I, so that the dissolved salts are supersaturated, and the concentrated solution 7 An amount of salts corresponding to the supersaturation in the solution is precipitated by crystal growth.

このようにして析出させた塩類を含むスラリー9を次い
で遠心分離器Gに送り、固形分10を回収し7分離液1
1を冷凍機工から排出される温排水12を利用し熱交換
器Hで間接的に加温し、常温の分離液11’として濃縮
水槽Eに戻す。
The slurry 9 containing the salts precipitated in this way is then sent to a centrifuge G, where the solid content 10 is recovered and the separated liquid 1
1 is indirectly heated in a heat exchanger H using heated waste water 12 discharged from the refrigeration equipment, and returned to the concentrated water tank E as a separated liquid 11' at room temperature.

以上説明したように本発明方法を用いることによって洗
浄廃水等に含まれる電解質塩類を蒸発操作を行なうこと
なく固体として析出でき、また電気透析装置の前段に逆
浸透装置を設置することにより分離液を極めて低塩類濃
度の処理水として排出することができる。
As explained above, by using the method of the present invention, electrolyte salts contained in washing wastewater, etc. can be precipitated as a solid without performing evaporation operations, and by installing a reverse osmosis device before the electrodialysis device, the separated liquid can be separated. It can be discharged as treated water with extremely low salt concentration.

さらに本発明は晶析槽などによって電解質塩類を析出し
た分離液を、電気透析装置で処理することにより析出操
作以前の濃厚溶液濃度あるいは析出可能な濃度に濃縮す
ることができるので、電解質塩類溶液から継続的に電解
質塩類を固体として析出することが可能である。
Furthermore, in the present invention, by treating the separated liquid in which electrolyte salts have been precipitated in a crystallization tank or the like with an electrodialysis device, it is possible to concentrate the solution to the concentration of the concentrated solution before the precipitation operation or to a concentration that can be precipitated. It is possible to continuously deposit electrolyte salts as a solid.

また本発明は気−液相間の相変換がないため溶媒の蒸発
に要する膨大な熱エネルギーを必要とせず、イオン交換
膜を介して移行するイオンの電気エネルギーが主なエネ
ルギー消費であることから従来の蒸発操作を含む固液の
分離方法に比べ1150〜1/200のエネルギーコス
トですむ省エネルギータイプの発明である。
Furthermore, the present invention does not require a huge amount of thermal energy to evaporate the solvent because there is no phase transformation between gas and liquid phases, and the main energy consumption is the electrical energy of the ions transferred through the ion exchange membrane. This is an energy-saving invention that requires 1,150 to 1/200 times less energy cost than conventional solid-liquid separation methods that include evaporation operations.

なお図面に示した実施態様においては、電気透析装置の
前段〆逆浸透装置を設置したが。
In the embodiment shown in the drawings, a reverse osmosis device was installed before the electrodialysis device.

これは固体塩類とともに低塩類濃度の処理水も得ようと
する場合であって、たとえばこのような処理水を得る必
要がない場合は逆浸透装置を省略することができる。
This is a case where it is desired to obtain treated water with a low salt concentration as well as solid salts. For example, if it is not necessary to obtain such treated water, the reverse osmosis device can be omitted.

以下に本発明方法を実施例に従って説明する。The method of the present invention will be explained below according to examples.

実施例−1 金属表面処理工場から発生する硫酸排水の中和処理水中
に含まれるNa2SO4を本発明方法によって処理した
Example 1 Na2SO4 contained in neutralized sulfuric acid wastewater generated from a metal surface treatment factory was treated by the method of the present invention.

