JPS58202624A - Analog switch circuit - Google Patents

Analog switch circuit

Info

Publication number
JPS58202624A
JPS58202624A JP8597282A JP8597282A JPS58202624A JP S58202624 A JPS58202624 A JP S58202624A JP 8597282 A JP8597282 A JP 8597282A JP 8597282 A JP8597282 A JP 8597282A JP S58202624 A JPS58202624 A JP S58202624A
Authority
JP
Japan
Prior art keywords
source
voltage
temperature
gate
jfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8597282A
Other languages
Japanese (ja)
Inventor
Tatsuo Hayakawa
早川 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8597282A priority Critical patent/JPS58202624A/en
Publication of JPS58202624A publication Critical patent/JPS58202624A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches

Abstract

PURPOSE:To ensure the perfect compensation of temperature for ON-resistance of a JFET, by providing a comparison reference JFET and using an operational amplifier to control the gate-source voltage of the JFET. CONSTITUTION:The process parameter IDSS and VP of a JFETJ34 varies in response to the variation of the ambient temperature. Therefore, the ON-resistance RON of the JFETJ34 is going to vary. In this case, however, the gate voltage of the JFETJ34 varies by the negative feedback function of an operational amplifier 3 so that the source-drain voltage of the JFETJ34 is equal to the value V'ref of a temperature compensated bias power supply 35. Thus the variation of the resistance RON is suppressed. The resistance RON is kept at a constant level to the temperature change since the voltage V'ref and the current value I0 of a current source 37 received the compensation of temperature.

Description

【発明の詳細な説明】 本発明はアナログスイッチ回路に係り、特に接合形電界
効果トランジスタ(以下JPETと略す)を用いたアナ
ログスイッチ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analog switch circuit, and particularly to an analog switch circuit using a junction field effect transistor (hereinafter abbreviated as JPET).

アナログスイッチは、サンプルアンドホールド回路、マ
ルチプレクサ回路、増幅器の利得切替回路、積分器等に
頻繁に用いられている。これらの応用のうちで、マルチ
プレクサ回路、増幅器の利得切替回路においては、信号
ラインにシリーズにアナログスイッチが入るので、アナ
ログスイッチのオン抵抗の温度特性が問題になることが
ある。
Analog switches are frequently used in sample-and-hold circuits, multiplexer circuits, amplifier gain switching circuits, integrators, and the like. Among these applications, in multiplexer circuits and amplifier gain switching circuits, analog switches are connected in series to the signal line, so the temperature characteristics of the on-resistance of the analog switches may become a problem.

従来、簡単な温度特性補償回路を設けたものも考えられ
たが、その性能は満足できるものではなかった。
Conventionally, a device equipped with a simple temperature characteristic compensation circuit has been considered, but its performance was not satisfactory.

以下、この問題についてPチャンネル型JPETを例に
取って説明する。よく知られているようにJPETの3
極管領域におけるオン抵抗値ROMは、式(1)のよう
に表わされる。
This problem will be explained below using P-channel JPET as an example. As is well known, JPET 3
The on-resistance value ROM in the electrode region is expressed as in equation (1).

ここでvPはピンチオフ電圧、ID18は最大飽和トレ
イン電流%VGllIけゲート・ソース間逆バイアス電
圧である。VCSが零の時、ROMは最少値VP/2I
D8Bを示し% VGjlが正に大きくなるに従ってR
ON F1大きくな)、VOSがvPでRONは無限大
となる。JPETのROMは高温で大きくなり低温で小
さくなるので、ゲート・ソース間電圧VG8を高温で小
さくし、低温で大きくするように温度特性を持たせると
ROMの温度特性を補償できる事がゎわる。第1図は、
この原理を示している。同図で1.2.all″1′そ
れぞれJFET Jlのソース、ドレインゲート端子で
あり、4けバッファ、5け可変電圧源である。可変電圧
源5の電圧を変えるとJlのVCSが変わりROMが変
わる。この原理は既に知られている。実際の回路への従
来の適用例を第2図に示す。この図でスイッチのJFE
T ld Jl 1  である。端子11,12.13
は、それぞれソース。
Here, vP is the pinch-off voltage, and ID18 is the maximum saturation train current %VGllI and the reverse bias voltage between the gate and source. When VCS is zero, ROM has the minimum value VP/2I
Indicates D8B, and as %VGjl increases positively, R
ON F1 is large), VOS is vP and RON is infinite. Since the ROM of JPET becomes large at high temperatures and becomes small at low temperatures, it is possible to compensate for the temperature characteristics of the ROM by making the gate-source voltage VG8 small at high temperatures and increasing it at low temperatures. Figure 1 shows
illustrates this principle. In the same figure, 1.2. all"1' are the source and drain gate terminals of JFET Jl, respectively, and are a 4-digit buffer and a 5-digit variable voltage source. Changing the voltage of the variable voltage source 5 changes the VCS of Jl and changes the ROM. This principle has already been explained. An example of conventional application to an actual circuit is shown in Figure 2.
T ld Jl 1 . Terminal 11, 12.13
are the respective sources.

