JPS58204803A - Intermittent ozone feeding apparatus - Google Patents

Intermittent ozone feeding apparatus

Info

Publication number
JPS58204803A
JPS58204803A JP8607782A JP8607782A JPS58204803A JP S58204803 A JPS58204803 A JP S58204803A JP 8607782 A JP8607782 A JP 8607782A JP 8607782 A JP8607782 A JP 8607782A JP S58204803 A JPS58204803 A JP S58204803A
Authority
JP
Japan
Prior art keywords
ozone
adsorption
pressure
tank
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8607782A
Other languages
Japanese (ja)
Inventor
Akira Usui
明 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8607782A priority Critical patent/JPS58204803A/en
Publication of JPS58204803A publication Critical patent/JPS58204803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for an expensive high lift pump, by desorbing ozone from an ozone adsorption and desorption column under reduced pressure in an intermittent ozone feed apparatus, and using a pressurizing blower for the desorbed ozone and a water supply pump for a pressurizing tank. CONSTITUTION:In an intermittent ozone feed apparatus having an ozonizer 1, ozone adsorption and desorption column 2, pressurizing tank 13 for ozone, etc., the adsorbed ozone in the ozone adsorption and desorption column 2 is desorbed from an ozone adsorbent by brine from a brine tank 6, and then compressed and stored in the pressurizing tank 13 by a pressurizing blower 12. In feeding the ozone to a high-pressure water supply pipe 11, a valve (5e) is closed to open valves (5f) and (5g), and a water supply pump 14 is operated to supply water into the pressurizing tank 13. The oxygen gas containing the ozne is then passed through the valve (5g) and injected into the water supply pipe 11. Thus, a high lift pump such as an ejector pump is not required.

Description

【発明の詳細な説明】 本発明は間欠オゾン供給装置、特に高圧送水管中にオゾ
ンを注入するようにした間欠オゾン供給装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an intermittent ozone supply device, and particularly to an intermittent ozone supply device that injects ozone into a high-pressure water pipe.

発電所や化学工業等には多量の冷却水が使用されている
が、用水中の微生物や藻類によってスライム障害が発生
し、管路の閉塞や熱交換率の低下が起こる。これらの防
止策として、高濃度のオゾン水の適用が考瀘されている
。この高濃度のオゾン水を生成するためには、大谷値の
オゾン発生機を用いて生成するよりも、小形で小容量の
オゾン発生機を用いて、生成したオゾンを吸着剤に長期
間にわたって蓄積し、この蓄積したオゾンを吸着剤から
一度に取り出し、高濃度オゾン水を生成′するいわゆる
間欠オゾン供給装置が設備費および運転費用の点から有
利である。
Large amounts of cooling water are used in power plants, chemical industries, etc., but microorganisms and algae in the water cause slime problems, clogging pipes and reducing heat exchange efficiency. As a preventive measure against these problems, the application of highly concentrated ozonated water is being considered. In order to generate this highly concentrated ozonated water, it is necessary to use a smaller and smaller capacity ozone generator to accumulate the generated ozone in the adsorbent for a longer period of time than to generate it using an ozone generator with Otani value. However, a so-called intermittent ozone supply device that extracts this accumulated ozone from the adsorbent at once to produce highly concentrated ozone water is advantageous in terms of equipment costs and operating costs.

