JPS58203390A - Condenser - Google Patents

Condenser

Info

Publication number
JPS58203390A
JPS58203390A JP8531282A JP8531282A JPS58203390A JP S58203390 A JPS58203390 A JP S58203390A JP 8531282 A JP8531282 A JP 8531282A JP 8531282 A JP8531282 A JP 8531282A JP S58203390 A JPS58203390 A JP S58203390A
Authority
JP
Japan
Prior art keywords
condenser
condenser pipes
pipes
cooling pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8531282A
Other languages
Japanese (ja)
Inventor
Toshio Iwano
岩野 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP8531282A priority Critical patent/JPS58203390A/en
Publication of JPS58203390A publication Critical patent/JPS58203390A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent titanous condenser pipes from being broken, and to prolong their lives, by removing a fear that a baffle plate may hit the condenser pipes, by disposing rod materials of which section modulus is large in the vicinity of the baffle plate, in a condenser in which a baffle plate is disposed in a cluster of titanous condenser pipes, so as not to contact with condenser pipes. CONSTITUTION:Instead of condenser pipes, among titanous condenser pipes 4, in the vicinity of a baffle plate 11b, that is to say, in the neighborhood of the baffle plate 11b, solid bars 12, 12..., as an example of rod materials, are disposed, being supported by partitioning plates 7 and supporting plates 10. The steam discharged from a turbine collides against the condenser pipes 4 nearly in the sonic speed, and each condenser pipe 4 is deflected by this steam pressure. But collision will not occur among the condenser pipes, because distances among the partitioning plates 10 are determined so that the condenser pipes 4 do not contact with each other. Besides, the disposed distance between the condenser pipe 4 and the solid bar 12 is as same as the distance among the condenser pipes 4, and the solid bar 12 has larger section modulus than that of condenser pipe 4, its rigidity is large, and is harder to be deflected than the condenser pipe 4. Accordingly, condenser pipes 4 and solid bars 12 will not be contacted with each other, and repeated impact load acted on the condenser pipes 4 can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、発電プラントなどに使用される復水器に係り
、竹に、冷却管としてチタン管を使用した復水器の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a condenser used in power generation plants and the like, and relates to an improvement of a condenser made of bamboo and using titanium tubes as cooling tubes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

まず、このよりな復水器の一般的なものを第1図および
第2図によシ欽明する〇 第1図において、タービン/を出た排気蒸気を復水させ
るろ水容コのケーシング3内には多数の冷却管μ、μ・
・・が横方向に整列配置されており、各冷却管弘の両端
は、前記ケーシング3の両端部に形成された入口氷室j
および出口氷室乙に達し、ケーシング3内と両水室、t
、g’l仕切る仕切板7a、7kに固定されている。前
記入口氷室jへは、導管rから冷却水が供給されるよう
になっておシ、入口水室jから各冷却管4!ヲ介して出
口氷室乙に達した冷却水は導管りから排出されるように
なっている。
First, a typical type of condenser is shown in Figs. 1 and 2. In Fig. 1, the casing 3 of the drainage capacity which condenses the exhaust steam exiting the turbine is shown. There are many cooling pipes μ, μ・
... are arranged in a row in the horizontal direction, and both ends of each cooling pipe are connected to inlet ice chambers formed at both ends of the casing 3.
and reaches the outlet ice chamber O, inside the casing 3 and both water chambers, t
, g'l are fixed to partition plates 7a and 7k. Cooling water is supplied to the inlet ice chamber j from the conduit r, and each cooling pipe 4 is supplied from the inlet water chamber j! The cooling water that has reached the outlet ice chamber B via the outlet is discharged from the conduit.

前記各冷却管弘の中間部は、冷却管すの軸線方向に間隔
を隔てた複数板の支持板10 、10・・・により支持
されている。
The intermediate portion of each of the cooling pipes is supported by a plurality of support plates 10, 10, . . . spaced apart in the axial direction of the cooling pipe.