中和処理水量は1cerr?7日で中和処理水中に含ま
れるN a2 S 04は平均して6’、 ooa q
/ tであった。この中和処理水(zi/n)を0・7
5m2の陽イオン交換膜と′陰イオン交換膜とを70対
積層した電気透析装置に送り、一部脱塩循環水を加え(
10,5ty//H) 、 140Vの電圧をかけて1
,800■/lに脱塩した。脱塩に要した消費電力は4
.7Kw/Hで、との脱塩処理水(z??1′/)()
はそのまま工程用水として循環利用した。一方、電気透
析装置の濃縮側に通流した濃厚溶液140,000 m
g’/l (10,5m/H)は脱塩側からのイオンの
移行により140,800■/lの濃度に増加した。次
に濃縮水槽の濃厚溶液(17−5℃)を完全混合型晶析
槽に送り冷凍機からの冷却水により16℃に冷却し’+
 Na2SO4を結晶成長させ、結晶スラリーを遠心分
離器にかけて、 Na2SO4を固体として析出回収し
た。
Is the amount of neutralized water 1cerr? The average amount of N a2 S 04 contained in the neutralized water in 7 days is 6', ooa q
/t. This neutralized water (zi/n) is 0.7
The mixture was sent to an electrodialysis machine in which 70 pairs of cation exchange membranes and anion exchange membranes of 5 m2 were stacked, and partially demineralized circulating water was added (
10,5ty//H), applying a voltage of 140V
, 800 μ/l. The power consumption required for desalination is 4
.. At 7Kw/H, desalinated water (z??1'/) ()
The water was recycled and used as process water. On the other hand, 140,000 m of concentrated solution was passed through the concentration side of the electrodialyzer.
g'/l (10,5 m/H) increased to a concentration of 140,800 .mu./l due to the transfer of ions from the desalting side. Next, the concentrated solution (17-5℃) in the concentrated water tank is sent to a completely mixed crystallization tank and cooled to 16℃ with cooling water from the refrigerator.
Crystals of Na2SO4 were grown, and the crystal slurry was centrifuged to precipitate and collect Na2SO4 as a solid.

回収量は202kg/日であった。また分離液について
は冷凍機の温排水を利、用した熱交換器で17.5℃に
加温し、 131,600■/lの濃度(1,0m”/
 H)で濃縮水槽に戻した。
The amount recovered was 202 kg/day. The separated liquid was heated to 17.5°C using a heat exchanger using heated waste water from the refrigerator, and was heated to a concentration of 131,600μ/l (1.0m"/l).
H) was returned to the concentration water tank.

かかる処理によって中和処理水中に含まfするNa2S
O4を固体として析出回収することができ2本プロセス
での電気透析装置に要した電力消費量(4,’iKw/
H−nl )は中和処理水を直接、蒸発装置にかけ固体
として回収する場合の熱エネルギーに比較して、約1/
 200のエネルギーコストで済んだ。
This treatment reduces Na2S contained in the neutralized water.
O4 can be precipitated and recovered as a solid, and the power consumption (4,'iKw/
H-nl) is approximately 1/1/2 of the thermal energy when the neutralized water is directly passed through an evaporator and recovered as a solid.
It only cost 200 energy.

実施例−2 金属表面処理工場から発生するCuSO4を含む洗浄廃
水を図面のフローに従って処理し九洗浄廃水量は115
0.、’/日で廃水中に含まれるCuS O4は平均し
て1,0OC1%I/lであった。
Example-2 Cleaning wastewater containing CuSO4 generated from a metal surface treatment factory was treated according to the flowchart in the drawing, and the amount of cleaning wastewater was 115.
0. ,'/day, the average amount of CuS O4 contained in the wastewater was 1,0 OC1% I/l.

