JPS58202028A - Twin-shaft type continuous kneader - Google Patents

Twin-shaft type continuous kneader

Info

Publication number
JPS58202028A
JPS58202028A JP8706382A JP8706382A JPS58202028A JP S58202028 A JPS58202028 A JP S58202028A JP 8706382 A JP8706382 A JP 8706382A JP 8706382 A JP8706382 A JP 8706382A JP S58202028 A JPS58202028 A JP S58202028A
Authority
JP
Japan
Prior art keywords
kneading
blade
chamber
rotor
rotors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8706382A
Other languages
Japanese (ja)
Inventor
Hirobumi Kimura
博文 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8706382A priority Critical patent/JPS58202028A/en
Publication of JPS58202028A publication Critical patent/JPS58202028A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/465Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft each shaft comprising rotor parts of the Banbury type in addition to screw parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

PURPOSE:To provide the titled kneader extremely reduced in bending stress exerting on each rotor and to enhance durability thereof, by providing a groove enlarging the opposed interval of the top part of a kneading blade and the inner surface of a chamber to a predetermined place in an axial direction corresponding to the connecting part of the feeding blade part and a return blade part in the chamber. CONSTITUTION:A material to be kneaded and continuously supplied into a chamber 1 from a hopper 11 is fed to a kneading part 22 through a feed part 21 with the rotation of rotors 2, 2 and, while stirred and kneaded in the kneading part 22 by a kneading blade 24, shearing action is imparted to said material to be kneaded between the top part of the blade 24 and the inner surface of the chamber 1 as well as in the mutual space between both rotors to gradually plasticize and melt the same. In this case, in the side of the central space between both rotors 2, 2, the pressure of the material to be kneaded and the repelling force to the rotors 2 corresponding to said pressure are released. On the other hand, because the material to be kneaded in the forward side in the rotary direction of the blade 24 escapes to a circumferential side through a groove 25 even at the positions in opposite sides with respect to said central space 14, the pressure exerting on the material and the repelling force corresponding thereto are made sufficiently small and the imbalance of the pressure and the repelling force is reduced thereby to reduce the bending stress of each rotor 2.

Description

【発明の詳細な説明】 本発明は合成樹脂等の高分子材料を連続的に混線、溶融
する2軸連続式混練機に関するものである0 連続式混練機はバッチ式混練機と比べて格段に能率よく
高分子材料の混線、溶融を行なうことができ、とくに2
軸連続式混練機は、単軸のものと比べ、量産性にすぐれ
ると共に、両ロータ間での材料の受は渡し、攪拌作用に
よシ混練性も向上される等の利点がある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-screw continuous kneader that continuously mixes and melts polymeric materials such as synthetic resins. It is possible to cross-wire and melt polymer materials efficiently, especially in 2
Continuous shaft kneading machines have advantages over single-shaft kneading machines, such as being superior in mass productivity, transferring the material between both rotors, and improving kneading performance due to the stirring action.

従来、かかる2軸連続式混練機としては、第6図および
第7図に示すような構造が知られている。
Conventionally, such two-screw continuous kneading machines have structures as shown in FIGS. 6 and 7.

この混線機は、チャンバーA内に互いに平行に配置され
た2本のロータB、  Bにそれぞれ、材料供給側から
順にフィード部C1混練部りおよびディスチャージ部E
が配設され、上記混線部りに、ロータBの回転に伴って
被混線材料を材料排出側に送る方向に捩れを、有する送
り翼部F1と・被混線材料を材料供給側に戻す方向の捩
れをもった戻し翼部F2とを連続的に有する混練翼Fが
設けられたものである。上記送シ翼部F1と戻し翼部F
2とは、練り返し作用等によって混線効果を高める働き
をなす。
This mixer has two rotors B, which are arranged parallel to each other in a chamber A, and a feed section C1, a kneading section, and a discharge section E, respectively, in order from the material supply side.
is arranged, and the feeding blade part F1 has a twist in the direction of feeding the material to be mixed to the material discharge side as the rotor B rotates, and a feeding blade part F1 having a twist in the direction of sending the material to be mixed to the material supply side as the rotor B rotates. A kneading blade F that continuously includes a twisted return blade portion F2 is provided. The above-mentioned feed wing part F1 and return wing part F
2 serves to enhance the crosstalk effect through a remixing effect or the like.

