JPS58200646A - Communication system by propagation of light in space - Google Patents

Communication system by propagation of light in space

Info

Publication number
JPS58200646A
JPS58200646A JP57084324A JP8432482A JPS58200646A JP S58200646 A JPS58200646 A JP S58200646A JP 57084324 A JP57084324 A JP 57084324A JP 8432482 A JP8432482 A JP 8432482A JP S58200646 A JPS58200646 A JP S58200646A
Authority
JP
Japan
Prior art keywords
optical
optical signal
light
wavelength
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57084324A
Other languages
Japanese (ja)
Inventor
Masataka Ito
伊藤 雅孝
Takeshi Koseki
健 小関
Masaru Nakamura
優 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57084324A priority Critical patent/JPS58200646A/en
Publication of JPS58200646A publication Critical patent/JPS58200646A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1149Arrangements for indoor wireless networking of information

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To perform the high-quality communication of information by means of the space propagation of an optical signal, by making the emission wavelength of the optical signal, which is outputted from the light source of a transmitter, to be a specific length. CONSTITUTION:A light transmitter-receiver 2 having a semiconductor laser element as its light source radiates an optical signal outputted from the laser element in the directional angle of, for instance, + or -60 deg. from the ceiling of a room 1 toward each light transmitter-receiver 5 of a terminal 4 arranged on a floor surface. For each light receiving part of the transmitter receiver 5, information communication is performed by the propagation of an optical signal having the wave length of 1.38-1.43mum. In this case, since the level of sunlight component with respect to the optical signal of the wavelength of 1.38-1.43mum is about 1/10, the background noise of the sunlight does not bother the optical signal.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は光信号を空間伝搬して情報通信を行う光空間伝
搬通信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical space propagation communication system that performs information communication by spatially propagating optical signals.

〔発明の技術的背景とその間電点〕[Technical background of the invention and electric point between them]

−近時、光信号を光ファイバを介して伝送する情報通信
が飛躍的に発展し、各種システムに−広く利用されてい
る。とζろが、このような光ファイバを用い九光信号通
信では、光コネクタや光分岐素子等の使用による拡張性
の制限、また光ファイバケーツルの布設コストの増大、
更KFi情報過信機器間の移動の問題等があプ、上記光
匍号の空間伝搬による情報通信が注目されつつある。第
1図は、このような光信号の空間伝搬を利用し九ローカ
ルネッFワークシステムの歓略図であプ、部H11の天
井に光送受信機2【設置、上記11jlJの床に設置さ
れ九複数の端末イの各光送受信機5との間で、空間伝搬
される光信号によ多情報過信を行わしめるようにした4
のである。尚、醜配光送受信機2は、図示しない中央制
御懺置尋の上位機器に接続される。
-In recent years, information communication in which optical signals are transmitted via optical fibers has developed dramatically and is widely used in various systems. However, in optical signal communication using such optical fibers, expandability is limited due to the use of optical connectors and optical branching elements, and the cost of installing optical fiber cables increases.
Furthermore, the problem of movement between KFi information overconfidence devices has increased, and information communication using the above-mentioned optical signal propagation through space is attracting attention. Figure 1 is a schematic diagram of the nine local network F system that utilizes the spatial propagation of optical signals. Multiple information overconfidence is performed in the spatially propagated optical signal between each optical transmitter/receiver 5 of the terminal A.
It is. Incidentally, the ugly light distribution transmitter/receiver 2 is connected to a host device of a central control station (not shown).

しかしてこのようなローカルエリアネ、トヮータによれ
ば、上−記*1!ix内の光信号Jの届く範囲にs?メ
て任意に端末4を増加させることかで自、またその設置
場所の移動も容易である。
However, according to this local area, Toyota, the above *1! s in the reachable range of the optical signal J in ix? By arbitrarily increasing the number of terminals 4, it is easy to move the terminals themselves and their installation locations.