11、、l。11,,l.

ドレイン、ゲートである。23け温度補償されたバイア
ス電圧でその値をVrefで表わす。16〜19は、抵
抗で抵抗値を几1+R2+凡3.R4で表わす。
It is a drain and a gate. The value is expressed as Vref, which is a bias voltage compensated for by 23 temperatures. 16 to 19 are resistors whose resistance values are 1+R2+3. It is represented by R4.

ダイオードはDI 、D2 、 )ランジスタはQl。The diode is DI, D2, and the transistor is Ql.

Q2.電流源は20.21.22.スイッチ以外のJP
ETIJ12 、Jl3で表わす。Jl2とJ13Fi
同一形状のJF’ETである。、JFE’l”スイッチ
をオフさせるのは、ゲート端子を最高電位に接続するだ
けで簡単なので、以下の説明はオン状態に限る。
Q2. The current sources are 20.21.22. JP other than switches
Represented by ETIJ12 and Jl3. Jl2 and J13Fi
It is JF'ET with the same shape. , JFE'l'' switch can be easily turned off by simply connecting the gate terminal to the highest potential, so the following explanation will be limited to the on state.

スイッチ11のソース端子11の電位は、Jl3により
検知される。Jl3とJl2け全く同一形状なのでJl
2 、Jl3のソース・ゲート間電圧は等しい。ここで
Jl2のソース・ゲート間電圧VG812は次のように
表わせる。
The potential of the source terminal 11 of the switch 11 is detected by Jl3. Since Jl3 and Jl2 have exactly the same shape, Jl
2, the source-gate voltages of Jl3 are equal. Here, the source-gate voltage VG812 of Jl2 can be expressed as follows.

ここでVBEはダイオードの順方向降下電圧値或は、ト
ランジスタのペースエミッタ間電圧値を表わす。端子1
1のソース電位は、Jl3のゲルトソース間電圧、D2
の!一方向降下電圧、Q2のペース・エミッタ間順方向
降下電圧をシフトして端子・1・、。
Here, VBE represents a forward drop voltage value of a diode or a pace emitter voltage value of a transistor. terminal 1
The source potential of 1 is the gelt-source voltage of Jl3, D2
of! One-way voltage drop, Q2's pace-emitter forward voltage drop is shifted to terminal 1.

13に伝達されるのでJllのゲート・ソース間電圧V
Glillとその温度係数””u、(3) 、 (41
式で表T わす事ができる。
13, so the gate-source voltage V of Jll
Grill and its temperature coefficient ""u, (3), (41
It is possible to write the table T in the formula.

この従来例では、JFETのオン抵抗の温特をVBEの
温度特性(約−2,Onno/ 0C)で補償している
事が(3) l (41式かられかる。しかしながらJ
FETとダイオード、トランジスタの拡散プロファイル
は全く違うのでJPETのパラメータ■D88 + v
Pの温度特性、バラつきを上記VBEの温度特性で補償
する方法は、不十分であり、温度特性はわずかに改善さ
れたにすぎなかった。
In this conventional example, the temperature characteristics of the on-resistance of the JFET are compensated by the temperature characteristics of VBE (approximately -2, Onno/0C).
Since the diffusion profiles of FET, diode, and transistor are completely different, the JPET parameter ■D88 + v
The method of compensating for variations in the temperature characteristics of P using the temperature characteristics of VBE is insufficient, and the temperature characteristics are only slightly improved.

本発明は、上記問題点を解決し、JFETのオン抵抗の
温度補償を完全にするものである。
The present invention solves the above problems and completely compensates the temperature of the on-resistance of the JFET.