しかし、かかる従来の混線機では、第7図に示す断面に
おいて、ロータBの直径方向両側に突出する混練翼Fの
一端が両ロータ間の中央空間Gに臨む位置に達したとき
、その反対側では混練翼Fの回転方向前方の側面とチャ
ンバーA内面との間の楔状空間に充満する被混線材料H
によってロータBに反力が働くのに対し、中央側では材
料Hが上記中央空間Gに押し出されて反力が解除され、
かかる反力の不均衡によシロータBに曲げ応力が加わる
。この曲げ応力は前記両翼部P、、F2の接合部分で最
大となる。そして、とくに被混線材料に超高分子量の高
密度ポリエチレン等が使用され、かつ、炭酸カルシウム
、メルク、石こう等の無機物が充填材として多量に混入
されたものを混練するような場合、溶融状態でも粘度が
高いため過大な応力がロータBに加わる。このため、長
期間使用するとロータが曲げ疲労によシ破損する虞れが
あり、耐久性が低下するという問題があった。
However, in such a conventional mixer, in the cross section shown in FIG. Here, the material to be mixed H fills the wedge-shaped space between the front side surface of the kneading blade F in the rotational direction and the inner surface of the chamber A.
, a reaction force acts on the rotor B, whereas on the center side, the material H is pushed out into the central space G, and the reaction force is released.
Bending stress is applied to the rotor B due to this unbalanced reaction force. This bending stress is maximum at the joint between the wing parts P and F2. In particular, when mixing ultra-high molecular weight high-density polyethylene, etc. as the material to be mixed, and when mixing a large amount of inorganic substances such as calcium carbonate, Merck, and gypsum as fillers, even in a molten state, Excessive stress is applied to rotor B due to its high viscosity. Therefore, if used for a long period of time, there is a risk that the rotor will be damaged due to bending fatigue, resulting in a problem of reduced durability.

なお、この問題を解消するため、混練部における送り翼
部と戻し翼部の接合部分に相当する軸方向所定箇所で、
両ロータ間の中央空間をチャンバーに挿入したインサー
ト部材で閉塞することにより、両ロータ間中央部側でも
ロータに反力を働かせ、反力を均衡させて曲げ応力を軽
減するようにした構造が提案されている。しかし、この
構造によると、上記インサート部材によってこの部分で
材料通過量が制限されるため、生産量が低下すると共に
、この部分で温度上昇が生じて混練機排出口での材料温
度が高くなり、被混線材料の種類によっては許容温度を
越える虞れがある。また、このような温度上昇等との関
係でロータの混練部の長さくロータ直径に対する比率)
をあまり長くとることはできず、設計自由度にも乏しい
。そして、これらの点に起因して、適用可能な被混線材
料の種類が制限される等の欠点があった。
In addition, in order to solve this problem, at a predetermined location in the axial direction corresponding to the joint part between the feed blade part and the return blade part in the kneading section,
A proposed structure is proposed in which by closing the central space between both rotors with an insert member inserted into a chamber, a reaction force is exerted on the rotor on the central side between both rotors, balancing the reaction force and reducing bending stress. has been done. However, according to this structure, the amount of material passing through this part is restricted by the insert member, which reduces the production volume and causes a temperature rise in this part, which increases the material temperature at the kneader outlet. Depending on the type of material to be crossed, there is a possibility that the temperature will exceed the permissible temperature. In addition, in relation to such temperature rise, etc., the length of the rotor's kneading section (ratio of the length of the rotor to the rotor diameter)
cannot be made too long, and there is little freedom in design. Due to these points, there have been drawbacks such as restrictions on the types of crosstalk materials that can be used.