従来の代表的な間欠オゾン供給装置の一例を第1図につ
いて説明する。第1図(、)は従来の間欠オゾン供給装
置を示すフロー図、第1図(b)Viその吸脱着基を示
す垂直断面図、第1図(C) Uオゾン発生機を示す垂
直断面図であり、図において、(1)はオゾン発生機、
(2)ハこのオゾン発生機で発生したオゾンを吸着して
蓄積するオゾン、吸脱着基、(3)はこのオゾン吸脱着
塔から酸素ガスをオゾン発生機(1)に循環する循環ブ
ロア、(4)はオゾン発生機(1)に酸素を供給する酸
素供給源、(5a)〜(5c)は電磁弁、(6)はオゾ
ン吸脱着塔(2)加熱用のブライン槽、(7)はこのブ
ライン槽からすシン吸脱着塔(2)にプラインを供給す
るブラインポンプ、(8)ハオゾン吸脱着塔(2)冷却
用の冷凍機、(9)はオゾン吸脱着塔(2)からオゾン
を吸引するエゼクタ、Qlflこのエゼクタに被処理水
を供給するエゼクタポンプである。
An example of a typical conventional intermittent ozone supply device will be explained with reference to FIG. Figure 1 (,) is a flow diagram showing a conventional intermittent ozone supply device, Figure 1 (b) is a vertical sectional view showing the adsorption and desorption groups of Vi, and Figure 1 (C) is a vertical sectional view showing the U ozone generator. In the figure, (1) is an ozone generator,
(2) Ozone and adsorption/desorption groups that adsorb and accumulate ozone generated in this ozone generator; (3) a circulation blower that circulates oxygen gas from this ozone adsorption/desorption tower to the ozone generator (1); 4) is an oxygen supply source that supplies oxygen to the ozone generator (1), (5a) to (5c) are solenoid valves, (6) is a brine tank for heating the ozone adsorption/desorption tower (2), and (7) is an oxygen supply source that supplies oxygen to the ozone generator (1). A brine pump that supplies prine to the brine tank Karasushin adsorption and desorption tower (2), (8) a refrigerator for cooling the haozone adsorption and desorption tower (2), and (9) a refrigerator that supplies ozone from the ozone adsorption and desorption tower (2). This is an ejector pump that supplies treated water to the suction ejector, Qlfl.

オゾン吸脱着塔(2)は第1図(b)のように二重筒に
なっており、内筒(2a)にはオゾン吸着剤(2b)が
充填され、内筒(2a)と外筒(2c)の間にはプライ
ンジャケラ)(2d)が形成され、プラインが充填され
て、ブラインコイル(2c)を介してブライン槽(6)
に連絡している。(2f)は円筒(2a)に巻かれた蒸
発管で、冷凍機(8)に連絡している。オゾン吸着剤(
2b)は一般にシリカゲルが用いられ、ブラインとして
はエチレングリコール、アルコール類等が使用される。
The ozone adsorption/desorption tower (2) has a double cylinder structure as shown in Figure 1 (b), the inner cylinder (2a) is filled with ozone adsorbent (2b), and the inner cylinder (2a) and outer cylinder A prine jacket (2d) is formed between (2c) and filled with prine, which is then passed through the brine coil (2c) to the brine tank (6).
is in contact with. (2f) is an evaporation tube wound around the cylinder (2a), which is connected to the refrigerator (8). Ozone adsorbent (
For 2b), silica gel is generally used, and ethylene glycol, alcohols, etc. are used as the brine.

オゾン発生機(1)は第1図(c)に示すように、高圧
電積着(la)および接地電極管(1b)によって形成
される間隙で無声放電が行われるように構成されている
。(1c)は高圧ブッシング、(ld)は高圧ヒユーズ
、(1e)は絶縁ブロックである。
As shown in FIG. 1(c), the ozone generator (1) is constructed so that silent discharge occurs in the gap formed by the high voltage electrode stack (la) and the ground electrode tube (1b). (1c) is a high voltage bushing, (ld) is a high voltage fuse, and (1e) is an insulating block.

なお上記循環ブロア(3)、オゾン発生機(1)、オゾ
ン吸脱着塔(2)の順に1つの循環系を構成している。
The circulation blower (3), the ozone generator (1), and the ozone adsorption/desorption tower (2) constitute one circulation system in this order.

次に動作について説明する。この動作にはオゾンの吸着
動作および脱着動作の2動作が主としである。
Next, the operation will be explained. This operation mainly includes two operations: an ozone adsorption operation and an ozone desorption operation.

初めに吸着動作について説明する。酸素供給源(4)よ
り循環系内に常時一定の圧力で酸素を供給する。この時
の圧力は通常1.Okpr/cjoに維持されている。
First, the suction operation will be explained. Oxygen is constantly supplied into the circulation system from an oxygen supply source (4) at a constant pressure. The pressure at this time is usually 1. Maintained by Okpr/cjo.

