JPS58202301A - Cooling device of steam turbine rotor - Google Patents

Cooling device of steam turbine rotor

Info

Publication number
JPS58202301A
JPS58202301A JP8313582A JP8313582A JPS58202301A JP S58202301 A JPS58202301 A JP S58202301A JP 8313582 A JP8313582 A JP 8313582A JP 8313582 A JP8313582 A JP 8313582A JP S58202301 A JPS58202301 A JP S58202301A
Authority
JP
Japan
Prior art keywords
rotor
steam
nozzle box
cooling
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8313582A
Other languages
Japanese (ja)
Inventor
Sadao Umezawa
梅沢 貞夫
Hiroshi Miyata
寛 宮田
Kensho Matsuda
松田 憲昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8313582A priority Critical patent/JPS58202301A/en
Publication of JPS58202301A publication Critical patent/JPS58202301A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce stress of a rotor, by providing an axial flow compressor device to a space formed between the rotor and the internal surface of a nozzle box and flowing cooling steam, which flows in through a hole extended through a stationary blade, into the upstream of the rotor through pumping action of said axial flow compressor device. CONSTITUTION:A space S formed between a rotor 7 and the internal surface of a nozzle box 1 is communicated to a passage 22 extended through a stationary blade 2, and a screw seal 8 is provided to a surface of the rotor 7. Rotation of the rotor 7 causes pumping action of the screw seal 8, and cooling steam flowing in via the passage 22 is penetratively circulated to the upstream of the rotor 7. In this way, since the rotor 7 can be cooled without causing the necessity for forming an annular train of holes in a disc part of the rotor 7, the generation of concentrated stress due to the hole can be prevented.

Description

【発明の詳細な説明】 本発明は蒸気タービンロータの冷却装置に係り、符に1
gを通過した蒸気を用いてロータの上流側を冷却する形
式の蒸気タービンに好適な冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a steam turbine rotor.
The present invention relates to a cooling device suitable for a steam turbine that cools the upstream side of a rotor using steam that has passed through the rotor.

蒸気タービンでは熱力学の原填から原動力とな・る蒸気
の諷友はできるだけ尚い万が望ましい。一方動輿及びそ
れを支持するロータは強度的見地から安全4夷に使用で
きる温度に制限かめる。そのためtIIJ翼及びロータ
を冷却する装置がこ114で数多く提案されている。
In a steam turbine, it is desirable to use steam as the prime mover of thermodynamics as much as possible. On the other hand, the temperature of the palanquin and the rotor that supports it is limited to a temperature that can be safely used from the viewpoint of strength. Therefore, many devices for cooling the tIIJ blade and rotor have been proposed.

周知のように蒸気タービンに通常静翼と@翼シノ一対か
ら成る膨飯段が核数段連続しC設げりれ、蒸気は上vr
L側から各piを通過する毎&cその高度と圧力を減じ
ていく。める特定の段全効果的しこ冷却するためにはそ
の段に注入すべき冷却流体(液体またはA体)tゴその
段を通過する活気よりも厖庭が低く出力に逆に南いもの
でなけnはならない。
As is well known, a steam turbine is usually equipped with several successive expansion stages consisting of a pair of stator vanes and a pair of blades, and the steam flows upward.
As it passes each pi from the L side, its altitude and pressure are reduced. In order to effectively cool a particular stage, the cooling fluid (liquid or A) that must be injected into that stage must be lower than the energy passing through that stage and adversely affect the output. There must be n.

この−鍵がはく圧力の高い冷却流体倉得る手段によって
前記冷却装fIItt−分類すると大別して3つに分け
られよう。
The cooling system fIItt can be roughly classified into three types depending on the means for obtaining a high-pressure cooling fluid reservoir.

第1に原動力となる王蒸気随の一部をタービン入口の前
で分岐妊せ、これt−を温蒸気などで冷却し7’(挾冷
却すべき段塔に注入する方式のものでろるO 第2は特公昭51−149734 などに示されている
ように土に丹熱盛気タービンに用いりfL6もので、重
圧タービンの蒸気を一部抽気しこれを再熱タービンの冷
却蒸気とする方法である。匠っ°〔この方法tゴ拙気し
た蒸気の出力が再熱段の圧力よりも高く、編成は逆に低
い鳩舎にしか用いられない。
First, a part of the main steam, which is the motive force, is branched off in front of the turbine inlet, cooled with hot steam, etc., and then injected into the stage tower to be cooled. The second method, as shown in Japanese Patent Publication No. 51-149734, is fL6, which is used for tanthermal air turbines on earth. Part of the steam from the heavy pressure turbine is extracted and this is used as cooling steam for the reheat turbine. This method is clumsy; the output of the steam is higher than the pressure of the reheating stage, and the configuration is conversely only used in low pigeon lofts.

