JPS5820386B2 - Kiyuki Benz Kipiston Osona Etaninen Kikan - Google Patents

Kiyuki Benz Kipiston Osona Etaninen Kikan

Info

Publication number
JPS5820386B2
JPS5820386B2 JP14048375A JP14048375A JPS5820386B2 JP S5820386 B2 JPS5820386 B2 JP S5820386B2 JP 14048375 A JP14048375 A JP 14048375A JP 14048375 A JP14048375 A JP 14048375A JP S5820386 B2 JPS5820386 B2 JP S5820386B2
Authority
JP
Japan
Prior art keywords
air supply
piston
valve
exhaust
supply hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14048375A
Other languages
Japanese (ja)
Other versions
JPS5264522A (en
Inventor
下田邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14048375A priority Critical patent/JPS5820386B2/en
Publication of JPS5264522A publication Critical patent/JPS5264522A/en
Publication of JPS5820386B2 publication Critical patent/JPS5820386B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L11/00Valve arrangements in working piston or piston-rod
    • F01L11/02Valve arrangements in working piston or piston-rod in piston

Description

【発明の詳細な説明】 従来の4ザイクル内燃機関の給排気行程の1例を第1図
について説明する。
DETAILED DESCRIPTION OF THE INVENTION An example of the intake and exhaust stroke of a conventional four cycle internal combustion engine will be explained with reference to FIG.

先ず筒内1で燃焼終了後膨張行程にあるピストン2が下
死点に近づくと、排気弁3が開き始め筒内ガスは排気管
4に排出される。
First, when the piston 2, which is in the expansion stroke after completion of combustion in the cylinder 1, approaches the bottom dead center, the exhaust valve 3 begins to open and the gas in the cylinder is discharged to the exhaust pipe 4.

この時の各部用力の変化は第2図に示す通りであり、筒
内圧力は排気弁3の開き始めA点から急激に低下する一
方、排気管内圧力はB点から上昇し、ピストン2が下死
点を過ぎた直後の0点で両者の圧力の差は△Pe とな
る。
The changes in the power of each part at this time are as shown in Figure 2. The pressure in the cylinder drops rapidly from point A when the exhaust valve 3 begins to open, while the pressure in the exhaust pipe increases from point B, causing the piston 2 to move downward. At the zero point immediately after passing the dead center, the difference in pressure between the two becomes △Pe.

この△Peは排気が筒内1から排気管4へ流出する時に
排気弁3のところで生ずる圧力損失で、0点以後の排気
行程ではこの△Peはほぼ一定となる。
This ΔPe is a pressure loss that occurs at the exhaust valve 3 when exhaust gas flows out from the cylinder interior 1 to the exhaust pipe 4, and this ΔPe is approximately constant in the exhaust stroke after the zero point.

即ち、前記△Peは排気弁3の開口面積が充分でないた
めに生ずる圧力損失であり、高速機関になるとピストン
速度に比較して開口面積が相対的に小さくなるため△P
eが大きくなる。
That is, △Pe is the pressure loss that occurs because the opening area of the exhaust valve 3 is not sufficient, and in high-speed engines, the opening area becomes relatively small compared to the piston speed, so △P
e becomes larger.

この排気行程と同様に給入行程に於ても給気弁5で生ず
る圧力損失のため給気管6の圧力よりも筒内3の圧力は
△Psだげ低(なる。
Similar to this exhaust stroke, in the intake stroke as well, the pressure in the cylinder 3 is lower (ΔPs) than the pressure in the intake pipe 6 due to the pressure loss that occurs in the intake valve 5.

以上述べた△Peと△Psが主たる要因となって4サイ
クル機関の給排気行程では第3図に斜線で示す給排気ポ
ンプ損失が生ずる。
The above-mentioned ΔPe and ΔPs are the main factors, and in the supply and exhaust stroke of a four-cycle engine, the supply and exhaust pump losses shown by diagonal lines in FIG. 3 occur.