電磁弁(5a)、(5b)は開いており、(5c)は閉
じている。循環ブロア(3)によ郵循環系内に酸素を流
通させると、オゾン発生機(1)の放電空隙中を通過す
る間に無声放電により酸素の一部がオゾンに変換されて
、オゾン化酸素となる。このオゾン化酸素はオゾン吸脱
着塔(2)へ搬送される。オゾン吸脱着塔(2)内のオ
ゾン吸着剤(2b)は、オゾンを選択的に吸着し、残り
の酸素祉、電磁弁(51)を通り循環ブロア(3)によ
りオゾン発生機(1)に返送される。
Solenoid valves (5a) and (5b) are open, and (5c) is closed. When oxygen is passed through the circulation system through the circulation blower (3), part of the oxygen is converted into ozone by silent discharge while passing through the discharge gap of the ozone generator (1), and ozonized oxygen is generated. becomes. This ozonized oxygen is transported to the ozone adsorption/desorption tower (2). The ozone adsorbent (2b) in the ozone adsorption/desorption tower (2) selectively adsorbs ozone, and the remaining oxygen passes through the solenoid valve (51) and is sent to the ozone generator (1) by the circulation blower (3). It will be sent back.

オゾンとして消費された酸素は、酸素供給源(4)より
適宜補充される。このときオゾン吸着剤(′!b)の温
度は冷凍機(8)により−30℃以下に冷却されている
。これはオゾン吸着剤(2b)のオゾン吸着量が温度に
より大きく変化することによる。すなわち温度を低くす
るとオゾンの吸着量は増加し、逆に温度が上昇するとオ
ゾンの吸着量は減少するからである。したがってオゾン
を脱着する時はオゾン吸着剤(2b)の温度を上昇させ
る。
Oxygen consumed as ozone is replenished as appropriate from the oxygen supply source (4). At this time, the temperature of the ozone adsorbent ('!b) is cooled to -30 DEG C. or lower by the refrigerator (8). This is because the amount of ozone adsorbed by the ozone adsorbent (2b) changes greatly depending on the temperature. That is, when the temperature is lowered, the amount of ozone adsorbed increases, and conversely, when the temperature is raised, the amount of ozone adsorbed is decreased. Therefore, when desorbing ozone, the temperature of the ozone adsorbent (2b) is increased.

オゾン吸脱着塔(2)のオゾン吸着剤(2b)がオゾン
飽和吸着量近くまで吸着すると脱着動作へ移行する、脱
着動作ではオゾン発生機(1)、循環ブロア(3)、冷
凍機(8)が稼動を停止し、電磁弁(5a)、 (5b
)が閉じ、電磁弁(5C)が開く。このときオゾン吸着
剤(2b)に吸着されていたオゾンが脱着し易いように
ブライン槽(6)よりブラインポンプ(7)にてブライ
ンが供給され、熱が加えられてオゾン吸着剤(2b)の
温度を上昇させる、 この状態でエゼクタポンプα・を稼動させ、エゼクタ(
9)によりオゾン吸脱着塔(2)内のオゾンを減圧吸引
し、エゼクタ(9)内で水中に分散、溶解し、オゾン水
として使用箇所に送られる。このと°き減圧吸引するこ
とによるオゾン吸脱着塔(2)内の到達内圧はおおよそ
−60〜−7051Hgとなる。このように脱着期間が
終了すると再び吸着動作へ移行して、連続的に運転が繰
り返される。第2図は上記従来装置の運転シーケンス図
を示す。
When the ozone adsorbent (2b) of the ozone adsorption/desorption tower (2) adsorbs ozone close to the saturated adsorption amount, it shifts to desorption operation. In the desorption operation, the ozone generator (1), circulation blower (3), and refrigerator (8) stops operating, and the solenoid valves (5a) and (5b
) closes and the solenoid valve (5C) opens. At this time, brine is supplied from the brine tank (6) by the brine pump (7) so that the ozone adsorbed on the ozone adsorbent (2b) can be easily desorbed, and heat is applied to the ozone adsorbent (2b). Raise the temperature. In this state, operate the ejector pump α and raise the ejector (
9) sucks ozone in the ozone adsorption/desorption tower (2) under reduced pressure, disperses and dissolves it in water in the ejector (9), and sends it to the point of use as ozone water. At this time, the internal pressure reached within the ozone adsorption/desorption tower (2) by vacuum suction is approximately -60 to -7051 Hg. When the desorption period ends in this manner, the adsorption operation is resumed and the operation is repeated continuously. FIG. 2 shows an operation sequence diagram of the conventional device.

