JPS58202395A - Mixed-flow submergible pump - Google Patents

Mixed-flow submergible pump

Info

Publication number
JPS58202395A
JPS58202395A JP8472382A JP8472382A JPS58202395A JP S58202395 A JPS58202395 A JP S58202395A JP 8472382 A JP8472382 A JP 8472382A JP 8472382 A JP8472382 A JP 8472382A JP S58202395 A JPS58202395 A JP S58202395A
Authority
JP
Japan
Prior art keywords
guide vane
wall
flow
flow passage
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8472382A
Other languages
Japanese (ja)
Other versions
JPH0353479B2 (en
Inventor
Teiji Tanaka
田中 定司
Yasumasa Nakawa
名川 泰正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8472382A priority Critical patent/JPS58202395A/en
Publication of JPS58202395A publication Critical patent/JPS58202395A/en
Publication of JPH0353479B2 publication Critical patent/JPH0353479B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To reduce the undesirable influence of closing of a flow passage by a cable groove, by setting a cable groove for power source so as to bite into a flow passage on the concaved surface outer wall side of a vane at the max. diameter part of a guide vane and forming said guide vane type flow passage to be flattened in the direction of the three-dimensional curve. CONSTITUTION:On the outer wall 11a of a guide vane 6, a groove 9 for motor power cable 10 is formed in the direction of pump axis on the part corresponding to the outer wall part B of a vane concaved surface at the max. diameter part 12 of the flow passage of the guide vane 6. Therefore, the section of the flow passage is formed flattened in the direction of the three-dimensional curve, as shown in the figure, at the inlet part of the guide vane 6 where the three- dimensional curve is sharp, and thus the secondary stream is suppressed, and the stream on the inner wall A side of a vane convex wall which tends to be exfoliated from the meridian surface flow passage is restrained towards inner- wall side, and generation of exfoliation is delayed. Therefore, the undesirable influence of closing the flow passage 6 of the guide vane 6 due to the cable groove 9 can be utilized for the control of the guide vane 6 inside flow inversely.

Description

【発明の詳細な説明】 本発明は、井戸用斜流水中ポンプの案内羽根の羽根間流
路の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in the flow path between the guide vanes of a mixed flow submersible pump for a well.

井戸用水中ポンプでは、できるだけ狭いスペースで多く
の水量が得られるように1通常ポンプ駆動用電動機はポ
ンプ下方に設ける配電としている。
In submersible well pumps, the electric motor for driving the pump is usually installed below the pump in order to obtain as much water as possible in as small a space as possible.

即ち第1図において、lはポンプ駆動用電動機であり、
カップリングZKよって電動機軸3とポンプ軸4とが結
合され、一方、電動機電源ケーブル10F′i、地上か
ら吐出し配管7に沿わせて井戸17中に配線され、ポン
プ部分では案内羽根6の外壁に固定されている。ポンプ
軸4には必要吐出圧力に厄じて複数個の羽根車5が固定
さル、電動機lで回転される。羽根車5の回転に伴って
、水は電動機lとポンプとの間に設けられた吸込ストレ
ーナ8から吸込まれ、羽根車5によってエネルギーが与
えられる。さらにこの水は羽根車5の後方に配電された
案内羽根6を通る除に、羽根車5によって与えられたエ
ネルギー中の動圧成分を静圧に回復し、以後羽根車5で
のエネルギー付与、案内羽根6での静圧回復を繰返しな
がら吐出し圧力を高め、吐出し配管7へと流出する。
That is, in FIG. 1, l is a pump driving electric motor,
The motor shaft 3 and the pump shaft 4 are coupled by the coupling ZK, while the motor power cable 10F'i is routed from the ground into the well 17 along the discharge pipe 7, and in the pump part, the outer wall of the guide vane 6 Fixed. Due to the required discharge pressure, a plurality of impellers 5 are fixed to the pump shaft 4 and rotated by an electric motor 1. As the impeller 5 rotates, water is drawn in from a suction strainer 8 provided between the electric motor 1 and the pump, and is energized by the impeller 5. Furthermore, while this water passes through the guide vanes 6 distributed behind the impeller 5, it recovers the dynamic pressure component in the energy given by the impeller 5 to static pressure, and from then on, the energy is given by the impeller 5. The discharge pressure is increased while the static pressure is repeatedly recovered by the guide vanes 6, and the discharge pressure flows out into the discharge pipe 7.