本発明の特徴は、例えばアナログスイッチとなる第1の
JPETのソース電位は、利得が1倍のバッファ回路に
より検出され、このバッファ回路出力には温度補償され
たバイアス電圧源と比較用の第2のJPETのソース端
子が接続され、このバイアス電圧源の他端と第2のJP
ETのドレイン端子5− は演算増幅器のそれぞれ反転入力と非反転入力端子に接
続され、さらに第2のJFE’I’のドレイン端子は、
温度補償された定電流源に接続され、且つ前記演算増幅
器出力は第1.第2JFETのゲート端子に接続された
アナログスイッチ回路にある。
A feature of the present invention is that, for example, the source potential of the first JPET, which is an analog switch, is detected by a buffer circuit with a gain of 1, and the output of this buffer circuit is connected to a temperature-compensated bias voltage source and a second JPET for comparison. The source terminal of the second JPET is connected to the other end of this bias voltage source and the second JPET.
The drain terminal 5- of the ET is connected to the inverting and non-inverting input terminals of the operational amplifier, respectively, and the drain terminal of the second JFE'I' is
connected to a temperature compensated constant current source, and the operational amplifier output is connected to the first. It is in an analog switch circuit connected to the gate terminal of the second JFET.

以下、本発明の一実施例につき図面を用いて説明する。Hereinafter, one embodiment of the present invention will be described using the drawings.

第3図に本発明の一実施例のアナログスイッチ回路を示
す。図でJ31がスイッチ用のJPET。
FIG. 3 shows an analog switch circuit according to an embodiment of the present invention. In the figure, J31 is the JPET for the switch.

36は演算増幅器(以下オペアンプ)、J32.J33
゜J34はJPETでありJ32とJ33け全く同一形
状である。D3はダイオード、Q3はNPN)ランジス
タ、 37 、38は定電流源、35は温度補償された
バイアス電圧源であり、その値をV’refで表わす。
36 is an operational amplifier (hereinafter referred to as an operational amplifier), J32. J33
゜J34 is JPET, and J32 and J33 have exactly the same shape. D3 is a diode, Q3 is an NPN) transistor, 37 and 38 are constant current sources, and 35 is a temperature compensated bias voltage source, the value of which is expressed as V'ref.

特徴的なのは、比較基準JFET J34を設けである
事と1オペアンプ36を使ってJFETのゲート・ソー
ス間電圧VOSを制御する事である。
The characteristics are that a comparison reference JFET J34 is provided and that one operational amplifier 36 is used to control the gate-source voltage VOS of the JFET.

J34iオペアンプ36の負帰還ループ内にある。It is in the negative feedback loop of the J34i operational amplifier 36.

オペアンプ36の反転入力端子40と非反転入力端子4
1間電圧は、オペアンプ利得が十分高いとすれば−等し
い。即ちJ34のソース・ドレイン間6− 電圧は、V’r e fに等しい。又、定電流源37の
電流値eIoで表わすと、J34のオン抵抗RON34
は、(5)式で表わされる。
Inverting input terminal 40 and non-inverting input terminal 4 of operational amplifier 36
If the operational amplifier gain is high enough, the voltage between the two is equal to -. That is, the source-drain voltage of J34 is equal to V're f. Also, when expressed as the current value eIo of the constant current source 37, the on-resistance RON34 of J34
is expressed by equation (5).

周囲温度の変動に伴いJ34のID8B + vPは変
化し、J34のオン抵抗も変化しようとするが、上記オ
ペアンプを使った負帰還作用によりJ34  のソース
・ドレイン間電圧がV’refに等しくなるように、J
34のゲート電圧が変化しオン抵抗の変動を抑圧する。
ID8B + vP of J34 changes as the ambient temperature fluctuates, and the on-resistance of J34 also tends to change, but the negative feedback effect using the above operational amplifier keeps the voltage between the source and drain of J34 equal to V'ref. ni, J
The gate voltage of 34 is changed to suppress fluctuations in on-resistance.