第3は特開昭54−7005に示されているように、あ
る特定の段を通過して膨張した蒸気を増圧して上流側に
実して冷却を行う形式の冷却装置である。
The third type of cooling device, as shown in Japanese Patent Application Laid-Open No. 54-7005, is a type of cooling device in which the pressure of steam expanded after passing through a specific stage is increased and the steam is delivered to the upstream side for cooling.

第1及び第2の形式の冷却鋏l#はそれぞれタービンの
回転部分に好ましい冷却効果を及ぼすけれども、第1の
vemi冷却流体を配分するための配管を別途設けなけ
ればならないという欠点がるり、第2の装&は高圧ター
ビンの冷却には適用できないという欠点がるる。
Although the first and second types of cooling shears each have a favorable cooling effect on the rotating parts of the turbine, they have the disadvantage of requiring separate piping for distributing the first vemi cooling fluid. The disadvantage of the second system is that it cannot be applied to cooling high-pressure turbines.

一方第3の冷却装置11.は纂1.渠2の冷却装置の欠
点を克服して一層効果的な冷却作用を発揮する。
On the other hand, the third cooling device 11. Summary 1. To overcome the drawbacks of the cooling device of the conduit 2 and to exhibit a more effective cooling effect.

以下にこの形式の冷却r#c111について更に詳しく
説明する。
This type of cooling r#c111 will be explained in more detail below.

%S昭54−7005に示される装置によれば、蒸気タ
ービンにνいて第1膨張段がロータの円板部分に支持さ
れた動挑と、それと協同する靜無及び靜^に支持する静
其檄とを備え、第1及び第2のシール鉄直倉円恨部分と
靜嵐壌との闇に備えて、誠AがP#彊以前に主蒸気流路
から漏洩するのを最少にする。7−ル装實を通る漏洩全
完全に防止することeゴできないし、この南洩魚″Aμ
円板部分及び励真と円板の結合部分を含むロータ慣造會
過熱することになる。この過熱幼米を克服するために、
ロータ円板部分に環状列の孔を設けて、W41膨張段で
膨張した(匠って一度のは下した)蒸気の−Sをこの孔
を通して、計真猿と円板部分との間の仝闇にポンプ作用
により注入し、高温のシール部kPi膿気に光分心仇す
るように圧力を充分に上ダさせる。圧入された#侵隣冷
却A気μシール都から漏洩する未膨張蒸気の一部と置台
してロータ沿いに一連のラビリンスシールを通過し、ロ
ータのAMを最少にするようVC,l1lllJさ、次
いでこ扛に続く低圧#彊段に同げ°C史に膨張する。前
記崖張済冷却癲気・\の未h=4気の屁入倉厳少にする
ため、前記第1及び第2のシール装置と円板部分及び靜
りIt壌との闇に形成さnるシール空間から未膨張魚m
lr:抽出する装置金偏え、第2のシール装置は未膨張
蒸気がシール空間から膨張隣冷却蒸気に混入するのを制
限するようになっている。
According to the device shown in %S 1970-7005, the first expansion stage is attached to the steam turbine and is supported by the disc part of the rotor. In order to prepare for the darkness between the first and second seal iron naokuraen grudge parts and the silent storm, it is possible to minimize the leakage of Makoto A from the main steam flow path before P # 彊. 7-It is impossible to completely prevent leakage through the L-package, and this leakage "Aμ
The rotor structure, including the disk portion and the exciter/disc connection portion, will overheat. In order to overcome this overheated child,
An annular row of holes is provided in the rotor disc part, and -S of the steam expanded in the W41 expansion stage (Takumi released it once) is passed through these holes, and the darkness between the Keishinzaru and the disc part is removed. The liquid is injected using a pump action, and the pressure is increased sufficiently so that the high temperature seal part kPi pus is absorbed by light. A portion of the unexpanded steam leaking from the injected #aggressive cooling Aμ seal is placed and passed through a series of labyrinth seals along the rotor to minimize the AM of the rotor. Following this, the low pressure stage expands at the same temperature. In order to strictly suppress the inflow of air into the cooling air, the first and second sealing devices are formed in the darkness between the disk portion and the still air. Uninflated fish m from the seal space
lr: extracting device gold bias, the second sealing device is adapted to limit unexpanded vapor from entering the expanded cooling vapor from the sealing space.