井戸用水中ポンプに関しては規格が設けられており(J
 i S、B8324−1977、深井戸用水中モータ
ポンプ)、これによれば、標準井戸径の他、ケーブル等
を含むポンプ最大径が各井戸径ごとに規定されている。
Standards have been established for submersible pumps for wells (J
iS, B8324-1977, Submersible Motor Pump for Deep Wells), in addition to the standard well diameter, the maximum pump diameter including cables etc. is specified for each well diameter.

従って従来は、ケーブル寸法および案内羽根肉厚から案
内羽根流路最大径、ひいては羽根車外径を決定してい友
Therefore, conventionally, the maximum diameter of the guide vane flow path and, in turn, the outer diameter of the impeller were determined from the cable dimensions and the guide vane wall thickness.

一方、井戸からの揚水量は地下水の湧水量に依存する九
め、同−井戸径、井戸深さの場合でも土地によって可能
揚水看は異なる。このため各井戸径ごとに揚水量、即ち
比速度の異なるポンプを用意して、湧水量に応じて最も
効率の良い運転となるポンプを選択する要求が出てきて
いる。この場合、高比速度ポンプでは同一羽根車径でも
案内羽根流路を広く形成する必要がおる。従って井戸径
に対してケーブル寸法おるいは案内羽根肉厚寸法が相対
的に大きくなる小口径井戸では、高比速度ポンプげ第2
図に示すように1案内羽根6の外壁の一部を溝形状9と
し、この溝9の中に電源ケーブル10を通す案内羽根形
状としている。しかし、第2−図に示す案内羽根6では
、ケーブル溝9の部分では案内羽根流路は周方向に局所
的に閉塞される九め、羽根車5からの流れはこの部分で
衝突、急縮流急拡大を生じて効率が低下した。
On the other hand, the amount of water pumped from a well depends on the amount of groundwater springing up, and even if the well diameter and depth are the same, the amount of water that can be pumped differs depending on the land. For this reason, there is a demand to prepare pumps with different water pumping amounts, that is, specific speeds, for each well diameter, and to select the pump that operates most efficiently depending on the spring water amount. In this case, in a high specific speed pump, it is necessary to form a guide vane flow path wide even if the impeller diameter is the same. Therefore, in small-diameter wells where the cable dimension or guide vane wall thickness is relatively large with respect to the well diameter, the high specific speed pump
As shown in the figure, a part of the outer wall of one guide vane 6 has a groove shape 9, and the guide vane has a shape in which a power cable 10 is passed through the groove 9. However, in the guide vane 6 shown in Fig. 2, the guide vane flow path is locally blocked in the circumferential direction at the cable groove 9, and the flow from the impeller 5 collides and suddenly contracts at this part. This resulted in rapid expansion and reduced efficiency.

一方、案内羽根6の流路形状にケーブル#19の影響が
出ないように、案内羽根羽根11の内壁11bを内側に
広くとり、羽根車5の外径を小さくして同一仕様を得る
設計も可能である。しかし、同一仕様で羽根車を小形化
した場合、羽根車の反動度は低下し、第3図に示すよう
に揚程曲線の勾配は小さくなる。従って、湧水を変動に
伴なう井戸水位の変化等で管路抵抗が変化した場合、ポ
ンプの作動点は大幅に変化し、効率、吸込性能の点で不
利になるばかりでなく、過大流量側の運転では軸動力が
著るしく過大となって電動機を焼損する恐れがあるため
、特に水中ポンプでは好ましく表い。
On the other hand, in order to avoid the influence of the cable #19 on the flow path shape of the guide vane 6, it is also possible to make the inner wall 11b of the guide vane 11 wider inward and reduce the outer diameter of the impeller 5 to obtain the same specifications. It is possible. However, when the impeller is made smaller with the same specifications, the degree of reaction of the impeller decreases, and the slope of the head curve decreases as shown in FIG. Therefore, if the pipe resistance changes due to changes in well water level due to fluctuations in spring water, the operating point of the pump will change significantly, which will not only be disadvantageous in terms of efficiency and suction performance, but also cause excessive flow. This is especially preferable for submersible pumps, since the shaft power becomes significantly excessive when operating on the side, and there is a risk of burning out the motor.

向、D、tlポンプの仕様点、RfIII′i配管抵抗
曲綴配管抵抗本綴の場曾で、fLtzFi湧水量大の場
合である。P、Fi低反動度ボン”7、Phd高反動度
ポンプの場合を示す。M(は電動機容量を示す。
Direction, D, tl pump specification point, RfIII'i piping resistance curved piping resistance real case, fLtzFi is the case of large spring water flow. The case of P, Fi low recoil pump 7, Phd high recoil pump is shown. M (represents the motor capacity.