本発明はこれらの事情に鑑み、2軸連続式混線機におい
て各ロータに加わる曲げ応力を格段に軽減して耐久性を
高め、しかも、前述のインサート部材を用いた構造と比
較しても、生産量が低下することなく、設計自由度にも
富み、各種材料に適用可能であって、高粘度の材料や、
低粘度で充分な混線が要求される材料にも適用し得る2
軸連続式混練機を提供するものである。
In view of these circumstances, the present invention has been developed to significantly reduce the bending stress applied to each rotor in a two-axis continuous mixer, thereby increasing durability, and reducing production costs even compared to the structure using the above-mentioned insert members. There is no decrease in volume, there is a lot of freedom in design, and it can be applied to various materials, including high viscosity materials,
Can be applied to materials that require low viscosity and sufficient crosstalk2
The present invention provides a continuous shaft kneading machine.

すなわち、本発明は、一端に材料供給口、他端に材料排
出口を有するチャンバー内に、2本の混練用ロータを互
いに平行に配置し、該各ロータの軸方向所定範囲に、被
混線材料をロータの回転に伴って材料排出口側に送る方
向の捩れをもった送り翼部と、該送り翼部に後続し且っ
被混線材料をロータの回転に伴って材料供給口側に戻す
方向の捩れをもった戻し翼部とを有する混練翼を設けた
2軸連続式混練機において、上記送り翼部と戻し翼部と
の接合部分に相当する軸方向所定箇所で、ロータの外周
とチャンバー内面とのいずれか一方または双方に、少な
くとも両ロータ間の中央空間とは反対側の位置で混線翼
頂部とチャンバー内面との対向間隔を大きくする溝を設
けたことを特徴とするものである。
That is, in the present invention, two kneading rotors are arranged parallel to each other in a chamber having a material supply port at one end and a material discharge port at the other end. A feeding blade section having a twist in the direction of sending the material to the material discharge port side as the rotor rotates, and a direction that follows the feeding blade section and returns the mixed material to the material supply port side as the rotor rotates. In a two-shaft continuous kneading machine equipped with a kneading blade having a return blade with a twist, the outer periphery of the rotor and the chamber The present invention is characterized in that a groove is provided on one or both of the inner surfaces of the chamber, at least at a position opposite to the central space between the two rotors, to increase the facing distance between the top of the mixing blade and the inner surface of the chamber.

以下、本発明の実施例を図面によって説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本発明の第1実施例を示し、これ
らの図において、1はチャンバー、2I2は互いに平行
にチャンバー1内に配置された2本のロータである。上
記チャンバー1は、各ロータ2,2をそれぞれ囲続する
実質円筒状の2室を互いに連通連設してなるもので、該
チャンバー1の一端側には材料供給口としてのポソパ1
1が設けられ、他端側には開度調節可能なオリフィス1
5を備えた材料排出口12が設けられている。
1 and 2 show a first embodiment of the present invention. In these figures, 1 is a chamber, and 2I2 are two rotors arranged in parallel with each other in the chamber 1. FIG. The chamber 1 is made up of two substantially cylindrical chambers surrounding each of the rotors 2, 2, which are in communication with each other, and one end of the chamber 1 has a pothole as a material supply port.
1, and the other end has an orifice 1 whose opening degree can be adjusted.
A material outlet 12 with 5 is provided.