V’refとIo#′i温度補償されているので%(5
)式かられかるように、J34のオン抵抗は温度変化に
対して一定に保たれる。こむでJ31のソース端子31
の電圧は、J34のソース端子39の電位に等しい。何
故ならJ32とJ33は全く同一形状なのでJ33のゲ
ート舎ソース電圧は零ボルトであるからである。オペア
ンプ36の出力端子42は、J34のゲートと共にスイ
ッチJ31のゲートにも接続式れているので、出力スイ
ッチJ31のゲート・ソース間電圧VG8もJ34のV
GS/と同じ値だけ変化する。J31とJ34Hディメ
ンシ冒ンーチャネル長とチャネル巾−が異なるだけなの
でJ34のROMと共にJ31のROMも温度補償され
ることくなる。さらに本発明によれば、JPETのプロ
セスパラメータID81i + vPがロット間で大き
くバラついてもバイアス電圧源V’refとIoのみで
RONが決まるので、J34.J31のオン抵抗の絶対
値のバラつきも抑圧される。一般にV’ref、Ioの
バラつきは% ”I)881 vPのバラつきに比し小
さいからである。
Since V'ref and Io#'i are temperature compensated, %(5
), the on-resistance of J34 is kept constant against temperature changes. Komude J31 source terminal 31
The voltage is equal to the potential of the source terminal 39 of J34. This is because J32 and J33 have exactly the same shape, so the gate-to-source voltage of J33 is zero volts. Since the output terminal 42 of the operational amplifier 36 is connected to the gate of the switch J31 as well as the gate of J34, the gate-source voltage VG8 of the output switch J31 is also VG8 of the output switch J34.
It changes by the same value as GS/. Since J31 and J34H differ only in dimensionality, ie, channel length and channel width, the ROM of J31 as well as the ROM of J34 will be temperature compensated. Further, according to the present invention, even if the JPET process parameter ID81i + vP varies greatly between lots, RON is determined only by the bias voltage sources V'ref and Io, so that J34. Variations in the absolute value of the on-resistance of J31 are also suppressed. This is because the variations in V'ref and Io are generally smaller than the variations in %I)881 vP.

こうして本発明け、プロセス変動、温度変動によるJP
ETパラメータ変動を押える事ができ従来、間頓となっ
ていたJPETのオン抵抗値の温度変動を極めて効果的
に補償すると共にその絶対値のバラつきも小さくする事
が可能となり、秀れたアナログスイッチを供給でき喪。
Thus, with the present invention, JP due to process variations and temperature variations
It is an excellent analog switch that can suppress ET parameter fluctuations, extremely effectively compensate for temperature fluctuations in the on-resistance value of JPET, which conventionally occurred intermittently, and also reduce variations in its absolute value. Can supply mourning.

又、各素子の極性を変えれば不発明ばNチャネル型JP
ETにも適用できる事は明らかである。
Also, if you change the polarity of each element, you can create an N-channel type JP.
It is clear that this can also be applied to ET.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゲート・ソース電圧を可変とするJF’ETア
ナログスイッチ回路、第2図は従来の温度補償J Ii
’ETアナログスイッチ回路、第3図は本発明実施例の
温度補償JPETアナログスイッチ回路、である。 々お図において、1・・・・・・ソース、2・・・・・
・ドレイン、3・・・・・・ゲート、4・・・・・・バ
ッファ、5・・・・・・可変電圧源%11・・・・・・
ソース、12・・・・・・ドレイン、13・・・・・・
ゲート、23・・・・・・温度保償されたバイアス電圧
、16〜19・・・・・・抵抗−DI + D2・・・
・・・ダイオードbQt+Qz・・・・・・トランジス
タ、 20〜22・・・・・・電流源、J12.J13
・・・・・・JFET、J31〜J34、・・・・・J
FET、35・・・・・・温度保償されたバイアス電圧
、36・・・・・・演算増幅器・ 37.38・・・・
・・定電流源、40・・・・・・反転入力端子、41・
・・・・・非反転入力端子 である。 代理人 弁理士  内 原   晋 −9−・ 第 1 図 第 2 区
Figure 1 shows a JF'ET analog switch circuit with variable gate-source voltage, and Figure 2 shows a conventional temperature compensated J Ii.
Figure 3 shows a temperature compensated JPET analog switch circuit according to an embodiment of the present invention. In the diagrams, 1...source, 2...
・Drain, 3...Gate, 4...Buffer, 5...Variable voltage source %11...
Source, 12...Drain, 13...
Gate, 23...Temperature guaranteed bias voltage, 16-19...Resistance -DI + D2...
...Diode bQt+Qz...Transistor, 20-22...Current source, J12. J13
...JFET, J31-J34, ...J
FET, 35... Temperature guaranteed bias voltage, 36... Operational amplifier 37.38...
...Constant current source, 40...Inverting input terminal, 41.
...It is a non-inverting input terminal. Agent Patent Attorney Susumu Uchihara-9- Figure 1, Ward 2