F、は低反動度ポンプの作動範囲、Fbd高反動度ポン
プの作動ポンプの作動範囲である。
F is the operating range of the low recoil pump, and Fbd is the operating range of the high recoil pump.

本発明の目的とするところは、電動機用電源ケーブル溝
の周方向位置を選定することによシ、案内羽根流路を三
次元曲りの方向に偏平になるように形成し、二次流れお
よび子午面流れのはく離を抑制し、ケーブル溝による流
路閉塞の悪影響を緩和することにある。
An object of the present invention is to form the guide vane flow path so as to be flat in the direction of three-dimensional bending by selecting the circumferential position of the power cable groove for the electric motor, thereby improving the secondary flow and the meridional flow. The objective is to suppress the separation of surface flow and alleviate the adverse effects of channel blockage by cable grooves.

第4図は第1図に示す案内羽根羽根11の外壁側11a
1内壁側11bの展開図であシ、第4a図は外壁側、第
4b図は内壁側に対応する。案内羽根6は第2図、第4
図に示されるように、子午面流路、羽根間流路のそれぞ
れで曲シ流路を形成し、羽根車5から出た准れのうちの
動圧を静圧に回復する三次元−シデイフユーザとなる。
FIG. 4 shows the outer wall side 11a of the guide vane 11 shown in FIG.
FIG. 4A is a developed view of the inner wall side 11b, and FIG. 4A corresponds to the outer wall side, and FIG. 4B corresponds to the inner wall side. The guide vane 6 is shown in Fig. 2 and Fig. 4.
As shown in the figure, a three-dimensional airflow user forms a curved flow path in each of the meridional flow path and the inter-blade flow path, and recovers the dynamic pressure of the flow from the impeller 5 to static pressure. becomes.

従って案内羽根流路断面内では第5図に示すように、三
次元曲りの内側に相当する羽根凸面内壁側Aから、凹面
外壁*BK向う二次流れ0ヲ生じ、かつ三次元−シの曲
率の最もきつい羽根凸面内壁側Aでは流れけけ〈離しや
すくなる。
Therefore, in the cross section of the guide vane flow path, as shown in Fig. 5, a secondary flow 0 occurs from the convex inner wall side A of the vane corresponding to the inside of the three-dimensional curve toward the concave outer wall *BK, and the curvature of the three-dimensional curve On the inner wall side A of the blade convex surface where the flow is the steepest, the flow becomes easier to separate.

この二次流れCの抑制に対しては、第5図の破線に示す
ように羽根形状を形成し、案内羽根流路を三次元曲りの
方向に偏平にする改良が特公昭49−13524号で公
知である。本発明においては、案内羽根流路を閉塞して
流れに悪影響となる電動機電源ケーブル溝位置を、案内
羽根羽根凹面外壁部に設け、実質的に特公昭49−13
524号と同様の効果を生ぜしめることを特徴とするも
のである。
To suppress this secondary flow C, Japanese Patent Publication No. 49-13524 proposed an improvement in which the blade shape was formed as shown by the broken line in Figure 5, and the guide vane flow path was flattened in the direction of three-dimensional bending. It is publicly known. In the present invention, the position of the motor power cable groove, which blocks the guide vane flow path and adversely affects the flow, is provided in the concave outer wall of the guide vane.
It is characterized by producing the same effect as No. 524.

以下、本発明の実施例を第6図〜第8図について説明す
る。第6図は案内羽根6の縦断面図、第7図は116図
のA−A’矢視図である。案内羽根60羽根外壁11a
には、案内羽根6の流路厳大径部12で、羽根凹面外壁
付根gHに相当する部分に電動機電源ケーブル10用の
溝9t−ポンプ軸方向に設けている。従って第8a図〜
第8b図に示すように、案内羽根最大径部12に到るま
での流路では、ケーブル溝9は三次元曲り流路の外側に
あたる羽根凹面外壁側流路BK食い込み、最大径12以
後の流路では羽根凸面側の外壁に食い込むように案内羽
根流路と干渉する。
Embodiments of the present invention will be described below with reference to FIGS. 6 to 8. 6 is a longitudinal cross-sectional view of the guide vane 6, and FIG. 7 is a view taken along the line AA' in FIG. 116. Guide blade 60 blade outer wall 11a
In the guide vane 6, a groove 9t for the motor power cable 10 is provided in a portion corresponding to the root gH of the concave outer wall of the guide vane 6 in a portion corresponding to the root gH of the concave outer wall of the guide vane 6 in the direction of the pump axis. Therefore, Figure 8a~
As shown in Fig. 8b, in the flow path up to the maximum diameter portion 12 of the guide vane, the cable groove 9 bites into the flow path BK on the outer wall side of the concave surface of the blade, which is the outside of the three-dimensional curved flow path, and the flow path after the maximum diameter 12. In the channel, it interferes with the guide vane flow path so as to bite into the outer wall on the convex side of the vane.