さらに、第2図に示すように、前記冷却管tにより構成
される冷却管群IQは、傾斜配置された偏向板//FL
、//bおよびこれらの中間位置に垂直方向に配置され
た偏向板//Qによシ3つの冷却管群/4’a l /
4’tl l /IAcに分割きれている。前記各偏向
板//は仕切板7および支持板10に固定されている。
Furthermore, as shown in FIG.
, //b and a deflection plate vertically arranged at an intermediate position between these three cooling tube groups /4'a l /
It can be divided into 4'tl l /IAc. Each of the deflection plates // is fixed to the partition plate 7 and the support plate 10.

なお、冷却管v内の冷却水との熱交換によシ凝縮拶水し
た排気蒸気は、ケーシング3の下端に接続 桜された導管72を介して復水器λ外へ排出される0前
述した構成によれば、タービン/の排気蒸気は復水器2
のケーシング3内に供給され、各冷却管群144a、 
14cb 、 744Qの外周から各群/弘内に流入し
て各冷却管V内の冷却水と熱交−し、凝縮復水する。そ
して、とのゆ水は導管/2f介して@水容2外に排出さ
れる。
In addition, the exhaust steam condensed by heat exchange with the cooling water in the cooling pipe v is discharged to the outside of the condenser λ via the conduit 72 connected to the lower end of the casing 3. According to the configuration, the exhaust steam of the turbine/condenser 2
each cooling pipe group 144a,
14cb, 744Q flows into each group/Honai from the outer periphery, exchanges heat with the cooling water in each cooling pipe V, and condenses and condenses. Then, the boiling water is discharged to the outside of the water container 2 via the conduit/2f.

ところで、上方の冷却管群/弘aで凝縮した復水け、重
力および蒸気の下降流によυ順次下方の冷却管ヶ上に落
下するが、その際1次第に液膜の厚みを増すため、冷却
管μとの熱伝達が悪化する。
By the way, the condensate condensed in the upper cooling pipe group/Hiroa falls sequentially onto the lower cooling pipes due to gravity and the downward flow of steam, but at that time, the thickness of the liquid film increases gradually. Heat transfer with cooling pipe μ deteriorates.

ところが、傾斜配置された偏向板//a、//bの存在
により冷却管群/4ff&にお好る復水は、偏向板//
a、//k)に沿って流下し、下方の両冷却管群/4’
b、/4’Oには達しないoしたがって、これらの冷却
管群/4(t)、/4ffOにおいては上方の冷却管群
lI/−aにおける復水による液膜の増加はなく、しか
も、これらの洸却管群/4fb、/Q−Cに供給される
蒸気流は水平方向流であるため、凝縮した復水は高速の
蒸気流により水平方向に飛散され、この結果、液膜は一
定の埋さ以上になることはなく、熱伝達の低下は防止さ
れる。
However, due to the presence of the deflection plates //a and //b arranged at an angle, the condensate preferable to the cooling pipe group /4ff& is
a, //k), both lower cooling pipe groups /4'
b, does not reach /4'O o Therefore, in these cooling tube groups /4(t) and /4ffO, there is no increase in the liquid film due to condensation in the upper cooling tube group lI/-a, and furthermore, Since the steam flow supplied to these return pipe groups /4fb and /Q-C is a horizontal flow, the condensed water is scattered horizontally by the high-speed steam flow, and as a result, the liquid film remains constant. , and a reduction in heat transfer is prevented.

前述した復水器コの従来のものにおける冷却管tの材質
としては、冷却管を内を流れる冷却水が海水であるため
、耐食性全考慮して銅合金が一般に使用されている〇 そして、冷却管μの肉厚は/0.2鶴程度のものが普通
である。
As for the material of the cooling pipe t in the conventional condenser described above, since the cooling water flowing through the cooling pipe is seawater, copper alloy is generally used in consideration of its corrosion resistance. The wall thickness of the tube μ is usually about 0.2 mm.