この廃水(6,2m”/H)をまづ、 10μの精密フ
ィルターで処理して懸濁物質を除去し、電気透析装置(
後記にて説明する)からの脱塩処理水(濃度2,000
 W/l 、流量2.1 ??1’/ H)と混合し、
この混合水(8,3tt?/ H)を酢酸セルローズ系
のホローファイバー型逆浸透装置に通した。この逆浸透
装置を28 kg / crlの圧力で操作し、濃縮液
を5 、0001ng/ tに濃縮したところ透過水と
しては12−5 ”f/lのCuSO4を含む6.2m
!/Hの処理水が得られ、当該処理水はそのまま工程用
水として循環利用した。次に、逆浸透装置からの前記5
.000 tng/ lの濃縮水(2,1,//H)を
0.”75m” (500m+uX1,5−05−0O
の陽イオン交換膜と陰イオン交換膜を50対積層した電
気透析装置で一部脱塩循環水を加え100Vの電圧をか
け、 2,000キ/lに脱塩したところ、74Aの電
流を要した。一方、電気透析装置の濃縮側では濃縮水槽
からの濃厚液160.000 ’Nj/l (7−8m
I/ H)が160.Boo 189/1に濃度が増加
した。次に、濃縮水槽の17.5℃の濃厚溶液を完全混
合型晶析槽に送り冷凍機からの冷却水により15.0℃
に冷却しCuSO4を結晶成長させ、結晶スラリーを遠
心分離器にかけ、 CuSO4を固体として析出回収し
た。回収量は15oky7日であった。また分離液につ
いては冷凍機の温排水を利用した熱交換器で17.5℃
に加温し157 、000■/lの濃度で濃縮水槽に戻
した。
This wastewater (6.2m"/H) was first treated with a 10μ precision filter to remove suspended solids, and then treated with an electrodialysis device (
Desalinated water (concentration 2,000
W/l, flow rate 2.1? ? 1'/H),
This mixed water (8.3 tt?/H) was passed through a cellulose acetate hollow fiber type reverse osmosis device. This reverse osmosis device was operated at a pressure of 28 kg/crl, and the concentrate was concentrated to 5,0001 ng/t.
! /H treated water was obtained, and the treated water was recycled as it was as process water. Next, the above 5 from the reverse osmosis device
.. 000 tng/l of concentrated water (2,1,//H). "75m" (500m+uX1,5-05-0O
When desalinated to 2,000 k/l using an electrodialysis machine consisting of 50 stacked pairs of cation exchange membranes and anion exchange membranes, some desalinated circulating water was added and a voltage of 100 V was applied to desalinate the membrane to 2,000 k/l, which required a current of 74 A. did. On the other hand, on the concentration side of the electrodialysis machine, 160.000'Nj/l (7-8m
I/H) is 160. The concentration increased to Boo 189/1. Next, the concentrated solution at 17.5°C in the concentrated water tank is sent to a completely mixed crystallization tank and heated to 15.0°C with cooling water from the refrigerator.
The slurry was cooled to a temperature of 50°C to grow crystals of CuSO4, and the crystal slurry was centrifuged to precipitate and collect CuSO4 as a solid. The amount recovered was 15oky7 days. The separated liquid was heated to 17.5℃ using a heat exchanger using heated waste water from a refrigerator.
The mixture was heated to a temperature of 157,000 μl/l and returned to the concentration water tank.

かかる処理によって、プロセス廃水中に含まれるCuS
O4を蒸発操作を伴なわずに固体として析出回収するこ
とができ1本プロセスにおける電気透析装置での電力消
費吋は廃水m゛当り約1.2*wHであり逆浸透装置の
濃縮水を全量蒸発装置にかけた場合の熱エネルギーに比
較して約1/200のエネルギーコストであり。
Through such treatment, CuS contained in process wastewater is reduced.
O4 can be precipitated and recovered as a solid without any evaporation operation, and the power consumption in the electrodialysis device in one process is approximately 1.2*wH per m of wastewater, and the entire amount of concentrated water in the reverse osmosis device can be recovered. The energy cost is approximately 1/200 of the thermal energy required for an evaporator.