上記両ロータ2,2は、第2図に矢印で示す如く互いに
逆向きに同期回転するように、外部の駆動装置5に連動
連結されている。この各ロータ2.2にはそれぞれ、材
料供給口側から順に、ホッパ11からチャンバー1内に
供給された被混線材料を軸方向前方に送るスクリュー形
状のフィード部21と、該フィード部21から送られた
材料を混練、溶融する混練部22と、ディスチャージ部
25とが配設されている。上記混線部22においては、
例えばロータ2を断面オーバル形とすることにより、直
径方向両側に突出した混練翼24が設けられている。そ
して、混練部22の前半側所定範囲には、混練翼24が
ロータ2の回転に伴って被混線材料、を材料排出口側に
送る方向に捩れた状態に連続する送り翼部24aが形成
され、混練部22の後半側所定範囲に情、混練翼24が
ロータ2の回転に伴って被混線材料を材料供給口側に戻
す方向に捩れた状態に連続する戻し翼部24bが形成さ
れている。後述する溝25の形成箇所以外では、混練翼
24の頂部とチャンバ−1内面とが、被混線材料に対し
充分な剪断作用が得られる程度に近接し、また、チャ/
バー1内の両ロータ2.2間には中央空間14が存在し
ている。
Both rotors 2, 2 are interlocked and connected to an external drive device 5 so as to rotate synchronously in opposite directions as shown by arrows in FIG. Each rotor 2.2 has a screw-shaped feed section 21 that feeds the material to be mixed, which is supplied from the hopper 11 into the chamber 1, forward in the axial direction, in order from the material supply port side, and A kneading section 22 for kneading and melting the mixed materials and a discharge section 25 are provided. In the crosstalk section 22,
For example, by making the rotor 2 oval in cross section, kneading blades 24 are provided that protrude on both sides in the diametrical direction. In a predetermined range on the front half side of the kneading section 22, a feeding blade section 24a is formed in which the kneading blades 24 are twisted in a direction that feeds the material to be mixed to the material discharge port side as the rotor 2 rotates. In a predetermined range on the rear half side of the kneading section 22, a return wing section 24b is formed in which the kneading wing 24 continues in a twisted state in a direction in which the material to be mixed is returned to the material supply port side as the rotor 2 rotates. . The top of the kneading blade 24 and the inner surface of the chamber 1 are close to each other to the extent that a sufficient shearing action can be obtained on the material to be mixed, and the cha/
A central space 14 exists between the two rotors 2.2 in the bar 1.

上記送り翼部24aと戻し翼部24bの接合部分に相当
する箇所における混練翼24の頂部には、チャンバ−1
内面との間隔を大きくするだめの溝25が設けられてい
る。該溝25は、上記箇所における混練翼24の頂部を
、適度の深さおよび幅で周方向に沿って切欠することに
よシ形成されている。
A chamber 1 is provided at the top of the kneading blade 24 at a location corresponding to the joint between the sending blade 24a and the return blade 24b.
A groove 25 is provided to increase the distance from the inner surface. The groove 25 is formed by notching the top of the kneading blade 24 at the above-mentioned location along the circumferential direction to an appropriate depth and width.

との混練機による作用を次に説明す暮。The action of the kneading machine will be explained next.

図外のフィーダ等によって連続的にホッパ11からチャ
ンバー1内に供給される被混線材料は、ロータ2,2の
回転に伴い、前記フィード部21を通って混線部22へ
送られ、混線部22において混練翼24によυ攪拌、混
練されながら、混練1 翼24頂部とチャンバ−1内面との間および内ロータ2
,2相互間での剪断作用を受け、漸次可塑化、溶融して
いく。この場合、ロータ2の回転に伴い、混練翼24の
回転方向前方側の側面とチャンバ−1内面との間の楔状
空間内の被混線材料30に圧力が加わシ、これに応じ九
反力がロータ2に働くが、送り翼部24aと戻し翼部2
4bとの接合部分では、ロータ2の直径方向両側に突出
する混練翼24の一端側頂部が両ロータ間中央空間14
に臨む位置に達したときにも、従来機と比べて圧力のア
ンバランスが格段に減少し、ロータ2の曲げ応力が軽減
される。すなわち、上記中央空間14側では被混線材料
50の圧力およびこれに応じたロータ2への反力が殆ど
解除され、一方、これと反対側の位置でも、混練翼24
の回転方向前方側の被混線材料30が前記溝25を通っ
て円周方向に逃がされるため、この材料60に加わる圧
力およびそれに応じ九反力が充分に小さくなシ、これに
よって圧力および反力のアンバランスが減少し、ロータ
2の曲げ応力が軽減されることとなる。
The material to be mixed is continuously supplied from the hopper 11 into the chamber 1 by a feeder (not shown), etc., and is sent to the mixing section 22 through the feed section 21 as the rotors 2, 2 rotate. While being stirred and kneaded by the kneading blades 24, the kneading 1 mixture is mixed between the top of the blades 24 and the inner surface of the chamber 1 and the inner rotor 2.
, and undergoes a shearing action between the two, gradually becoming plasticized and melting. In this case, as the rotor 2 rotates, pressure is applied to the mixed material 30 in the wedge-shaped space between the front side surface of the kneading blade 24 in the rotational direction and the inner surface of the chamber 1, and nine reaction forces are generated accordingly. It acts on the rotor 2, but the sending blade part 24a and the return blade part 2
4b, the top of one end of the kneading blades 24 protruding on both sides in the diametrical direction of the rotor 2 connects to the central space 14 between both rotors.
Even when the rotor 2 reaches the position facing the rotor 2, the pressure imbalance is significantly reduced compared to conventional machines, and the bending stress on the rotor 2 is reduced. That is, on the side of the central space 14, the pressure of the material to be mixed 50 and the corresponding reaction force on the rotor 2 are almost completely cancelled, and on the other hand, even on the opposite side, the kneading blades 24
Since the material 30 to be mixed on the front side in the direction of rotation is released through the groove 25 in the circumferential direction, the pressure and corresponding reaction force applied to this material 60 are sufficiently small. The unbalance of the rotor 2 is reduced, and the bending stress of the rotor 2 is reduced.