しかしながら、冷却管tは、海水による腐食現象、およ
び蒸気入口端近傍でのインレットアタックなどによる侵
食現象を常時受けているため、長年の使用によシ劣化し
、時間の経過とともに冷却″: 管壁に孔があき、浴却水のチューブリークが発生する問
題点があった。発電プラントにおいては、チューブリー
クが発生したW1合、プラントの運転(3) を停止したシ、出力を制限しなければならないため、チ
ューブリークの生じない冷却管ケの採用が強く要望され
ていた。
However, the cooling pipe t is constantly subject to corrosion phenomena caused by seawater and inlet attack near the steam inlet end, so it deteriorates over many years of use and cools down over time. There was a problem in which a hole formed in the tube, causing a tube leak in the bath water.In a power generation plant, when a tube leak occurs in W1, plant operation (3) must be stopped and the output must be restricted. Therefore, there was a strong demand for the use of cooling pipes that do not cause tube leaks.

このため、近年、チタン製の冷却管ヶを使用した復水器
2が採用され始めている。チタンは、耐腐食性、耐侵食
性に特に優れた性質を有する金属であるため、チタンを
冷却管ケに使用すれば、チューブリークの皆無な復水器
を実現できる。
For this reason, in recent years, condensers 2 using cooling pipes made of titanium have begun to be adopted. Titanium is a metal with particularly excellent corrosion resistance and erosion resistance, so if titanium is used for cooling pipes, a condenser with no tube leaks can be realized.

ところが、チタンは非常に高価な材料であるため、数万
本の冷却管<<’1備えた発電プラント用復水容コの各
冷却管≠をチタン製にするには、チタンの使用量を少な
くするため冷却管tの肉厚を薄くする必要がある。この
ため、チタンの材料特性を考慮し、現在チタン製の冷却
管≠とじては、肉厚0.j8のものが一般に使用されて
いる。
However, titanium is a very expensive material, so in order to make each cooling pipe in a power plant condensate tank with tens of thousands of cooling pipes <<'1, it is necessary to reduce the amount of titanium used. In order to reduce this, it is necessary to reduce the thickness of the cooling pipe t. For this reason, considering the material properties of titanium, currently titanium cooling pipes have a wall thickness of 0. j8 is generally used.

従来、前述したチタン製の冷却管を使用した復水器は、
?、/図および第2図に示す復水器すべての冷却管II
L′lr−チタン製のものとしていた。しかし力から、
このような構成においては、以下に示すよう力問題点が
あった。
Conventionally, condensers using the titanium cooling pipes mentioned above,
? , / All cooling pipes II of the condenser shown in Figs.
It was made of L'lr-titanium. But from power
In such a configuration, there is a power problem as shown below.

(4L) すなわち、チタン材は、復水器に一般に使用されている
銅合金材料や炭素鋼材料に比較すると、摩耗特性が劣り
、異種の金属と繰返し接触1・たけ衝突すると、片較的
脆く、従来、使用されている銅合金材料の冷却管に比較
すると、かなり低い繰返し荷重で破損することが実験に
より確認された0そして、チタン管を使用したゆ水容に
おいては、前述したように肉厚0#’lBの薄肉管が使
用されているため、・従来の肉厚/、2mm程度の銅合
金材料の冷却管と比較すると、異種金属との接かによる
許容の繰返し荷重の回数はかなり少なくなるという問題
がある。
(4L) In other words, titanium materials have inferior wear characteristics compared to copper alloy materials and carbon steel materials commonly used in condensers, and they become relatively brittle when repeatedly brought into contact with dissimilar metals. It has been experimentally confirmed that cooling pipes using titanium pipes break at considerably lower repeated loads than cooling pipes made of copper alloy materials that have been used in the past. Because a thin-walled tube with a thickness of 0#'lB is used, the number of times the allowable repeated load due to contact with dissimilar metals is considerably lower than that of conventional cooling tubes made of copper alloy materials with a wall thickness of about 2 mm. The problem is that there are fewer.