ところで、このようなエゼクタ注入方式によるオゾンの
減圧脱着では、エゼクタ(9)出口を高圧送水管に接続
すると、エゼクタポンプ(11の容量が相当大きくなり
、ポンプ能カシして高揚程、大流量の大きなポンプが必
要になる。すなわち脱着動作で予備加熱を行った後、エ
ゼクタ(9)により減圧注入すると、処理水の水管の内
圧が高い場合KFi、エゼクタポンプ四が非常に高揚程
の仕様となるため、lンブ用電動機が全体の装置に比べ
大きく、しかも受電設備そのものへの影響も出てくる。
By the way, in depressurizing ozone desorption using such an ejector injection method, if the ejector (9) outlet is connected to a high-pressure water pipe, the capacity of the ejector pump (11) becomes considerably large, and the pump capacity is increased, resulting in high head and large flow rate. A large pump is required.In other words, after preheating is performed by the desorption operation, when the ejector (9) is used to inject the treated water under reduced pressure, if the internal pressure of the water pipe for the treated water is high, the KFi and ejector pump 4 will have extremely high head specifications. Therefore, the lamp motor is larger than the entire device, and it also has an effect on the power receiving equipment itself.

例えば水管内圧4.5 kff/JGであるとき、エゼ
クタポンプQlの出口圧力がl 51wf/jG (1
50m A) )も必要であり、それに見合う電動機は
水量により異なるが、75〜160KWという非常に大
きなものとなる。しかるに第2図に示すように、エゼク
タポンプ(11は脱着時間と散索充填時間の一部しか稼
動しないため、ランニングコストは安いが、イニシャル
コストおよび受電容量が大きくなり、元電源への電圧変
動および大きな過渡電流変化を起こさせるという欠点が
あった。
For example, when the water pipe internal pressure is 4.5 kff/JG, the outlet pressure of the ejector pump Ql is l 51wf/jG (1
50mA)) is also required, and the electric motor corresponding to this will vary depending on the amount of water, but will be a very large one of 75 to 160KW. However, as shown in Figure 2, since the ejector pump (11) operates only during part of the loading/unloading time and the short filling time, running costs are low, but the initial cost and power receiving capacity are large, and voltage fluctuations to the main power source are caused. This method also has the disadvantage of causing large transient current changes.

この発明は上記のような従来のものの欠点を除去するた
めになされ゛たもので、オゾン吸脱着搭よりオゾンを減
圧脱着するとともに、脱着されたオゾンを加圧タンクに
圧送する加圧ブロアおよび加圧タンクへ送水する送水ポ
ンプを設けることにより、小形の送水ポンプで高圧送水
管中へオゾン含有酸素を注入することができ、装置およ
び受電設備を小さなものにできる間欠オゾン供給装置を
提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and includes a pressure blower and a pressurizer that depressurize and desorb ozone from an ozone adsorption/desorption unit, and forcefully send the desorbed ozone to a pressurized tank. It is an object of the present invention to provide an intermittent ozone supply device that can inject ozone-containing oxygen into a high-pressure water pipe with a small water pump by providing a water pump that sends water to a pressure tank, and that can reduce the size of the device and power receiving equipment. The purpose is