この装@ば最も蒸気温度の^い第1膨彊段のロータ部分
の冷却に好ましい効果倉及ぼすけれとも、高温で応力の
高いロータの円&部分に多数の環状列の孔を設けるため
に、孔による応力来中力旬口鼻さnて著しい一応力を生
じるという欠点かめる。
This arrangement will have a favorable effect on the cooling of the rotor section of the first expansion stage where the steam temperature is highest; however, in order to provide a large number of annular rows of holes in the hot and stressed rotor circles, The disadvantage is that the stress caused by the holes causes significant stress in the mouth and nose.

かかる観点から本@明の目的はロータの冷却効果を充分
に確保しつつ、膨張済冷却蒸気の通路をロータから分離
して設けて、ロータの円板部分の環状列の孔を無くシ、
応力を減少させる蒸気メービンロータ冷却装置を提供す
ることにろる。
From this point of view, the purpose of the present invention is to provide a passage for expanded cooling steam separately from the rotor, eliminate the annular row of holes in the disk portion of the rotor, while ensuring a sufficient cooling effect for the rotor.
It is an object of the present invention to provide a steam mabin rotor cooling system that reduces stress.

簡単に述べるとこの発明によれば静翼壊及び静翼の内部
を貫通する孔を設けて膨張済冷却盛気の通路となし、ロ
ータの上流側のlとそnに向い甘って間隔を置いて配置
されたノズル箱の内閣とで形成される空間に@流圧輪装
置itを倉たに設けて、ロータの回転によるポンプ作用
を生じせしめ、これによシ膨張済冷却蒸気をロータの上
流側のlに流入させるようにし友ものである。
Briefly stated, according to the present invention, a hole is provided through the stator vane and the inside of the stator blade to serve as a passage for the expanded cooling air, and the space is narrowed toward the upstream side of the rotor. A hydraulic pressure ring device is installed in the space formed by the cabinet of the nozzle box and the cabinet of the nozzle box, which is placed in the same position as the nozzle box. It is a good idea to let it flow into the upstream side.

以下、本発明の一実施例を第1図及び第2図によって説
明する。5#!1図は蒸気タービンの高圧タービン第1
段落及び第2段落の一部をボす。普通W割膜と呼ばれる
Ml膨張段23は弔1図UC示すように、ロータ7に円
板部分18に設け、こILC/J周辺に環状列の動翼3
を適当な手段、例えばも・与の木型セレーション等で取
付ける。動翼3の上流側に01環状列の静翼2を有する
靜義項6を配前し、靜に壕6は生蒸気mCA會靜輿2に
同げる環状のノズル箱1に結合する。ノズル箱IK−は
複数個σJJfil当な主蒸気管19を設はケージフグ
(図示しない)の外に貫通させ、ボイラ(図示しない)
からの高温高士蒸気をノズル箱1に導入する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. 5#! Figure 1 shows the first high-pressure turbine of the steam turbine.
Delete the paragraph and part of the second paragraph. The Ml expansion stage 23, commonly called a W split membrane, is provided on the disk portion 18 of the rotor 7, as shown in Figure 1 UC, and an annular row of rotor blades 3 is installed around this ILC/J.
Attach by suitable means, such as wooden serrations. On the upstream side of the rotor blades 3, there is disposed an annular nozzle 6 having a 01 annular row of stator vanes 2, and the trench 6 is connected to an annular nozzle box 1 attached to the live steam mCA mortar 2. In the nozzle box IK-, a plurality of main steam pipes 19 corresponding to σJJfil are installed and penetrated outside the cage puffer (not shown), and then connected to the boiler (not shown).
The high temperature Takashi steam from is introduced into the nozzle box 1.