ところで、一般に、ゆ水容の冷却管には音速に近い流速
のタービン排気蒸気が衝突し、この蒸気の圧力によυ冷
却管には撓みが生じる。第1図および第2図の復水器λ
においては、この撓みによっても冷却管グが他の冷却管
グと衝突もしくは接触しないように隣位の一対の支持板
10,10間の間隔は選定されている。壕だ、ケーシン
グ3と外周位置の冷却管≠との間隔も接触しないように
選定されている。
By the way, in general, turbine exhaust steam with a flow velocity close to the speed of sound collides with a cooling pipe having a large water capacity, and the pressure of this steam causes the cooling pipe to bend. Condenser λ in Figures 1 and 2
In this case, the distance between the pair of adjacent support plates 10, 10 is selected so that one cooling pipe does not collide with or come into contact with another cooling pipe due to this deflection. The distance between the casing 3 and the cooling pipe at the outer periphery is also selected so that they do not come into contact with each other.

ただし、冷却管弘と偏向板//との間隔は、第3図に示
すように、可及的に小さくすることが望ましい。これは
、冷却管グおよび偏向板77間の間隙よりタービンlの
排気蒸気がショートパスして凝縮初氷せすに蒸気の′1
ま冷却管群/ψを通過するのを避けるためである。この
ように、蒸気のませ冷却管群/II’i通過すると、初
氷器内に流入する非凝縮性ガスとともに空気抽出装置(
図示せず)に吸引さtIることになるため、空気抽出装
置の容量を大きくしなければならない〇 このような理由の故に冷却管弘および偏向板77間の間
隙は通常/QMJII程度に設定されている0この間隙
は、冷却管グおよび偏向板//が接触せず、しかも、蒸
気のままの復水器λからの排出が生じない間隙ではある
が、薄い炭素鋼鋼板からなる偏向板//f支持板10に
溶接する際に′:熱影響により仰向板//が歪んだシ、
あるいはその他の製造上の誤差のために、冷却管グおよ
び偏向板l1間の間隙が数U以下になることがある。
However, as shown in FIG. 3, it is desirable to make the distance between the cooling pipe hole and the deflection plate as small as possible. This is because the exhaust steam of the turbine 1 takes a short path through the gap between the cooling pipe 77 and the deflection plate 77, resulting in the condensation and first freezing of the steam.
This is to avoid passing through the cooling pipe group /ψ. In this way, when the steam passes through the cooling tube group/II'i, it flows into the air extractor (
(not shown), the capacity of the air extraction device must be increased.For this reason, the gap between the cooling pipe and the deflection plate 77 is usually set to about /QMJII. This gap is a gap where the cooling pipe and the deflection plate do not come into contact with each other, and furthermore, the vapor is not discharged from the condenser λ, but the deflection plate made of thin carbon steel plate /f When welding to the support plate 10, the vertical plate // is distorted due to heat influence.
Or, due to other manufacturing errors, the gap between the cooling pipe and the deflection plate l1 may be several U or less.

このような状態において、蒸気の圧力により冷却管tが
撓みを生じたり、また、偏向板/lが蒸気圧力あるいは
落下するゆ水によシ振動tまたり撓んだシすると、冷却
管グと偏向板//が接触することがある。そして、この
接角中が繰返し行なわれると、チタン製の冷却管弘に異
種金属の繰返し荷重が作用することになり、前述したツ
験の結果より明らかなように、チタン製の冷却管ケが脆
くなり、破損するおそれも出てくる。
In such a state, if the cooling pipe t is bent due to the pressure of the steam, or if the deflection plate/l is bent due to the vibration t due to the steam pressure or falling water, the cooling pipe t will be bent. The deflection plate // may come into contact. If this tangent angle is repeated, the repeated loads of different metals will act on the titanium cooling pipe, and as is clear from the test results mentioned above, the titanium cooling pipe will It becomes brittle and there is a risk of damage.