第5図は、チャンバー1内の被混練材料p圧力(中央空
間14以外の位置で混練翼24により材料に加えられる
圧力)の軸方向分布を示し、縦軸は材料圧力、横軸は軸
方向位置を表わし、Lは混練部22の範囲、lは前記溝
25の形成範囲を示す。同図のように、混練部22に送
り翼部24aと戻し翼24bとを有する関係上、混練部
22の前後両端側では材料圧力が低く、上記両翼部の接
合部分に近づくにつれて材料圧力が高くなり、従来機で
は上記接合部分において2黒錆点で示す如く材料圧力が
最大となるのに対し、当混練機ではこの部分の材料圧力
が格段に減少される。そして、軸方向の各位置でこの圧
力分布に示す材料圧力に応じた曲げ応力が周期的にロー
タに加わるが、両翼部接合部分以外での材料圧力は比較
的小さいため、全体として充分に曲げ応力が軽減される
こととなる。
FIG. 5 shows the axial distribution of the material p pressure to be kneaded (the pressure applied to the material by the kneading blades 24 at a position other than the central space 14) in the chamber 1, where the vertical axis is the material pressure and the horizontal axis is the axial direction. In the figure, L indicates the range of the kneading section 22, and l indicates the range in which the grooves 25 are formed. As shown in the figure, because the kneading section 22 has a sending wing section 24a and a return wing section 24b, the material pressure is low at both the front and rear ends of the kneading section 22, and the material pressure increases as it approaches the joint between the two wing sections. In contrast, in the conventional machine, the material pressure is at its maximum at the joint portion as shown by the two black rust points, whereas in this kneading machine, the material pressure in this portion is significantly reduced. Bending stress corresponding to the material pressure shown in this pressure distribution is periodically applied to the rotor at each position in the axial direction, but since the material pressure in areas other than the joints of both wings is relatively small, the bending stress as a whole is sufficient. will be reduced.

また、両翼部接合部分での曲げ応力の軽減は前記溝25
によって達成され、空間面積が絞られることはないため
、前述のインサート部材を挿入する場合のように材料の
通過が制限された9不必要に温度上昇が生じたりするこ
とはない。
In addition, the bending stress at the joint portion of both wings can be reduced by using the groove 25.
Since the space area is not restricted, the passage of material is restricted and unnecessary temperature rises do not occur as in the case of inserting the insert member described above.

なお、第6図から明らかなように、前記溝25の幅を大
きくすれば曲げ応力がより軽減されるが、溝幅をあまり
大きくすると剪断作用が低下するので、被混線材料の種
類に応じて予め溝幅を適度に定めておけばよい。
As is clear from FIG. 6, if the width of the groove 25 is increased, the bending stress is further reduced, but if the width of the groove is increased too much, the shearing action is reduced, so the The groove width may be appropriately determined in advance.