本発明による案内羽根は上記構成であるため、流路−り
が鍛もきつく、従って二次流れを生じやすい案内羽根6
0入ロ部分では、流路断面形状は三次元−シの方向に偏
平となシ、特公昭49年13524号と全く同様の作用
効果によシニ次流れは抑制される。
Since the guide vane according to the present invention has the above-mentioned configuration, the flow path is tightly forged, and therefore the guide vane 6 is likely to cause secondary flow.
In the 0-input section, the cross-sectional shape of the flow path is flat in the three-dimensional direction, and the linear flow is suppressed by the same effect as in Japanese Patent Publication No. 13524 of 1972.

一方、案内羽根最大径部12の下流流路においてけ、羽
根凸面外壁側にケーブル溝位置が移るため、羽根凸面に
おける三次元曲り流路急拡大のうち、子午面流路の拡大
が多少緩和されて羽根凸面内壁部Aからの流れのはくり
Dが抑制される。
On the other hand, in the flow path downstream of the guide vane maximum diameter section 12, the cable groove position moves to the outer wall side of the convex surface of the vane, so that the expansion of the meridional flow path is somewhat alleviated among the rapid expansion of the three-dimensional curved flow path on the convex surface of the vane. As a result, the flow D from the convex inner wall portion A of the blade is suppressed.

なお鍾大径部12下流で羽根凹面外壁側Bではケーブル
溝9の干渉がなくなるため流路は子午面方向に急拡大と
なるが、この部分は羽根車51J・らの主流の流出方向
であり、かつ三次元曲りの遠心力の影響で主流は流路壁
に沿って流れやすい九め、急拡大による悪影響は生じに
くい。
Note that on the outer wall side B of the concave blade surface downstream of the large diameter portion 12 of the blade, the interference of the cable groove 9 is eliminated, so the flow path rapidly expands in the meridian direction, but this portion is the outflow direction of the main flow of the impeller 51J. , and because the main flow tends to flow along the channel wall due to the centrifugal force of the three-dimensional bend, negative effects from sudden expansion are unlikely to occur.

以上説明したように、本発明は水中ポンプ電動機電源用
ケーブル溝を、案内羽根最大径部で羽根凹面外壁側流路
に食い込むように構成したことKよシ、三次元−シの強
い案内羽根入口部で、流路断面形状が三次元白妙の方向
に偏平となり、二次流れを抑制するとともに、流れが子
午面流路からはく離しやすい羽根凸面内壁側の流れを内
壁側へ拘束することKよシ、ハく離の発生を遅らせ、ケ
ーブル溝による案内羽根流路閉塞の悪影響を、逆に案内
羽根内部流れの制御に利用し、高効率の案内羽根を得る
ことができる。
As explained above, the present invention is characterized in that the cable groove for the submersible pump motor power supply is configured so that the maximum diameter part of the guide vane bites into the channel on the concave outer wall side of the vane. In this section, the cross-sectional shape of the flow channel becomes flat in the three-dimensional direction, suppressing secondary flow and restraining the flow on the inner wall side of the convex blade surface, where the flow tends to separate from the meridian flow channel, toward the inner wall side. By delaying the occurrence of separation and by utilizing the adverse effects of the guide vane flow path blockage by the cable groove to control the internal flow of the guide vane, a highly efficient guide vane can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図、第2図は従来の水中斜流ポンプを説明する図で
、第1図はポンプ全体の縦断面図、第2図は案内羽根の
縦断面図、第3図はポンプの作動を説明する特性図、第
4図、第5図は案内羽根流路内の流れを説明する図で、
第4図は羽根展開図、第5図は流路断面図、第6図〜第
8図は本発明による案内羽根を説明する図で第6図は案
内羽根の縦断面図、第7図は第6図のA−A’矢視図、
第8図は流れ方向の各流路断面図である。 l・・・電動機、5・・・羽根車、6・・・案内羽根、
9・・・ケーブル溝、10・・・電源ケーブル、11・
・・案内羽根羽根、A・・・羽根凸面内壁、B・・・羽
根凹面外壁、C・・・二次流nXD・・・はく)流れ。 オ 1目 第3阻 ’z4凹
@ Figures 1 and 2 are diagrams explaining a conventional submersible mixed flow pump. Figure 1 is a vertical cross-sectional view of the entire pump, Figure 2 is a vertical cross-sectional view of the guide vane, and Figure 3 shows the operation of the pump. The characteristic diagrams to be explained, FIGS. 4 and 5, are diagrams explaining the flow in the guide vane flow path.
Fig. 4 is a developed view of the blade, Fig. 5 is a sectional view of the flow path, Figs. A-A' arrow view in Fig. 6,
FIG. 8 is a sectional view of each flow path in the flow direction. l...Electric motor, 5... Impeller, 6... Guide vane,
9... Cable groove, 10... Power cable, 11.
...Guide vane blade, A... Convex inner wall of the impeller, B... Concave outer wall of the impeller, C... Secondary flow nXD... Foil) Flow. E 1st eye 3rd block'z4 concave