運転費としても約1150に軽減できた。Operating costs were also reduced to approximately 1,150 yen.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様の一例を示すもので、電解質塩
類の析出方法のフロー説明図である。 A・・・沢過器      B・・・逆浸透装置C・・
・中間槽      D・・・電気透析装置訃・・濃縮
水槽     F・・・晶析槽G・・・遠心分離器  
  H・・・熱交換器■・・・冷凍機 1・・・洗浄廃水     2・・・混合水3・・・透
過水      4・・・非透過液5・・・脱塩処理水
    6・・・濃厚溶液7・・・濃厚溶液     
訃・・冷却水9・・・スラリー     10・・・固
形分11・・・分離液     12・・・温排水手続
補正書(自発) 昭和58年8月77日 特許庁長官  若 杉 和 夫  殿 1、事件の表示 昭和57年特許願第87995号 λ 発明の名称 電解質塩類の析出方法 3、補正をする者 事件との関係 特許出願人 住所  東京都文京区本郷5丁目5番16号名称  (
440)  オルガノ株式会社代表者   永  井 
 邦  夫 4、代理人  〒113 5、補正の対象 明細書の発明の詳細な説明の欄 a 補正の内容 別紙のとおり 明細書中の下記事項を3負l−憎[います。 Z第80最下行にf’ (Jo、5@/II ) Jと
あるのをf (10,5ml/++ ) 1と訂11日
する6゜ 以  I
The drawing shows an example of an embodiment of the present invention, and is a flow explanatory diagram of a method for depositing electrolyte salts. A... Filter device B... Reverse osmosis device C...
・Intermediate tank D...Electrodialysis equipment...Concentration water tank F...Crystallization tank G...Centrifugal separator
H... Heat exchanger ■... Freezer 1... Washing waste water 2... Mixed water 3... Permeated water 4... Non-permeated liquid 5... Desalinated water 6... Concentrated solution 7...Concentrated solution
Death...Cooling water 9...Slurry 10...Solid content 11...Separated liquid 12...Amendment for warm water drainage procedures (voluntary) August 77, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi 1 , Indication of the case 1982 Patent Application No. 87995λ Name of the invention Method for precipitation of electrolyte salts 3, Person making the amendment Relationship to the case Patent applicant address 5-5-16 Hongo, Bunkyo-ku, Tokyo Name (
440) Organo Co., Ltd. Representative Nagai
Kunio 4, Agent 〒113 5, Column a for detailed explanation of the invention in the specification subject to amendment Contents of the amendment As shown in the attached sheet, we have 3 negative points regarding the following matters in the specification. In the 80th bottom line of Z, the text "f' (Jo, 5@/II) J" is corrected to "f (10,5ml/++) 1" 11th, 6° or more I

Claims (1)

【特許請求の範囲】 電解質塩類溶液を濃縮して電解質塩類を析出するにあだ
や、電解質塩類溶液を電気透析装置で濃縮する第一工程
と、濃縮した電解質塩類濃厚溶液を溶解飽和温度以下に
冷却して電解質塩類の一部を析出させる第二工程と。 析出させた電解質塩類を電解質塩類濃厚溶液から分離す
る第三工程とからなり、電解質塩類を分離した電解質塩
類濃厚溶液を電気透析装置の濃縮側に循環通流して、再
び第一工程。 第二工程、第三工程の順に処理して、蒸発工程を行なう
ことなく電解質塩類を析出する仁とを特徴とする電解質
塩類の析出方法。
[Claims] After concentrating the electrolyte salt solution to precipitate the electrolyte salts, a first step of concentrating the electrolyte salt solution using an electrodialysis device and lowering the concentrated electrolyte salt concentrate solution to a temperature below the dissolution saturation temperature are performed. and a second step of cooling to precipitate a portion of the electrolyte salts. The third step consists of separating the precipitated electrolyte salts from the electrolyte salt concentrated solution, and the electrolyte salt concentrated solution from which the electrolyte salts have been separated is circulated through the concentration side of the electrodialysis device, and then the first step is repeated. 1. A method for depositing electrolyte salts, which comprises performing a second step and a third step in order to deposit electrolyte salts without performing an evaporation step.
JP8799582A 1982-05-26 1982-05-26 Depositing method of electrolyte salts Pending JPS58205501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8799582A JPS58205501A (en) 1982-05-26 1982-05-26 Depositing method of electrolyte salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8799582A JPS58205501A (en) 1982-05-26 1982-05-26 Depositing method of electrolyte salts