第4図は本発明の第2実施例を示し、この実施例では、
前記送り翼部241Lと戻し翼部24bとの接合部分に
相当する箇所において、チャンバー1の内面に切込み状
の溝26が形成されている。
FIG. 4 shows a second embodiment of the invention, in which:
A cut-shaped groove 26 is formed on the inner surface of the chamber 1 at a location corresponding to the joint portion between the sending wing section 241L and the return wing section 24b.

この溝26は、両ロータ間の中央空間14とは反対側の
位置に、少なくとも該中央空間14と同等の範囲にわた
って円弧状に形成されている。
This groove 26 is formed in a circular arc shape at a position opposite to the central space 14 between the two rotors over an area at least equivalent to the central space 14 .

こΩ実施例に示す構造によっても、送り翼部と戻し翼部
との接合部分に相当する箇所において、ロータ2の直径
方向両側に突出する混練翼24の一端側頂部が両ロータ
間の中央空間14に達したとき、他端側の混練翼24頂
部が前記溝26に対応する位置に達し、被混線材料60
が該溝26を通って円周方向に逃がされるため、第1実
施例の場合と同様に、この部分における圧力および反力
応力が軽減されることとなる。
Also with the structure shown in the embodiment, the top of one end of the kneading blades 24 protruding on both sides in the diametrical direction of the rotor 2 is connected to the central space between the two rotors at a location corresponding to the joint between the sending blade part and the return blade part. 14, the top of the kneading blade 24 on the other end side reaches the position corresponding to the groove 26, and the material to be mixed 60
is allowed to escape in the circumferential direction through the groove 26, so that the pressure and reaction stress in this portion are reduced, as in the first embodiment.

第5図は本発明の第6実施例を示し、この実施例では、
前記送り翼部24aと戻し翼部24bの接合部分に相当
する箇所において、ロータ2の混練翼24の頂部と、チ
ャンバー1の内面との双方に、溝25′および26′が
設けられている。チャンバー1の内面に設けられた溝2
6′の位置および形成範囲は、第2実施例の場合と同様
である。
FIG. 5 shows a sixth embodiment of the present invention, in which:
Grooves 25' and 26' are provided on both the top of the kneading blades 24 of the rotor 2 and the inner surface of the chamber 1 at locations corresponding to the joints between the sending blades 24a and the return blades 24b. Groove 2 provided on the inner surface of chamber 1
The position and formation range of 6' are the same as in the second embodiment.

この実施例によると、上記溝25′および26′の双方
が、両ロータ間の中央空間14とは反対側の位置におい
て、ロータ2の混練翼頂部とチャンバ−1内面との間隔
を大きくして被混線材料を円周方向に逃がす作用を為し
、もって、前記第1.第2各実施例と同様の作用、効果
が得られる。
According to this embodiment, both of the grooves 25' and 26' increase the distance between the kneading blade top of the rotor 2 and the inner surface of the chamber 1 at a position opposite to the central space 14 between the two rotors. It acts to release the material to be mixed in the circumferential direction, and thereby, the first. The same functions and effects as in each of the second embodiments can be obtained.