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタを用いたアナログスイッチ回路に
おいて、スイッチされる信号が伝送される第1の電界効
果トランジスタと、該第1の電界効果トランジスタのソ
ースに接続されたバッファ回路と、該バッファ回路の出
力に出力の一端が接続されたバイアス電圧源と、該バッ
ファ回路の出力にソースが接続された第2の電界効果ト
ランジスタと、該バイアス電圧源の出力の他端が反転入
力に接続され該第2の電界効果トランジスタのドレイン
が非反転入力に接続され出力が該第1および第2の電界
効果トランジスタの各々のゲートに接続された演算増幅
器とを含んで構成されることを特徴とするアナログスイ
ッチ回路。
An analog switch circuit using field effect transistors includes a first field effect transistor to which a signal to be switched is transmitted, a buffer circuit connected to the source of the first field effect transistor, and an output of the buffer circuit. a bias voltage source having one end connected to its output; a second field effect transistor having a source connected to the output of the buffer circuit; and a second field effect transistor having the other end of the output of the bias voltage source connected to the inverting input. An analog switch circuit comprising: an operational amplifier having a field effect transistor whose drain is connected to a non-inverting input and whose output is connected to each gate of the first and second field effect transistors.
JP8597282A 1982-05-21 1982-05-21 Analog switch circuit Pending JPS58202624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8597282A JPS58202624A (en) 1982-05-21 1982-05-21 Analog switch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8597282A JPS58202624A (en) 1982-05-21 1982-05-21 Analog switch circuit

Publications (1)

Publication Number Publication Date
JPS58202624A true JPS58202624A (en) 1983-11-25

Family

ID=13873635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8597282A Pending JPS58202624A (en) 1982-05-21 1982-05-21 Analog switch circuit

Country Status (1)

Country Link
JP (1) JPS58202624A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572161A (en) * 1995-06-30 1996-11-05 Harris Corporation Temperature insensitive filter tuning network and method
DE102010012688A1 (en) * 2010-03-24 2011-09-29 Dspace Digital Signal Processing And Control Engineering Gmbh Switching arrangement with temperature compensation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572161A (en) * 1995-06-30 1996-11-05 Harris Corporation Temperature insensitive filter tuning network and method
DE102010012688A1 (en) * 2010-03-24 2011-09-29 Dspace Digital Signal Processing And Control Engineering Gmbh Switching arrangement with temperature compensation
US8446208B2 (en) 2010-03-24 2013-05-21 Dspace Digital Signal Processing And Control Engineering Gmbh Circuit arrangement with temperature compensation
DE102010012688B4 (en) * 2010-03-24 2014-05-15 Dspace Digital Signal Processing And Control Engineering Gmbh Switching arrangement with temperature compensation

Similar Documents

Publication Publication Date Title
KR890004647B1 (en) Static current source circuit and differential amplifier with it
US4399374A (en) Current stabilizer comprising enhancement field-effect transistors
US4727309A (en) Current difference current source
US4583037A (en) High swing CMOS cascode current mirror
US5835994A (en) Cascode current mirror with increased output voltage swing
KR20010089826A (en) Amplifier
JPS63153903A (en) Amplifier circuit
JPH08204470A (en) Operational amplifier
US4524328A (en) MOS Power amplifier circuit
US20200004284A1 (en) Voltage regulator
US5801523A (en) Circuit and method of providing a constant current
JPH09321586A (en) Level comparator
US4296382A (en) Class AB push-pull FET amplifiers
US6194956B1 (en) Low critical voltage current mirrors
JPS6119134B2 (en)
US4849708A (en) Fully differential non-linear amplifier
KR0132646B1 (en) Voltage to current conversion circuit utilizing mos transistor
JPS58202624A (en) Analog switch circuit
US5925094A (en) Analog multiplier using triple-tail cell
EP0691656B1 (en) Sample hold circuit
KR100307835B1 (en) Constant-voltage circuit
US5410271A (en) Non-linear feedback network providing a linear transfer function
JPH07249946A (en) Ab class push-pull driving circuit, its driving method and ab class electronic circuit
US6700362B2 (en) Switchable current source
US11418154B1 (en) Biasing technique for an operational amplifier