即ち、排気弁3の開口面積が不足するために生ずるX、
給気弁5の開口面積が不足するために生ずるY及び排気
管4内圧力の上昇によるZとの和(X十Y+−Z)が給
排気工程のポンプ損失であり、ピストンの有効出力がこ
の分だけ少なくなって熱効率が低下することになる。
That is, X, which occurs due to insufficient opening area of the exhaust valve 3,
The sum of Y caused by the insufficient opening area of the air supply valve 5 and Z due to the increase in pressure inside the exhaust pipe 4 (X + Y + - Z) is the pump loss in the supply and exhaust process, and the effective output of the piston is this As a result, thermal efficiency decreases.

このポンプ損失を低減するには△Pe、△Psを小さく
すればよく、これは即ち排気弁3及び給気弁5の開口面
積を増大することであるが、排気弁及び給気弁を設ける
第1図に示すシリンダ7の下面の面積は限度があるため
、給排気弁の開口面積を更に大きくすることは不可能で
あった。
In order to reduce this pump loss, △Pe and △Ps can be reduced, which means increasing the opening area of the exhaust valve 3 and the air supply valve 5. Since the area of the lower surface of the cylinder 7 shown in FIG. 1 is limited, it has been impossible to further increase the opening area of the supply and exhaust valve.

本発明は前記従来の欠点を解消するために提案されたも
ので、ピストンに給気弁を設げ、同給気弁への給気通路
はシリンダの給気孔を通してのみ大気或は給気管に連通
せしめられると共に、前記・ピストンの給気孔とシリン
ダの給気孔とは、ピストン工程の全区間にわたって連通
ずるようにしたことを特長とし、給気弁及び排気弁の開
口面積を従来の比べて大きくすることができ、給排気の
ポンプ損失を低減し熱効率の向上を図ることができる給
気弁付ピストンを具えた内燃機関を提供せんとするもの
である。
The present invention was proposed in order to solve the above-mentioned conventional drawbacks, and the piston is provided with an air supply valve, and the air supply passage to the air supply valve is communicated with the atmosphere or the air supply pipe only through the air supply hole of the cylinder. The air supply hole of the piston and the air supply hole of the cylinder are communicated with each other throughout the entire piston stroke, and the opening area of the air supply valve and the exhaust valve is made larger than that of the conventional one. It is an object of the present invention to provide an internal combustion engine equipped with a piston equipped with an air intake valve, which can reduce pump loss in air supply and exhaust, and improve thermal efficiency.

以下図面の実施例について説明すると、第4図は本発明
の実施例を示し、ピストン8にはその上面から側面に連
通ずる給気孔9と、同給気孔9のピストン上面への開口
部を開閉する給気弁10が設けられている。
The embodiments shown in the drawings will be described below. FIG. 4 shows an embodiment of the present invention, in which the piston 8 has an air supply hole 9 that communicates from the top surface to the side surface, and an opening of the air supply hole 9 to the top surface of the piston that can be opened and closed. An air supply valve 10 is provided.

給気弁10は弁棒ガイド11によって案内され、弁ばね
12によって°ピストン8上に設けられた弁座に着座し
ている。
The air supply valve 10 is guided by a valve stem guide 11 and is seated by a valve spring 12 on a valve seat provided on the piston 8 .

13はピストン8のシリンダで、その側壁には給気管(
図示省略)と連通ずる給気孔14が設けられ、またシリ
ンダヘッドの燃焼室15壁には排気弁16゜16′にて
開閉される排気孔17 、17’が設けられている。
13 is the cylinder of the piston 8, and an air supply pipe (
An air supply hole 14 is provided which communicates with the combustion chamber 15 (not shown), and exhaust holes 17 and 17' are provided in the wall of the combustion chamber 15 of the cylinder head, which are opened and closed by exhaust valves 16 and 16'.

以上のように第4図では第1図の給気弁5を排気弁16
′とし、給気管6を排気管17′として利用するもので
あり、排気弁が16.16’と2つになるため排気弁の
開口面積は第1図の場合の約2倍となり、かつシリンダ
の給気孔14と燃焼室15はピストンの給気孔9を介し
てのみ連通することになる。
As mentioned above, in FIG. 4, the intake valve 5 in FIG. 1 is replaced by the exhaust valve 16.
', the air supply pipe 6 is used as the exhaust pipe 17', and since there are two exhaust valves 16 and 16', the opening area of the exhaust valve is approximately twice that of the case shown in Fig. 1, and the cylinder The air supply hole 14 of the piston and the combustion chamber 15 communicate only through the air supply hole 9 of the piston.