以上説明したように、本発明の2軸連続式混練機は、混
練部における送り翼部と戻し翼部の接合部分に相当する
軸方向所定箇所で、ロータ外周もしくはチャツバ−内面
またはその双方に、少なくとも両ロータ間の中央空間と
は反対側の位置で混練翼頂部とチャンバー内面との対向
間隔を大きくする溝を設けているため、この箇所で混練
翼の一端側頂部が両ロータ間の中央空間に達したときに
も大きな圧力のアンバランスを生じることを防止し、こ
れによってロータの曲げ応力を軽減し、ロータの耐久性
を格段に高めることができる。しかも、前述のインサー
ト部材を挿入する場合と比べても・チャンバー内の材料
通過空間が絞られることがないので生産量が低下せず、
また、上記両翼部接合部分で温度上昇を生じることがな
く排出材料温度を低くし得るため、高密度ポリエチレン
等の高粘度タイプであまり混線を必要としない材料に適
し、一方、必要とあれば混練部を長くすることができ、
これによって低粘度で充分な混線が要求される材料にも
適用し得、設計自由度および各種材料への適用性にもす
ぐれる等、多大の効果を奏するものである。
As explained above, the two-shaft continuous kneading machine of the present invention has the following features: At a predetermined axial location corresponding to the joint between the feed blade section and the return vane section in the kneading section, the rotor outer periphery, the chatuba inner surface, or both. At least at a position opposite to the central space between both rotors, a groove is provided to increase the facing distance between the top of the kneading blade and the inner surface of the chamber, so that at this point, the top of one end of the kneading blade is connected to the central space between the two rotors. It is possible to prevent a large pressure imbalance from occurring even when the rotor is reached, thereby reducing the bending stress on the rotor and significantly increasing the durability of the rotor. Moreover, compared to the case of inserting the insert member mentioned above, the material passage space in the chamber is not restricted, so the production volume does not decrease.
In addition, it is possible to lower the temperature of the discharged material without causing a temperature rise at the joint of both wings, making it suitable for high-viscosity materials such as high-density polyethylene that do not require much mixing. The part can be made longer,
As a result, it can be applied to materials that require low viscosity and sufficient crosstalk, and has great effects such as excellent design freedom and applicability to various materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の混線機の第1実施例を示す断面図、第
2図は第1図の1−(線に沿った断面図、第3図はチャ
ンバー内の被混線材料の圧力分布図、第4図は本発明の
混線機の第2実施例を示す第21・・チャンバー、2・
・ロータ、24・・・混練翼、242L・・・送り翼部
、241)・・・戻し翼部、25゜26.25’、26
’・・・溝。 特許出願人  株式会社神戸製鋼所 代理人 弁理士  小  谷  悦  司、バ1′″゛
二、 i′、’:・。 “5J−・)″ 第  4  図 第  5  図 9 第  6Lz1 第  7  図
FIG. 1 is a cross-sectional view showing a first embodiment of the crosstalk machine of the present invention, FIG. 2 is a cross-sectional view taken along the line 1-( in FIG. Figure 4 shows the second embodiment of the crosstalk machine of the present invention.
・Rotor, 24...Kneading blade, 242L...Feeding blade part, 241)...Returning blade part, 25° 26.25', 26
'···groove. Patent applicant Kobe Steel, Ltd. Representative Patent attorney Etsushi Kotani, BA1'''゛2, i',':・. "5J-・)" Figure 4 Figure 5 Figure 9 Figure 6Lz1 Figure 7

Claims (1)