周知のように管制段23の1tb43は晋通働動型でろ
って蒸気流から相当のエネルギを抽出するから、この段
落で相当の出力降下と擺紋1戊下かめる。
As is well known, the control stage 23's 1tb43 is of the fully active type and extracts considerable energy from the steam flow, so this step will result in a considerable power drop and a significant drop in the output.

管制段23の動X31に出友王蒸気随Aば半径方向外向
@に、流れ、次にその方向を反転して主蒸気管19の周
りを通過して第2膨張段24の糎挑4に流れる。
In response to the movement X31 of the control stage 23, the Izuo steam flows radially outward, and then reverses its direction and passes around the main steam pipe 19 to the flow direction 4 of the second expansion stage 24. flows.

管制段(第1膨張段)23の動翼3の先端には環状のシ
ュラウド9をテノン10で固定することによって動翼同
士全互いに連結し、運転時に動翼3の先端と静翼環6と
のスキマから蒸気が漏洩するのを制限するために、静翼
環6のシュラウド9に向い会った面にシール片11及び
12を設ける。
An annular shroud 9 is fixed to the tip of the rotor blade 3 of the control stage (first expansion stage) 23 with a tenon 10, so that all the rotor blades are connected to each other, and during operation, the tip of the rotor blade 3 and the stator blade ring 6 are Seal pieces 11 and 12 are provided on the face of the stator vane ring 6 facing the shroud 9 in order to restrict leakage of steam from the gap.

円板部分18のシール1釦20及び21と向い合つ−〔
いる靜lIt壊6の内面にはシール片13及び14を設
け、主蒸気流人の一部が動翼3′に通過して膨張する前
に漏洩蒸気流Bとなって漏洩するのを制限する。シール
片13.14及びシール面20.21で囲われたシール
空間Pと第2膨張段24の靜J14!4の人口とに静翼
環6及びノズル箱lを貫通する環状タリの通路15によ
って連通させる。
The seal 1 of the disc part 18 faces the buttons 20 and 21 - [
Seal pieces 13 and 14 are provided on the inner surface of the damper 6 to restrict a portion of the main steam flow from leaking as a leakage steam flow B before passing through the rotor blade 3' and expanding. . The sealing space P surrounded by the sealing piece 13.14 and the sealing surface 20.21 and the space J14!4 of the second expansion stage 24 are connected to each other by the passage 15 of the annular tarp penetrating the stator vane ring 6 and the nozzle box l. communicate.

静翼3jli6には軸方向の環状列の通路16を設け、
ノズル%1の最内周1f1とロータ7の外周Cmlとで
形成される漏洩空間Sと前記通勤16とを、静翼2の内
部を貫通する半径方向に延びた複数個の通路22によっ
て連通させる。通w!16及び通路22の量体及びそれ
らと前記通路15との相対的な泣屓関係は第1図のI−
It線断1[11に矢印方間に見た第2図に明瞭に示さ
れる。
The stationary blade 3jli6 is provided with an annular row of passages 16 in the axial direction,
The leakage space S formed by the innermost circumference 1f1 of the nozzle %1 and the outer circumference Cml of the rotor 7 and the commuter 16 are communicated by a plurality of passages 22 extending in the radial direction passing through the inside of the stator blade 2. . Good luck lol! 16 and the passage 22 and their relative relationship with the passage 15 are shown in FIG.
This is clearly shown in FIG. 2 when viewed in the direction of the arrow at It line break 1 [11.

o−夕7の漏洩空間St/CIfJt、た衣1釦にに、
ロータの1回転によって図1の紙面左方向にめねじケ進
ませる向きのおねじで形成さ扛るネジシール8r設ける
。例えば第3図幌ロータ7及びネジノール8だけを模式
的に示したものでめるが、紙面右方向より見て時計蜘り
(すなわち回転力1すN)に回転するロータフににm3
区の如き向きを持つネジシール8を設ける。
o-Evening 7 leakage space St/CIfJt, to the clothes 1 button,
A screw seal 8r is provided, which is formed by a male screw that is oriented to advance the female screw to the left in the plane of the drawing in FIG. 1 by one revolution of the rotor. For example, Figure 3 only schematically shows the hood rotor 7 and screw knob 8, but the rotor rotates clockwise (i.e., rotational force 1 N) when viewed from the right side of the page.
A screw seal 8 having a direction like a square is provided.