〔発印1の目的〕 本発明は、このような点に鑑み、ti向板と接触して破
損するようなチタン製の冷却管をなくした′6i方器全
提供することを目的としてなされたもので、偏向板の近
傍に、断面保t7の大きな杆部材を配置したものである
[Purpose of Seal 1] In view of the above, the present invention has been made with the purpose of providing a '6i rectangular box which does not have a titanium cooling pipe that would be damaged by contact with the Ti facing plate. A large rod member with a cross section of t7 is arranged near the deflection plate.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明−図面に示す実施例によりト明す1′]す る。 Hereinafter, the present invention will be explained with reference to the embodiments shown in the drawings. Ru.

本発明の全体構成は、第1図および第2図に示Li一般
的な復水器と同じなので、ここではその(7) 要部のり−について駅間する。
The overall configuration of the present invention is the same as that of the general Li condenser shown in FIGS. 1 and 2, so here we will discuss the main parts (7).

第7図は本発明の実施例を示すものでめシ、第、2トイ
1のhaw示している。この第グ図において、符号ヶは
チタン製+の冷却管であり、これらの冷却管グのうち偏
向板llbの近傍、すなわち偏向板//111の隣位に
ある冷却管の代りに、杆部材の一例としての中実棒/2
 、 /:l・・・が配置畑れている。なお、図示しな
い他の仰向板//a、//Qの近傍にも中実2− 祇を配置゛されている・これらの中実棒/2は、第1図
の仕切板7および支持f10に支持されており、その材
乍としては炭素鋼などが用いられる。そして、この中実
棒/、2は薄肉の冷却管lよりはるかに大きな断面係数
を有している。
FIG. 7 shows an embodiment of the present invention, and shows how the first, second, and second toy 1 is constructed. In this figure, reference numerals indicate cooling pipes made of titanium, and instead of the cooling pipes located near the deflection plate llb, that is, adjacent to the deflection plate //111, a rod member is used. Solid bar as an example of /2
, /:l... is placed in the field. Note that solid rods 2-2 are also arranged near other upright plates //a and //Q (not shown).These solid rods 2 are connected to the partition plate 7 and the support shown in FIG. It is supported by f10, and its material is carbon steel or the like. The solid rod 2 has a much larger section modulus than the thin cooling pipe 1.

つぎに、前述した実施例の作用について欽明するO タービン排気蒸気は、前述したように音速に近い速度で
冷却管グに衝突し、この蒸気の圧力により各冷却V≠は
撓むが、前述したように支持板10の間隔は、この撓み
によっても冷却管〜が相互に接触し力いように設定され
ているため冷却管同士<り の衝突は発生しない。また、冷却管弘と中実ml、!と
の接触は、冷却管を赴よび中実棒/、2の配置1171
隔が、冷却管グ同士の配置間隔と等しく、しかも中実棒
/:lは冷却管グより大きな断面係数會有しており、剛
性が犬きく冷却管弘より撓みにくいので、冷却管≠およ
び中実棒12が接触することはない。
Next, we will explain the operation of the above-mentioned embodiment.As mentioned above, the turbine exhaust steam collides with the cooling pipes at a speed close to the speed of sound, and each cooling pipe V≠ is deflected by the pressure of this steam. The spacing between the support plates 10 is set so that the cooling pipes come into contact with each other even with this deflection, so that no collision occurs between the cooling pipes. Also, cooling pipe Hiro and Nakami ml,! The contact with the cooling tube and the solid rod/, 2 arrangement 1171
The spacing is equal to the spacing between the cooling pipes, and the solid rod has a larger section modulus than the cooling pipes, and is more rigid and less susceptible to bending than the cooling pipes. The solid rods 12 never come into contact.