【特許請求の範囲】 1、一端に材料供給口、他端に材料排出口を有するチャ
ンバー内に、2本の混練用ロータを互いに平行に配置し
、該各ロータの軸方向所定範囲に被混線材料をロータの
回転に伴って材料排出口側に送る方向の捩れをもった送
り翼部と、該送り翼部に後続し且つ被混線材料をロータ
の回転に伴って材料供給口側に戻す方向の捩れをもった
戻し翼部とを有する混練翼を設けた2軸連続式混線機に
おいて、上−記送り翼部と戻し翼部との接合部分に相当
する軸方向所定箇所で、ロータの外周とチャンバー内面
とのいずれか一方または双方に、少なくとも両ロータ間
の中央空間とは反対側の位置で混練翼頂部とチャンバー
内面との対向間隔を大きくする溝を設けたことを特徴と
する2軸連続式混練機。 2、 各ロータの混練翼頂部を周方向に活って切欠する
ことによシ、混練翼頂部とチャンバー内面との対向間隔
を大きくする溝を形成したことを特徴とする特許請求の
範囲第1項記載の2軸連続式6、 両ロータ間の中央空
間とは反対側の各ローフ外側方部のチャンバー内面に、
周方向所定範囲にわたり略円弧状の切込みを設けること
により、混練翼頂部とチャンバー内面との対向間隔を大
きくする溝を形成したことを特徴とする特許請求の範囲
第1項または第2項記載の2軸連続式混練機。
[Claims] 1. Two kneading rotors are arranged parallel to each other in a chamber having a material supply port at one end and a material discharge port at the other end, and the mixed wires are arranged in a predetermined range in the axial direction of each rotor. A feeding blade section with a twist in the direction of feeding the material to the material discharge port side as the rotor rotates, and a direction following the feeding blade section and returning the mixed material to the material supply port side as the rotor rotates. In a two-shaft continuous mixer equipped with a kneading blade having a return blade with a twist, the outer periphery of the rotor is and the inner surface of the chamber, at least at a position opposite to the central space between the two rotors, a groove is provided to increase the facing distance between the top of the kneading blade and the inner surface of the chamber. Continuous kneading machine. 2. Claim 1, characterized in that the kneading blade top of each rotor is cut out in the circumferential direction to form a groove that increases the facing distance between the kneading blade top and the inner surface of the chamber. In the two-axis continuous type 6 described in Section 6, on the inner surface of the chamber at the outer side of each loaf on the opposite side from the central space between both rotors,
Claim 1 or 2, characterized in that the groove is formed by providing a substantially arc-shaped cut over a predetermined range in the circumferential direction, thereby increasing the facing distance between the top of the kneading blade and the inner surface of the chamber. Two-shaft continuous kneading machine.
JP8706382A 1982-05-21 1982-05-21 Twin-shaft type continuous kneader Pending JPS58202028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8706382A JPS58202028A (en) 1982-05-21 1982-05-21 Twin-shaft type continuous kneader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8706382A JPS58202028A (en) 1982-05-21 1982-05-21 Twin-shaft type continuous kneader

Publications (1)

Publication Number Publication Date
JPS58202028A true JPS58202028A (en) 1983-11-25

Family

ID=13904477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8706382A Pending JPS58202028A (en) 1982-05-21 1982-05-21 Twin-shaft type continuous kneader

Country Status (1)

Country Link
JP (1) JPS58202028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350960B2 (en) * 2004-07-07 2008-04-01 Tech. Process & Engineering, Inc. Dual flight rotors for continuous mixer assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7350960B2 (en) * 2004-07-07 2008-04-01 Tech. Process & Engineering, Inc. Dual flight rotors for continuous mixer assembly

Similar Documents

Publication Publication Date Title
JP2648513B2 (en) Mixing machine and how to operate it
JPS5931369B2 (en) Rotor of closed type kneading device
JPH09506568A (en) Multi-screw extruder compounder with modular mixing elements
SU963451A3 (en) Two-stage extruder for thermoplasting compositions
US5593227A (en) Twin-shaft screw-type extruding machine having mixing elements with wings
KR20060055397A (en) Batch mixer and mixing rotor used in the same
JP4907366B2 (en) Extruder screw, bearing segment used therefor, and twin screw extruder provided with extruder screw
JP7358345B2 (en) Double screw shaft for kneading machine
US8087815B2 (en) Kneader
CA1252083A (en) Continuous mixer
CN1070842A (en) Continuous kneading machine
EP1033217A2 (en) Rotor for a mixer and mixer having the same
US6116771A (en) Multi-shaft extruder screw bushing and extruder
US4444507A (en) Apparatus and method for melting and conveying plasticated material
JPS58202028A (en) Twin-shaft type continuous kneader
KR100671715B1 (en) Internal mixer for mixing elastomers with rotor having an twist angle which is varied along the extension of at least one of its wings
US4236833A (en) Screw machine for processing materials of solid, pasty and liquid consistency
US6106142A (en) Pressure variable, multiscrew, continuous mixing machine for plasticizable compounds with variable height backfeed threads
JPS63278537A (en) Mixer and extruder
JPS63165105A (en) Mixer
EP0619173A1 (en) Screw element having shearing and scraping flights
EP0865896B1 (en) Extrusion device
JPS584568B2 (en) kneading machine
JPH0212164B2 (en)
KR20050075755A (en) Mixing device