主蒸気流人はノズル箱1を経−C第1膨張0h[2及び
動翼3に向けられるが、その大部分は動翼3を通過して
ロータ7′?を駆動する。少量の漏洩蒸気がシュラウド
90周りか°らシール片11及12を通って再び主蒸気
tttt.Aと一緒になる。静X2を通過し動N3に入
る前の未膨張蒸気の一部が漏洩蒸気流Bとなって7一ル
片13を通過し/−ル空関Pに流入するが、シール空間
Pは通路15によって第2膨張段24の靜に40人口と
連通しており、またシール片14によって漏洩空間S・
\の流れを制限されるため、大部分は通路15を経て再
び主蒸気流人と一緒になる。
The main steam flow is directed through the nozzle box 1 to the -C first expansion 0h [2] and the rotor blades 3, but most of it passes through the rotor blades 3 and is directed to the rotor 7'? to drive. A small amount of leaked steam flows from around the shroud 90 through the seal pieces 11 and 12 and returns to the main steam tttt. I'll be with A. A part of the unexpanded steam that passes through the static X2 and enters the dynamic N3 becomes a leaked steam flow B, passes through the 7-channel piece 13, and flows into the air passage P, but the sealed space P is The second expansion stage 24 is in direct communication with the 40 population, and the seal piece 14 is connected to the leakage space S.
Since the flow of \ is restricted, most of the steam passes through passage 15 and joins the main steam flow man again.

運転中ロータ7の回転によりネジシール8のポンプ作用
が生じ、漏洩空間S内に矢印Cで示す流れが作られる。
During operation, the rotation of the rotor 7 causes a pumping action of the threaded seal 8, and a flow shown by an arrow C is created in the leakage space S.

この流れは漏洩空間Sと第1膨張段動IR3の出口とを
連通する通路16及び22を経て流入する彬張済(従っ
て温度及び圧力の降下した)蒸気の連続的な流れとなる
。従ってネジシール8のポンプ作用により吸引嘔れて漏
洩空間S′ftrx流する蒸気流は、膨張して冷たくな
った蒸気の連続する冷却蒸気流Cとなってロータフの上
流側のIjjを効果的に冷却し、その間に抽出した熱を
a2膨張段24・\云えることが認められるでろろう。
This flow results in a continuous flow of steam (and thus of reduced temperature and pressure) entering via passages 16 and 22 communicating the leakage space S with the outlet of the first expansion stage IR3. Therefore, the steam flow that is sucked and flows into the leakage space S'ftrx by the pump action of the screw seal 8 becomes a continuous cooling steam flow C of expanded and cooled steam, and effectively cools Ijj on the upstream side of the rotor. However, it will be appreciated that the heat extracted during that time can be transferred to the a2 expansion stage 24.

本実施例によれば軸流圧縮装置としてロータ表面に設け
たネジクールを用い右ようにしたため、軸流圧縮装置の
構造が著しく簡単になるという効果がある。
According to this embodiment, the screw cooler provided on the surface of the rotor is used as the axial flow compression device, so that the structure of the axial flow compression device can be significantly simplified.

第4図は本発明の他の実施例を示すもので、第1図と同
一符号は同一部品を示す。第での実咄例と異なる点はネ
ジシール8を静止体でjりbノズル箱1のロータ7と向
い合った面に設けたことでりる。このような構造によっ
ても漏洩空間S内に矢印Cで示す流れを作るポンプ作用
の得られることFiM、 W、 Milliganらの
研究2)K!り明6;p−にされている。第二の実施例
によればネジシールの部分が回転体ではないため、ネジ
シールを分割構造にできるなど製作性が良いという効果
かめa。
FIG. 4 shows another embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same parts. The difference from the actual example in the second example is that the screw seal 8 is a stationary body and is provided on the surface of the nozzle box 1 facing the rotor 7. Even with such a structure, it is possible to obtain a pump action that creates the flow shown by the arrow C in the leakage space S.Research by FiM, W, Milligan et al. 2) K! Light 6: It is set to p-. According to the second embodiment, since the threaded seal part is not a rotating body, the threaded seal can be made into a split structure, resulting in good manufacturability.