そして、併向′Fj//bの製造上の防差や変形、ある
いは運転中における偏向板//’t)の振動1や変形に
より佑・向板//bが第グ図に符号Bで示すような状態
になると、偏向板/lbが中実棒/ユに探触することか
を、るが、偏向板//’bが変形もしくは振動しf−と
しても中実棒/?に遮られるため佃1向根t/bおよび
冷却管グが接触することはない。したがって、チタン製
の冷却管弘に偏向板//bの経返し衝撃荷重が作用する
ことはなく、耐腐食性および耐侵食性の強いチタン製の
冷却管≠の長寿命を達成することができる。
Then, due to the manufacturing difference or deformation of the parallel direction 'Fj//b, or the vibration 1 or deformation of the deflection plate //'t) during operation, the direction plate//b is marked with the symbol B in Fig. In the situation shown, the deflection plate /lb will probe the solid rod /y, but the deflection plate /'b will deform or vibrate and even if the solid rod /? Because it is blocked by Tsukuda 1 direction root t/b and cooling pipe g, there is no contact. Therefore, the repeated impact load of the deflection plate //b does not act on the titanium cooling pipe, and it is possible to achieve a long life compared to the titanium cooling pipe, which has strong corrosion and erosion resistance. .

万お、前述した実施例においては、杆部材として炭素鋼
蚤“・の中丈棒/コ?使用したが、この中実棒/L2の
仕りにチタン製の中実棒もしくは厚肉管を使用すれば、
薄肉管の冷却管よりはるかに断面係数が大きいため、衝
撃荷重に対する耐力は向上し、チタンの特性が生かされ
るためより信頼性が増す。
By the way, in the above-mentioned embodiment, a medium-length carbon steel rod was used as the rod member, but a titanium solid rod or thick-walled tube was used as the solid rod L2. if,
Since the section modulus is much larger than that of thin-walled cooling pipes, the resistance to impact loads is improved, and the properties of titanium are utilized, making them even more reliable.

なお、チタン製の冷却管lを使用する場合、仕切板〜(
第1図)にチタンやチタンクラッド鋼を使用し、冷却管
参と仕切板滴の固定に溶接によることが#軸性の向上の
ために必須の条件となっているので、チタン製の中実棒
もしくは厚肉t’にチタンやチタンクラッド鋼製の仕切
板Nに溶接することによシさらに信頼性が向上し、安全
な@水密となる。
In addition, when using a titanium cooling pipe l, the partition plate ~ (
Figure 1) is made of titanium or titanium clad steel, and welding is an essential condition for fixing the cooling pipe and the partition plate droplet in order to improve the axiality. By welding the bar or thick wall t' to the partition plate N made of titanium or titanium clad steel, reliability is further improved and it becomes safe and watertight.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る復水器は、多数のチ
タン製の冷却管を整列配信し、これらの冷却管群内に偏
向[−冷却管に接触しないように配饋し+0水器におい
て、前記偏向板の近傍に、断面係数の大きな杆部材を配
熾したので、偏向板が衝撃荷1に弱いチタン製の冷却管
に衝突するお七わがなく、したがって、耐腐食性および
耐侵食性の強いチタン製の冷却管が破損することがなく
高寿命の復水器にすることができる。
As explained above, in the condenser according to the present invention, a large number of titanium cooling pipes are arranged and distributed, and within these cooling pipe groups, the deflection [-] is arranged so as not to contact the cooling pipes, and the Since a rod member with a large section modulus is arranged near the deflection plate, the deflection plate does not collide with the titanium cooling pipe, which is vulnerable to impact loads, and therefore has corrosion resistance and erosion resistance. The cooling pipe made of strong titanium will not be damaged and the condenser will have a long lifespan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な復水器を示す訃明図、第2図は第1図
の■−■紳による断面図、第3図は第2図のA部の詳細
図、第弘図は本発明に係る復水器の寮施例を示す第2図
のA部の詳細図であるO7・・・タービン、コ・・・復
水器、3・・・ケーシング、≠・・・冷却管、7(7a
、71))・・・仕切板、10・・・支持板、//(/
/a 、//b、//c )・−偏向板、/2・・・中
実棒、/l (/4’fL 、 /4”b 、 /II
Q ) 、、、冷却管群〇出願人代理人   猪  股
     清、1’lb (//) 鴇1 図 2 第2図 \ ′−−\2、 14a 10 、  A 711す (/コ)
Figure 1 is an obituary diagram showing a general condenser, Figure 2 is a sectional view taken along the line ■-■ in Figure 1, Figure 3 is a detailed view of section A in Figure 2, and Figure 2 is a detailed view of section A in Figure 2. O7 is a detailed view of part A in FIG. 2 showing an embodiment of the condenser according to the present invention. Turbine, condenser, 3. Casing, ≠. Cooling pipe. , 7 (7a
, 71))... Partition plate, 10... Support plate, //(/
/a, //b, //c) - deflection plate, /2... solid rod, /l (/4'fL, /4''b, /II
Q) ,,,Cooling pipe group〇Applicant Kiyoshi Inomata, 1'lb (//) Toki 1 Figure 2 Figure 2\'--\2, 14a 10, A 711su(/co)