以下、この発明の一実施例を図について説明する。第3
図はこの発明の一実施例を示すフロー図であり、図にお
いて、(1)〜Qlは第1図と同一ま九は相当部分を示
す。■は高圧送水管、r14は循環ブロア(3)ととも
にオゾン吸脱着塔(2)よりオゾンを減圧脱着し、脱着
したオゾン含有r11素を加圧タンク0へ圧送する加圧
ブロア、a4は萬圧送水管αυ内の水の一部を加圧タン
ク0に送る送水ポンプ、(5d)は循環ブロア(3)と
加圧ブロアα4の間に設けられた電磁弁、(5C)は加
圧ブロアu4と加圧タンクa謙の間に設けられた電磁弁
、(5f)は送水ポンプIと加圧タンク0の間に設けら
れた電磁弁、(5g)Fi加圧り次に動作について説明
する。吸着動作は第1図の場合と同様に行われる。そし
て脱着動作は次のように行われる。まず吸着が完了する
と、電磁弁(5m)、(5b)は閉じ、循環ブロア(3
)、オゾン発生機(11、冷凍機(8)は運転を停止す
る。そしてブライン槽(6)内のブラインがブラインポ
ンプ(7)によりオゾン吸脱着塔(2)内に送られ、予
備加熱が始まる。
An embodiment of the present invention will be described below with reference to the drawings. Third
The figure is a flowchart showing an embodiment of the present invention, and in the figure, (1) to Ql are the same as those in FIG. ■ is a high-pressure water pipe, r14 is a pressure blower that depressurizes and desorbs ozone from the ozone adsorption/desorption tower (2) together with a circulation blower (3), and pressure-feeds the desorbed ozone-containing r11 element to pressurized tank 0; a4 is a pressure-feeding A water pump that sends part of the water in the water pipe αυ to the pressure tank 0, (5d) is a solenoid valve installed between the circulation blower (3) and the pressure blower α4, and (5C) is the pressure blower u4. The operation of the solenoid valve (5f) installed between the pressurized tank A and the pressurized tank 0 (5g) will be explained next. The suction operation is performed in the same manner as in FIG. The attachment/detachment operation is performed as follows. First, when adsorption is completed, the solenoid valves (5m) and (5b) are closed, and the circulation blower (3m) is closed.
), the ozone generator (11) and the refrigerator (8) stop operating.Then, the brine in the brine tank (6) is sent to the ozone adsorption/desorption tower (2) by the brine pump (7), where it is preheated. It begins.

オゾン吸脱着塔(2)内のオゾン吸着剤(2b)温kが
0〜5℃程度になれば、予備加熱はほぼ完了する。
When the temperature k of the ozone adsorbent (2b) in the ozone adsorption/desorption tower (2) reaches approximately 0 to 5°C, the preheating is almost completed.

次にオゾン吸脱着塔(2)内のオゾンが減圧、脱着され
、加圧タンク(131に送り込まれるが、このとき、加
圧タンクa3はオゾン吸着時に次の動作を行い、オゾン
蓄積の準備を完了しているものとする。つまり電磁弁(
5c)、(5f)、(5g)が閉じ、ta弁(5h)、
(51)が開き、加圧タンク0内に貯っ圧水が系外に放
出され、放出後は電磁弁(5c)〜(5I)は全て閉じ
ている。そして予備加熱終了後、11!磁弁(5d)、
(5e)が開き、循環ブロア(3)、加圧ブロア圓によ
りオゾン吸脱71i塔(2)円のオゾンが減圧、脱着さ
れ、脱着されたオゾンは加圧メンタ0内へ圧送され、貯
留される。オゾン吸脱着塔(2)の内圧が目的圧まで到
達するとオゾン脱mu完了する。
Next, the ozone in the ozone adsorption/desorption tower (2) is depressurized, desorbed, and sent to the pressurized tank (131).At this time, pressurized tank a3 performs the following operations during ozone adsorption to prepare for ozone accumulation. It is assumed that the solenoid valve (
5c), (5f), (5g) are closed, TA valve (5h),
(51) opens, and the pressure water stored in the pressurized tank 0 is released to the outside of the system, and after the release, all of the solenoid valves (5c) to (5I) are closed. And after preheating, 11! Magnetic valve (5d),
(5e) opens, and the ozone in the ozone adsorption/desorption tower (2) is depressurized and desorbed by the circulation blower (3) and pressurized blower ring, and the desorbed ozone is forced into the pressurized mentor 0 and stored. Ru. When the internal pressure of the ozone adsorption/desorption tower (2) reaches the target pressure, ozone removal is completed.

脱着が完了すると、電磁弁(5d)、(5e)が閉じ、
加圧ブロアu4は停止する。同時に電磁弁(5a)、 
(5b)が開いて酸素が充填され、オゾン発生a (1
)、冷凍機(8)、循環ブロア(3)が稼動して再びオ
ゾン吸着が始まる。−万、電磁弁(5f)、(5g)が
開くと、加圧タンクロ3内の水圧とオゾン化酸素圧とが
バランスする。一般には水圧が高いため、オゾン化酸素
が圧縮される、オゾン化酸素が圧縮された後、送水ポン
プIが稼動すると、加圧タンク峙の下から送水され、加
圧タンク0内のオゾン含有酸素ガスが加圧タンク(13
上部より電磁弁(5g)を通って高圧送水管aυ内へ注
入される。
When the attachment and detachment are completed, the solenoid valves (5d) and (5e) close,
Pressure blower u4 stops. At the same time, a solenoid valve (5a),
(5b) opens and is filled with oxygen, generating ozone a (1
), refrigerator (8), and circulation blower (3) are operated and ozone adsorption begins again. - When the solenoid valves (5f) and (5g) open, the water pressure in the pressurized tank 3 and the ozonized oxygen pressure are balanced. Generally, the water pressure is high, so the ozonated oxygen is compressed.After the ozonated oxygen is compressed, when the water pump I operates, water is sent from below the pressurized tank, and the ozone-containing oxygen in the pressurized tank 0 is The gas is in a pressurized tank (13
It is injected from the top through a solenoid valve (5g) into the high-pressure water pipe aυ.