更に第一、第2の実施例の変形例として、漏洩空間S内
の冷却蒸気流Cの向き會第1図、第4灰!で右向きとな
るようにネジシール8′1に形成することも可能でめる
。その場合にはネジシール8のボン1作用により漏洩空
間S内の右端、すなわち通路220人口付近の圧力が高
められるので、漏洩蒸気流Bがシール片14を通過して
漏洩空間Sに混入することを制限できる左伝う効果かめ
4)、本発明によれば特別な冷却用外部配管及び冷却流
体を用いることなしに、蟻も圧力の商い鍋比タービンの
W補設(第−膨張段)を効果的に冷却することが可能、
でめるたけでなく、高温高応力となるロータ円板部分に
特別な孔を設ける必要がないため、孔による応力集中倉
無くすことができるので、強糺的に信軸性の高い高圧タ
ービンロータを得ることができるという効果かめる。
Furthermore, as a modification of the first and second embodiments, the direction of the cooling steam flow C in the leakage space S is shown in FIGS. 1 and 4. It is also possible to form the threaded seal 8'1 so that it faces to the right. In that case, the action of the bolt 1 of the screw seal 8 increases the pressure at the right end of the leakage space S, that is, near the passage 220, thereby preventing the leakage steam flow B from passing through the seal piece 14 and mixing into the leakage space S. According to the present invention, without using special external cooling piping or cooling fluid, it is possible to effectively control the W supplementary installation (the second expansion stage) of the pot ratio turbine by reducing the pressure. can be cooled to
Not only does it work, but it also eliminates the need to create special holes in the rotor disc, which is subject to high temperatures and high stress, eliminating the stress concentration caused by holes, creating a high-pressure turbine rotor with strong shaft stability. The effect of being able to obtain

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例でめる蒸気タービンロータ冷
却装置を示す縦断面図、第2図は第1図のI−M線断面
図、第3図は本発明に係るネジシールの鳥w1図、第4
図は本発明の他の実施例である蒸気タービンロータ冷却
装置を示す縦断面図でろる。
FIG. 1 is a longitudinal sectional view showing a steam turbine rotor cooling device according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line I-M in FIG. 1, and FIG. w1 figure, 4th
The figure is a longitudinal sectional view showing a steam turbine rotor cooling device which is another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、動翼を通過した蒸気を該動翼が支持さhるロータの
下流側及び上流側に流し゛Cロータσ)冷却を行う形式
の蒸気タービンロータ冷却装置にνいC1動翼の上流側
に配置された酔舅及び該0翼牙支持する靜翼猿並びに静
翼に主蒸気流を向ける環状のノズル箱とを備え、該靜!
に様とロータの上流1111表面との間には静翼を通過
した未膨張蒸気の漏洩全最少にするような第1及び第2
のシール装置f倉漏えてシール空間全形成し、該シール
空間に連通して未膨張蒸気を該シール空間から抽出する
装置を備え、ロータの上流側の表面と線表[11に回い
合って関噛を置いて配置さnたノズル箱の内」釦との間
にロータの回転によってロータ軸方向に圧力勾配を作;
る・軸流圧縮装置會備え、動翼を通過して膨張した蒸気
の−Sを前記靜1N壇の内部及び前記静翼の内mを通っ
て前記軸流圧縮装置の人口側に導くような通路を備え、
前記812のシール表*1ゴ未膨張蒸気が上記シール空
間から上記41]流圧輻装置へ流れるのを制限するよう
になってい4)、A気タービンロータ冷却11 2、特許請求範曲第1項において、軸流圧縮装置とし゛
〔ロータの上流1ltl1表1頗にねじ状の凸起を設け
たことを特徴とする、蒸気タービンロータ冷却装置。 3、特許請求範囲第1項におい−C1細流圧縮装置とし
てロータの上流側表向に向い合ったノズル箱内面にねじ
状のfIIIを設けたことを特徴とする、蒸気タービン
ロータ冷却装置。
[Claims] 1. A steam turbine rotor cooling system that cools the rotor by flowing the steam that has passed through the rotor blades to the downstream and upstream sides of the rotor supported by the rotor blades. It is equipped with an annular nozzle box that directs the main steam flow to the stator blade and the stator blade that supports the rotor blade and the stator blade, which are disposed upstream of the C1 moving blade.
Between the vanes and the upstream 1111 surface of the rotor, there are first and second vanes designed to minimize the total leakage of unexpanded steam that has passed through the vanes.
The sealing device F leaks out to form a complete sealing space, and is equipped with a device that communicates with the sealing space to extract unexpanded steam from the sealing space. A pressure gradient is created in the axial direction of the rotor by the rotation of the rotor between the button and the nozzle box inside the nozzle box, which is arranged with a checkerboard;
- An axial flow compression device is provided, which guides the -S of the steam expanded after passing through the moving blades to the artificial side of the axial flow compression device through the inside of the silent 1N stage and the inner m of the stator blades. Equipped with a passageway,
The seal table of 812 *1 is adapted to restrict the flow of unexpanded steam from the seal space to the fluid pressure radiator 4), A-air turbine rotor cooling 112, patent claim No. 1 2. A steam turbine rotor cooling device characterized in that the axial flow compressor is provided with a screw-shaped protrusion on the upstream side of the rotor. 3. A steam turbine rotor cooling device according to claim 1, characterized in that a threaded fIII is provided on the inner surface of a nozzle box facing the upstream side of the rotor as a C1 trickle compression device.
JP8313582A 1982-05-19 1982-05-19 Cooling device of steam turbine rotor Pending JPS58202301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8313582A JPS58202301A (en) 1982-05-19 1982-05-19 Cooling device of steam turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8313582A JPS58202301A (en) 1982-05-19 1982-05-19 Cooling device of steam turbine rotor