Claims (1)

【特許請求の範囲】[Claims] ポンプ駆動用電動機をポンプF方に配電し、該電動機電
源ケーブル用溝を流路外壁部に有する斜流案内羽根にお
いて、前記ケーブル溝を、案内羽根最大径部にて案内羽
根羽根凹面外壁付根付近を通るように形成したことを特
徴とする斜流水中ポンプ。
In a mixed flow guide vane in which power is distributed to a pump driving electric motor toward the pump F side, and a groove for the motor power cable is provided on the outer wall of the flow path, the cable groove is installed near the root of the concave outer wall of the guide vane at the maximum diameter part of the guide vane. A diagonal flow submersible pump characterized by being formed to pass through.
JP8472382A 1982-05-21 1982-05-21 Mixed-flow submergible pump Granted JPS58202395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8472382A JPS58202395A (en) 1982-05-21 1982-05-21 Mixed-flow submergible pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8472382A JPS58202395A (en) 1982-05-21 1982-05-21 Mixed-flow submergible pump

Publications (2)

Publication Number Publication Date
JPS58202395A true JPS58202395A (en) 1983-11-25
JPH0353479B2 JPH0353479B2 (en) 1991-08-15

Family

ID=13838598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8472382A Granted JPS58202395A (en) 1982-05-21 1982-05-21 Mixed-flow submergible pump

Country Status (1)

Country Link
JP (1) JPS58202395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058384A (en) * 2009-09-08 2011-03-24 Ebara Corp Pump with diffuser
CN102606539A (en) * 2012-03-27 2012-07-25 上海阿波罗机械股份有限公司 Pump shell structure of service water pump for nuclear power station
RU2591754C2 (en) * 2011-05-13 2016-07-20 Бейкер Хьюз Инкорпорейтед Blade profile diffuser with local bulge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058384A (en) * 2009-09-08 2011-03-24 Ebara Corp Pump with diffuser
RU2591754C2 (en) * 2011-05-13 2016-07-20 Бейкер Хьюз Инкорпорейтед Blade profile diffuser with local bulge
CN102606539A (en) * 2012-03-27 2012-07-25 上海阿波罗机械股份有限公司 Pump shell structure of service water pump for nuclear power station

Also Published As

Publication number Publication date
JPH0353479B2 (en) 1991-08-15

Similar Documents

Publication Publication Date Title
US5228832A (en) Mixed flow compressor
JP5333170B2 (en) Centrifugal compressor and design method thereof
US6234749B1 (en) Centrifugal compressor
US5299908A (en) Regenerative pump having rotor with blades whose inclination varies radially of the rotor
EP3564537B1 (en) Centrifugal compressor and turbocharger
KR101036567B1 (en) Improved pump impeller
JP2931432B2 (en) Impeller of water pump or general-purpose pump
JP2004332734A (en) Compressor
US20090092486A1 (en) Centrifugal compressing apparatus
JP4888436B2 (en) Centrifugal compressor, its impeller and its operating method
JP5029024B2 (en) Centrifugal compressor
JP2003013898A (en) Axial-flow type fluid machine
JP2010138765A (en) Centrifugal compressor
KR20180039548A (en) Centrifugal impeller having backward blades using dual gradient sectional shape type
US20050163610A1 (en) Diffuser for centrifugal compressor and method of producing the same
US2320733A (en) Screw type fluid propelling apparatus
EP0446900A1 (en) Mixed-flow compressor
JPS58202395A (en) Mixed-flow submergible pump
JP3924233B2 (en) Turbo pump diffuser
JP2005061293A (en) Francis runner
JPS5941024B2 (en) Francis type runner
JP2000054944A (en) Impeller
JP6839040B2 (en) Centrifugal fluid machine
JP5042745B2 (en) Deep well submersible pump
KR101674548B1 (en) Variable guide vane for axial flow pump or mixed flow pump including