なお、上記実施例では循環ブロア(3)のほかに加圧ブ
ロアU々を設けた例を示したが、循環ブロア(3)でオ
ゾン吸脱着塔(2)の減圧および加圧タンク(13の加
圧の両方が可能であれば加圧ブロアQ4を省略してもよ
い。
In addition, in the above embodiment, an example was shown in which pressure blowers U were provided in addition to the circulation blower (3), but the circulation blower (3) was used to reduce the pressure in the ozone adsorption/desorption tower (2) and to reduce the pressure in the pressurization tank (13). If both pressurization is possible, the pressure blower Q4 may be omitted.

以上のとおり、この発明によれば、オゾン吸脱着塔よジ
オシンを減圧脱着するとともに、脱着されたオゾンを加
圧タンクに圧送する加圧ブロアおよび加圧タンクで送水
する送水ポンプを設けたので、小形の送水ポンプでオゾ
ンを高圧送水管中に注入でき、エゼクタポンプのように
非常に高揚程のポンプが不IPVCなり、イニシャルコ
ストを下げるとともに、受電設備を小さくすることがで
きる効果がある。
As described above, according to the present invention, the ozone adsorption/desorption tower desorbs dioscin under reduced pressure, and the pressure blower that pumps the desorbed ozone to the pressurized tank and the water pump that sends water from the pressurized tank are provided. Ozone can be injected into high-pressure water pipes using a small water pump, and a very high-head pump such as an ejector pump can be used without IPVC, which has the effect of lowering initial costs and making power receiving equipment smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) Fi従来の間欠オゾン供給装置のフロー
図、第1図(b) Uその吸脱着基の垂直断面図、第1
図(c)はオゾン発生機の垂直断面図、第2図は従来装
置の運転シーケンス図、第3図は本発明の一実施例のフ
ロー図である。 (11・・・オゾン発生機、(21・・・オゾン吸脱着
塔、(3)・・・循環ブロア、(4)・・・酸素供給源
、(8)・・・冷凍機、+91・・・エゼクタ、a〔・
・・エゼクタポンプ、uD・・・高圧送水管、07J・
・・加圧ブロア、u3・・・加圧タンク、Q4)・・・
送水ボン′i″ プ。 なお、各図中、同一符号は同一または相当部分を示す。 代理人 為 野 信 −(外1名) 第1 図(0) 第1 図(b)
Figure 1 (a) is a flow diagram of a conventional intermittent ozone supply device; Figure 1 (b) is a vertical cross-sectional view of its adsorption/desorption group;
Figure (c) is a vertical sectional view of the ozone generator, Figure 2 is an operation sequence diagram of a conventional device, and Figure 3 is a flow diagram of an embodiment of the present invention. (11...Ozone generator, (21...Ozone adsorption/desorption tower, (3)...Circulation blower, (4)...Oxygen supply source, (8)...Refrigerating machine, +91...・Ejector, a [・
・・Ejector pump, uD・High pressure water pipe, 07J・
...Pressure blower, u3...Pressure tank, Q4)...
Water supply pump 'i''. In each figure, the same reference numerals indicate the same or corresponding parts. Representative: Shin Tameno - (1 other person) Figure 1 (0) Figure 1 (b)

Claims (3)