Publications (1)

Publication Number Publication Date
JPS58205501A true JPS58205501A (en) 1983-11-30

Family

ID=13930377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8799582A Pending JPS58205501A (en) 1982-05-26 1982-05-26 Depositing method of electrolyte salts

Country Status (1)

Country Link
JP (1) JPS58205501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102905A (en) * 1983-11-11 1985-06-07 Canon Inc Treatment of waste liquid
EP0613862A2 (en) * 1993-02-03 1994-09-07 Metallgesellschaft Aktiengesellschaft Process for reducing the concentration of pollutants in waste water from industrial processes
KR100463251B1 (en) * 2002-09-11 2004-12-23 웅진코웨이주식회사 Purified system having electro dialysis
KR100501417B1 (en) * 2002-06-21 2005-07-18 한국전력공사 The apparatus to remove inorgaic materials in waste water using osmosis membrane and energy saving electrodes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232880A (en) * 1975-09-09 1977-03-12 Asahi Chem Ind Co Ltd Treating process of seawater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232880A (en) * 1975-09-09 1977-03-12 Asahi Chem Ind Co Ltd Treating process of seawater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102905A (en) * 1983-11-11 1985-06-07 Canon Inc Treatment of waste liquid
JPH05116B2 (en) * 1983-11-11 1993-01-05 Canon Kk
EP0613862A2 (en) * 1993-02-03 1994-09-07 Metallgesellschaft Aktiengesellschaft Process for reducing the concentration of pollutants in waste water from industrial processes
EP0613862A3 (en) * 1993-02-03 1994-12-28 Metallgesellschaft Ag Process for reducing the concentration of pollutants in waste water from industrial processes.
KR100501417B1 (en) * 2002-06-21 2005-07-18 한국전력공사 The apparatus to remove inorgaic materials in waste water using osmosis membrane and energy saving electrodes
KR100463251B1 (en) * 2002-09-11 2004-12-23 웅진코웨이주식회사 Purified system having electro dialysis

Similar Documents

Publication Publication Date Title
CN104692574B (en) Treatment method of high saline wastewater
US9433901B2 (en) Osmotic desalination process
CN107089752B (en) The processing method of desulfurization wastewater
CN103619452B (en) Permeability and separation system and method
CN102329036B (en) High-efficiency method for recovery treatment of saliferous wastewater under zero emission through residual heat utilization
CN106430794A (en) Resourceful treatment method and treatment system for desulfuration wastewater
CN105000737B (en) A kind of Industrial sewage treatment system and sewage water treatment method
WO2012120912A1 (en) System for producing fresh water
CN108203197A (en) A kind of processing system of brine waste
CN208700815U (en) A kind of high slat-containing wastewater zero-discharge treatment system
CN110228891A (en) A kind of preparation method of brine waste MVR condensing crystallizing
CN104058525B (en) Production waste recovery and treatment method containing high ammonia nitrogen and nitric nitrogen
US4618429A (en) Method of maintaining adequate seed crystal in preferential precipitation systems
US4318772A (en) Saturated liquor cooling tower
JP2003212537A (en) Method and apparatus for manufacturing salt from seawater
CN110217934A (en) A kind of preparation method of pickled vegetable brine MVR evaporative crystallization
JPS58205501A (en) Depositing method of electrolyte salts
CN212127859U (en) Circulating salt separation crystallization system
CN106348510A (en) Thermal power plant desulfurization wastewater electrodialysis reconcentrator
CN202208671U (en) Brine waste zero emission recovering system
CN106117012B (en) A kind of separation and recovery method of the dense room liquid of zymotic fluid electrodialysis desalination
KR101903771B1 (en) Energy-efficient method of desalination and desalination apparatus
JP2981077B2 (en) Mineral recovery method and mineral recovery device
CN110104815A (en) A kind of method and system from mine water recycling potassium
CN107365021A (en) A kind of alum titanium waste water ammonium recovery and zero-discharge technology and system