Claims (1)

【特許請求の範囲】 l)多数のチタンtの冷却管を整列配置し、これらの冷
却管群内に偏向板を冷却管に接触しないように配置した
復水器において、前記偏向板の近傍に、断面係数の大き
な杆部材を配置したことを特徴とする復水器。 λ)前記杆部材を中実棒とした特許請求の範囲第1項記
載の復水器。 3)前記杆部材を厚肉管とした特許請求の範囲第1項記
載の@水容。
[Scope of Claims] l) A condenser in which a large number of titanium T cooling pipes are arranged in a line and a deflection plate is arranged in the group of these cooling pipes so as not to touch the cooling pipes, in which a deflection plate is arranged in the vicinity of the deflection plate. , a condenser characterized by having rod members having a large section modulus arranged therein. λ) The condenser according to claim 1, wherein the rod member is a solid rod. 3) @water container according to claim 1, wherein the rod member is a thick-walled pipe.
JP8531282A 1982-05-20 1982-05-20 Condenser Pending JPS58203390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8531282A JPS58203390A (en) 1982-05-20 1982-05-20 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8531282A JPS58203390A (en) 1982-05-20 1982-05-20 Condenser

Publications (1)

Publication Number Publication Date
JPS58203390A true JPS58203390A (en) 1983-11-26

Family

ID=13855083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8531282A Pending JPS58203390A (en) 1982-05-20 1982-05-20 Condenser

Country Status (1)

Country Link
JP (1) JPS58203390A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811783A (en) * 1984-11-15 1989-03-14 Westinghouse Electric Corp. Heat exchanger tube bundle protection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811783A (en) * 1984-11-15 1989-03-14 Westinghouse Electric Corp. Heat exchanger tube bundle protection apparatus

Similar Documents

Publication Publication Date Title
US6498827B1 (en) Heat exchanger tube support structure
KR100194778B1 (en) Avenger
PL201326B1 (en) Steam super heater comprising shield pipes
JPS58203390A (en) Condenser
US6296049B1 (en) Condenser
CN206469247U (en) A kind of overheat segment structure for improving high pressure heater available rate
JP2020026939A (en) Heat exchanger
US3472315A (en) Protective device for condenser tubes
JP2021076315A (en) Multi-tube condenser
JP6789855B2 (en) Turbine system for condensers and power plants
El-Dahshan et al. A new form of titanium condenser tube droplet erosion
JPS59170697A (en) Heat exchange of multi-pipe type
JP2882801B2 (en) Anti-sway structure for large economizer pipe
JPS58178186A (en) Condenser
Egorov et al. TECNICA ITALIANA-Italian Journal of Engineering Science
JPS631515B2 (en)
JP2511149B2 (en) Water heater
CN217953252U (en) U-shaped heat exchange tube bundle integrated supporting structure
CN108343943B (en) Overheating section structure for improving input rate of high-pressure heater
JPH10170169A (en) Condenser
JPS6011005A (en) Reheater for steam turbine
UA122172C2 (en) METHOD OF INSTALLATION OF COOLING TUBES IN HIGH POWER TURBINE CONDENSER
JPS6246796B2 (en)
Nagori et al. Steam Cycle Heat Exchangers
Syrett et al. Corrosion in the condensate-feedwater system