【特許請求の範囲】[Claims] (1)酸素を原料としてオゾンを生成するオゾン発生機
と、冷却されることによりオゾン発生機からのオゾンを
吸着し、加温、減圧されることにより前記吸着したオゾ
ンを脱着するオゾン吸着物質が充填されたオゾン吸脱着
塔と、オゾン吸着時にオゾン吸着物質を冷却する冷凍機
およびオゾン吸着塔から出た酸素をオゾン発生機へ圧送
する循環フロアと、オゾン脱着時にオゾン吸着物質を加
温するブライン槽、ブラインを循環するポンプ、オゾン
吸着塔よジオシンを減圧脱着するとともに、脱着された
オゾンを加圧タンクに圧送する加圧ブロアおよび加圧タ
ンクへ送水する送水ポンプとを備えたことを特徴とする
間欠オゾン供給装置。
(1) An ozone generator that generates ozone using oxygen as a raw material, and an ozone adsorption material that adsorbs ozone from the ozone generator when cooled and desorbs the adsorbed ozone when heated and depressurized. A packed ozone adsorption/desorption tower, a refrigerator that cools the ozone adsorption material during ozone adsorption, a circulation floor that pumps the oxygen released from the ozone adsorption tower to the ozone generator, and a brine that warms the ozone adsorption material during ozone desorption. The system is characterized by being equipped with a tank, a pump that circulates brine, an ozone adsorption tower, desorbs dioscin under reduced pressure, a pressure blower that sends the desorbed ozone to a pressurized tank, and a water pump that sends water to the pressurized tank. An intermittent ozone supply device.
(2)循環ブロアと加圧タンクの間に加圧ブロアを設け
たことを特徴とする特許請求の範囲第1項記載の間欠オ
ゾン供給装置。
(2) The intermittent ozone supply device according to claim 1, characterized in that a pressure blower is provided between the circulation blower and the pressure tank.
(3)循環ブロアを加圧ブロアと兼用することを特徴と
する特許請求の範囲第1項または第2項記載の間欠オゾ
ン供給装置。
(3) The intermittent ozone supply device according to claim 1 or 2, characterized in that the circulation blower also serves as a pressure blower.
JP8607782A 1982-05-21 1982-05-21 Intermittent ozone feeding apparatus Pending JPS58204803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8607782A JPS58204803A (en) 1982-05-21 1982-05-21 Intermittent ozone feeding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8607782A JPS58204803A (en) 1982-05-21 1982-05-21 Intermittent ozone feeding apparatus

Publications (1)

Publication Number Publication Date
JPS58204803A true JPS58204803A (en) 1983-11-29

Family

ID=13876638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8607782A Pending JPS58204803A (en) 1982-05-21 1982-05-21 Intermittent ozone feeding apparatus

Country Status (1)

Country Link
JP (1) JPS58204803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000578A (en) * 2010-06-18 2012-01-05 Sharp Corp Method and device for producing high-concentration ozonized water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000578A (en) * 2010-06-18 2012-01-05 Sharp Corp Method and device for producing high-concentration ozonized water

Similar Documents

Publication Publication Date Title
US4462965A (en) Intermittent ozonizing apparatus
US5888271A (en) Ozone storing method and ozone storage system
US4552659A (en) Apparatus for elimination of biofouling
JPS58204803A (en) Intermittent ozone feeding apparatus
US6086772A (en) Method and apparatus for preventing biofouling in cooling water system
US6537508B1 (en) Electric energy converting/storing system
EP0893400B1 (en) Ozone supplying apparatus
JPH1143307A (en) Apparatus for producing ozone
JP4545481B2 (en) Ozone supply device
JPWO2015198694A1 (en) Ozone generation system and operation method thereof
JPS6356163B2 (en)
JPS5869703A (en) Intermittent ozone feeding apparatus
JPS58213602A (en) Apparatus for intermittent feeding of ozone
JPS618196A (en) Apparatus for intermittently supplying ozone
JP4107631B2 (en) Concentrated ozone production equipment
JPS6313927B2 (en)
JP2010076971A (en) Circulation type ozone generating method and apparatus
JPS59193192A (en) Device for supplying ozone intermittently
JP5020151B2 (en) Ozone production apparatus and ozone production method
JPH02284B2 (en)
JP2010083728A (en) Ozone desorption method using air and ozone storage and desorption apparatus
JP4003097B2 (en) Ozone adsorption / desorption device
JP3532334B2 (en) Intermittent ozone supply method
KR101170384B1 (en) Oxygen Chamber
JP3932616B2 (en) Ozone adsorption / desorption device