次に作用を説明する。Next, the effect will be explained.

燃焼室15で燃焼終了後膨張行程にあるピストン8が下
死点に近づくと、排気弁16,16’が開き燃焼室15
内ガスは排気管17,1γに排出される。
When the piston 8, which is in the expansion stroke after completion of combustion in the combustion chamber 15, approaches the bottom dead center, the exhaust valves 16, 16' open and the combustion chamber 15
Internal gas is discharged to exhaust pipes 17, 1γ.

更にピストン8が移動して下死点を過ぎると、排気行程
(ピストン上昇)にはいる。
When the piston 8 moves further and passes the bottom dead center, it enters the exhaust stroke (piston rise).

なお、前記膨張及び排気行程中は燃焼室内圧力が給気管
内圧力よりも高いので、給気弁10はピストン8に設け
られた弁座に密着している。
Note that during the expansion and exhaust strokes, the pressure inside the combustion chamber is higher than the pressure inside the air supply pipe, so the air intake valve 10 is in close contact with a valve seat provided on the piston 8.

次いで排気行程が進みピストンが上死点に近づくと燃焼
室内圧力は下って来る。
Then, as the exhaust stroke progresses and the piston approaches top dead center, the pressure in the combustion chamber decreases.

この圧力が更に下って給気圧力よりも小さくなり、給気
弁10に作用する押上げカカ香ばね12の力よりも大き
くなると、自動的に給気弁10が開き、燃焼室15内へ
給気が行なわれる。
When this pressure further decreases and becomes smaller than the supply air pressure and becomes greater than the force of the push-up spring 12 acting on the intake valve 10, the intake valve 10 automatically opens and the air is supplied into the combustion chamber 15. Qi is done.

次いでピストン8が上死点を過ぎて給気行程(ピストン
下降)に入ると、排気弁16,16’は図示されない排
気カムの作用によって閉じるので燃焼室15内は膨張す
ることになり、燃焼室内圧は下る傾向になるので給気圧
によって給気弁10は開き続けて給気が行ナワレる。
Next, when the piston 8 passes the top dead center and enters the intake stroke (piston descent), the exhaust valves 16, 16' are closed by the action of an exhaust cam (not shown), so the inside of the combustion chamber 15 expands, and the inside of the combustion chamber 15 expands. Since the pressure tends to decrease, the air supply valve 10 continues to open due to the supply pressure, and the supply air is diverted.

給気行程が終りに近づいて燃焼室内圧が給気圧に近づく
と、給気弁1oを開く方向に働く力が弱くなり、弁ばね
12のカにょって給気弁10は自動的に閉じる。
When the air supply stroke approaches the end and the pressure in the combustion chamber approaches the supply pressure, the force acting in the direction of opening the air intake valve 1o becomes weaker, and the air intake valve 10 is automatically closed by the force of the valve spring 12.

給気行程が終り圧縮行程に入ると燃焼室内圧は給気圧よ
りも高くなるので、給気弁10は閉じたまま燃焼、膨張
行程へと進み、内燃機関のサイクルが支障なく実現する
When the intake stroke ends and the compression stroke begins, the pressure inside the combustion chamber becomes higher than the intake pressure, so the combustion and expansion strokes proceed with the intake valve 10 closed, allowing the internal combustion engine to cycle without any problems.

以上詳細に説明した如く本発明はピストンに給気弁を設
けてあり、ピストン上面の面積は従来機関で給排気弁を
設けるシリンダ下面とほぼ同じ面積があるので、ピスト
ン上面に設けた本発明の給気弁の開口面積は従来機関の
約2倍とすることができる。
As explained in detail above, the present invention is provided with an air supply valve on the piston, and the area of the upper surface of the piston is approximately the same as the lower surface of the cylinder where the air supply and exhaust valve is provided in conventional engines. The opening area of the air supply valve can be approximately twice that of conventional engines.