Publications (1)

Publication Number Publication Date
JPS58202301A true JPS58202301A (en) 1983-11-25

Family

ID=13793752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8313582A Pending JPS58202301A (en) 1982-05-19 1982-05-19 Cooling device of steam turbine rotor

Country Status (1)

Country Link
JP (1) JPS58202301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832155A (en) * 2009-03-13 2010-09-15 株式会社东芝 The nozzle box of axial flow turbine and axial flow turbine
WO2018146946A1 (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ株式会社 Geothermal turbine
US11492920B2 (en) * 2017-02-10 2022-11-08 Mitsubishi Heavy Industries, Ltd. Steam turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832155A (en) * 2009-03-13 2010-09-15 株式会社东芝 The nozzle box of axial flow turbine and axial flow turbine
WO2018146946A1 (en) * 2017-02-10 2018-08-16 三菱日立パワーシステムズ株式会社 Geothermal turbine
US20190345918A1 (en) * 2017-02-10 2019-11-14 Mitsubishi Hitachi Power Systems, Ltd. Geothermal turbine
US10935007B2 (en) 2017-02-10 2021-03-02 Mitsubishi Power, Ltd. Geothermal turbine
US11492920B2 (en) * 2017-02-10 2022-11-08 Mitsubishi Heavy Industries, Ltd. Steam turbine

Similar Documents

Publication Publication Date Title
US9476315B2 (en) Axial flow turbine
US20040261417A1 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
JP4527824B2 (en) Turbine rotor bearing cooling system
KR19990087239A (en) Power plant with integrated mid-cooled axial compressor
US2552239A (en) Turbine rotor cooling arrangement
JPS58140408A (en) Cooler for steam turbine
GB1152331A (en) Improvements in Gas Turbine Blade Cooling
US3897168A (en) Turbomachine extraction flow guide vanes
US3582232A (en) Radial turbine rotor
JP2017527728A (en) Gas turbine generator cooling
US6695575B1 (en) Turbine method for discharging leakage fluid
US2451261A (en) High and low pressure turbine rotor cooling arrangement
US3756740A (en) Turbine stage
JPH09256815A (en) Steam cooling gas turbine, steam cooling combined cycle plant using the gas turbine, and its operating method
JPS58202301A (en) Cooling device of steam turbine rotor
KR102467399B1 (en) Steam turbine plant and combined cycle plant
US20060188377A1 (en) Lock plate arrangement
JP4867203B2 (en) gas turbine
GB577017A (en) Improvements in turbines
JP2890907B2 (en) Steam turbine
JP2005105855A (en) Steam turbine
JPS5951104A (en) Internal structure of turbine stage
JPS5857601B2 (en) low boiling point media turbine
JPS5934402A (en) Rotor device of steam turbine
US2326112A (en) Turbine apparatus