また排気弁も従来の給気弁を排気弁として用い排気弁を
2個とすることができるので、排気弁の開口面積も従来
機関の約2倍とすることができる。
Further, since the exhaust valve can use a conventional air supply valve as the exhaust valve and have two exhaust valves, the opening area of the exhaust valve can also be made about twice that of the conventional engine.

以上のように本発明では給気弁及び排気弁の開口面積が
従来機関の約2倍になるので、給排気のポンプ損失を低
減し、熱効率を向上させることができる。
As described above, in the present invention, the opening area of the air supply valve and the exhaust valve is approximately twice that of the conventional engine, so that the pump loss of air supply and exhaust can be reduced and the thermal efficiency can be improved.

又排気弁の開口面積が2倍になると、排気弁部の圧力損
失△Peは排気弁部を流れる作動ガスの流速の2乗に比
例するから ((−)2=+になる。
Furthermore, when the opening area of the exhaust valve is doubled, the pressure loss ΔPe in the exhaust valve section is proportional to the square of the flow rate of the working gas flowing through the exhaust valve section, so that ((-)2=+).

これと同様に給気弁部の圧力損失△Psも十程度になる
ので、第3図に於てX、YはHになるが、Zは変らない
から、結局全体トシテホンプ損失は約%になることが期
待できる。
Similarly, the pressure loss △Ps in the air supply valve section will be about 10, so in Figure 3, X and Y will be H, but Z will not change, so the overall pressure loss will be about %. We can expect that.

ところで従来機関ではポンプ損失が有効出力の約1割程
度°あるので、本発明における熱効率は従来機関に比べ
5%程度向上させることができる。
By the way, in a conventional engine, the pump loss is about 10% of the effective output, so the thermal efficiency of the present invention can be improved by about 5% compared to the conventional engine.

なおピストンの給気弁を自動弁とすれば、シリンダ内ガ
スが給気通路に逆流することが完全になくなり、給気通
路を汚損する虞れはない。
Note that if the air supply valve of the piston is an automatic valve, the gas inside the cylinder will not flow back into the air supply passage completely, and there is no risk of contaminating the air supply passage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の4サイクル内燃機関の1例を示す王国断
面図、第2図は第1図の内燃機関に於げ。 る給排気行程の給排気系圧力の変化を示す線図、第3図
は内燃機関給排気行程の筒内圧力の変化を示す線図、第
4図は本発明の実施例を示す内燃機関の正面断面図、第
5図は第4図のD〜D線断面図である。 図の主要部分の説明、8・・・・・・ピストン、9・・
・・・・給気孔、10・・・・・・給気弁、13・・・
・・・シリンダ、14・・・・・・給気孔、15・・・
・・・燃焼室、16,16’・・・・・・排気弁、17
、17’・・・・・・排気孔。
FIG. 1 is a sectional view showing an example of a conventional four-stroke internal combustion engine, and FIG. 2 is a cross-sectional view of the internal combustion engine shown in FIG. FIG. 3 is a diagram showing changes in cylinder pressure during the intake and exhaust stroke of an internal combustion engine, and FIG. The front sectional view, FIG. 5, is a sectional view taken along the line D--D in FIG. 4. Explanation of the main parts of the diagram, 8...Piston, 9...
...Air supply hole, 10...Air supply valve, 13...
...Cylinder, 14...Air supply hole, 15...
... Combustion chamber, 16, 16' ... Exhaust valve, 17
, 17'...Exhaust hole.

Claims (1)

【特許請求の範囲】[Claims] 1 ピストンにその上面から側面に常時連通する給気孔
と、同給気孔のピストン上面への開口部を前記給気孔内
の圧力と燃焼室内圧力との差圧により開閉する給気弁を
設けると共に、前記ピストンが嵌合されるシリンダの側
壁に給気管と連通ずる給気孔を設け、更にシリンダヘッ
ドの燃焼室壁に排気弁にて開閉される排気孔を設け、前
記シリンダの給気孔と燃焼室は前記ピストンの給気孔を
介してのみ連通せしめられると共に、前記ピストンの給
気孔とシリンダの給気孔とは、ピストン行程の全区間に
わたって連通ずるようにしたことを特徴とする給気弁付
ピストンを具えた内燃機関。
1. The piston is provided with an air supply hole that constantly communicates from the top surface to the side surface of the piston, and an air supply valve that opens and closes the opening of the air supply hole to the top surface of the piston based on the pressure difference between the pressure inside the air supply hole and the pressure in the combustion chamber, An air supply hole that communicates with the air supply pipe is provided in the side wall of the cylinder into which the piston is fitted, and an exhaust hole that is opened and closed by an exhaust valve is provided in the combustion chamber wall of the cylinder head, and the air supply hole of the cylinder and the combustion chamber are A piston with an air supply valve, characterized in that the air supply hole of the piston communicates with the air supply hole of the cylinder only through the air supply hole of the piston, and the air supply hole of the piston and the air supply hole of the cylinder communicate throughout the entire piston stroke. internal combustion engine.
JP14048375A 1975-11-22 1975-11-22 Kiyuki Benz Kipiston Osona Etaninen Kikan Expired JPS5820386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14048375A JPS5820386B2 (en) 1975-11-22 1975-11-22 Kiyuki Benz Kipiston Osona Etaninen Kikan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14048375A JPS5820386B2 (en) 1975-11-22 1975-11-22 Kiyuki Benz Kipiston Osona Etaninen Kikan

Publications (2)

Publication Number Publication Date
JPS5264522A JPS5264522A (en) 1977-05-28
JPS5820386B2 true JPS5820386B2 (en) 1983-04-22

Family

ID=15269644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14048375A Expired JPS5820386B2 (en) 1975-11-22 1975-11-22 Kiyuki Benz Kipiston Osona Etaninen Kikan

Country Status (1)

Country Link
JP (1) JPS5820386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102057A (en) * 1985-10-30 1987-05-12 三菱電機株式会社 Controller for air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681097A1 (en) * 1991-09-11 1993-03-12 Barbault Jean Pierre Four-stroke combustion engine with air intake through the piston
US5490482A (en) * 1994-02-24 1996-02-13 Genet; William Two cycle engine with piston mounted poppet valve operating mechanism
EP2711530A1 (en) * 2012-09-21 2014-03-26 Wärtsilä Schweiz AG Piston and cylinder assembly for a longitudinally flushed reciprocating piston combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102057A (en) * 1985-10-30 1987-05-12 三菱電機株式会社 Controller for air conditioner

Also Published As

Publication number Publication date
JPS5264522A (en) 1977-05-28

Similar Documents

Publication Publication Date Title
US2910826A (en) Turbo-charged internal combustion engines
JPS605770B2 (en) Supercharged two-stroke internal combustion engine
JPS6011207B2 (en) 2-stroke crankcase compression internal combustion engine
GB2043779A (en) Internal combustion engine exhaust passage
JPS5836171B2 (en) 2 Kouteinainenkikan
US2302442A (en) Internal combustion engine
US2742028A (en) Valve mechanism
JPH0350325A (en) Four-cycle adiabatic engine
GB1383994A (en) Internal combustion engines
JPS5820386B2 (en) Kiyuki Benz Kipiston Osona Etaninen Kikan
US2222134A (en) Internal combustion engine
US2104150A (en) Internal combustion engine
US2641438A (en) Delayed opening poppet valve for steam engines
US2393793A (en) Hydraulic extensible valve tappet
US4162663A (en) Stratified charge four-stroke engine
AU2020214459A1 (en) Method for introducing highly precompressed combustion air into a combustion chamber of an internal combustion engine, high-pressure inlet valve therefor and internal combustion engine having such a high-pressure inlet valve
US20130298889A1 (en) Outwardly-opening valve with cast-in diffuser
US3071921A (en) Reciprocating piston engine and ported piston for use therein
US11828238B2 (en) Method in a two-stroke engine and two-stroke engine
JPS59153907A (en) Intake and exhaust device for four-cycle engine
US1951987A (en) Two-cycle internal combustion engine
JPS587055Y2 (en) Air supply system for two-stroke internal combustion engine
US2702532A (en) Exhaust valve cooling system
JPS62139913A (en) Cylinder cover
JP2730198B2 (en) 4-cycle insulated engine