ところで従来より、光送信に供する光信号には、主とし
て光ファイバを用い九長距離伝送を目的としている為、
光ファイバにおけるH、O等による吸収損失を考慮して
α95μm程度の波長のものが多く用いられている。ま
たこのような発光波長の光信号を得る光源としての半導
体レーデ素子も種々研究されている。然し乍ら、上記ロ
ーカルエリアネットワークにおける光信号の空間伝搬に
ありては、上記光吸収損失よりもむしろ背景光雑音に起
因するシ、、ト雑音の増加が大きな問題となる。この為
、従来の光送信機の光源をそのまま利用しても、光空間
伝搬による情報通信にあっては、信号品質やその他の点
で多くの問題が生じ良。
By the way, conventionally, optical signals used for optical transmission have mainly been used for long-distance transmission using optical fibers.
Considering the absorption loss due to H, O, etc. in the optical fiber, a wavelength of approximately α95 μm is often used. Further, various researches have been conducted on semiconductor radar devices as light sources for obtaining optical signals having such emission wavelengths. However, in the spatial propagation of optical signals in the local area network, an increase in noise caused by background optical noise rather than the optical absorption loss poses a major problem. For this reason, even if the light source of a conventional optical transmitter is used as is, there are many problems in signal quality and other aspects when communicating information using optical space propagation.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされ良もので、十
の目的とするとζろは、光信号を空間伝搬して行う情報
通信匣を背景光雑音にょる悪影響を少なくして信号品質
の劣化を招くことなく効果的に行い得る実用性の高い光
空間伝搬通信方式を提供することにある。
The present invention has been made in consideration of these circumstances, and its tenth purpose is to improve signal quality by reducing the adverse effects of background optical noise on information communication boxes that carry out spatial propagation of optical signals. It is an object of the present invention to provide a highly practical optical space propagation communication system that can be carried out effectively without causing deterioration.

〔発明の概要〕[Summary of the invention]

本竜明は空間伝搬される光信号として、波長1.38声
m乃至1.43μmの光信号を用いるようにしたもので
、例えば上記波長の光信号を送信出力する光源として四
元系化合物半導体レーザ素子を用いるようにしたもので
ある。
This Ryumei uses an optical signal with a wavelength of 1.38 m to 1.43 μm as an optical signal to be propagated in space. For example, a quaternary compound semiconductor is used as a light source to transmit and output an optical signal of the above wavelength. This uses a laser element.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば、背景光雑音として特に大きい
太陽光による悪影響上大幅に軽減してシ、、ト雑音の増
大を防ぎ、tたそのs/Nを^めて必要受信光/4ワー
の低減を図9て嶌品質な情報通信を行うむとが可能とな
る。従って、その利点を活かし大各種のローカルエリア
光ネ、トワークを簡墨に横縞することか可能となシ、実
用上絶大なる効果が奏せられる。
Thus, according to the present invention, the background light noise, which is particularly harmful to large amounts of sunlight, is significantly reduced, preventing an increase in background light noise, increasing the S/N, and reducing the required received light/4 watts. It becomes possible to perform high-quality information communication by reducing the amount of noise. Therefore, by taking advantage of this advantage, it is possible to easily form horizontal stripes on a wide variety of local area optical networks and networks, and a great practical effect can be achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、図1itを参照して本発明の一実施例につき説明
する。
An embodiment of the present invention will be described below with reference to FIG.

本方式は、例えば第1図に示される光ネ、トワータにお
いて、光送受信機2)5に設けられ危光源が送信出力す
る空間伝搬される光信号の波長t−1,38−m乃至1
.43μmK定めたことを特徴とするものである。この
ような波長の光信号全送信出力′する光源は、例えば第
2図に素子構造を示すようなInGaAsP尋の四元系
化合物半導体レーデ素子等によって実現される。この半
導体レーデ素子について説明すれば、n型のInP:a
m半導体結晶基板11上に、不純物濃度が5×lO1の
n −InP:Sn IIt@結晶層をクラ、ド層12
として成長させ、その上に04μm程度の厚さでInG
aAsP結晶を成長させてこれをレーデ活性層13とし
、更にそ(D上に不純物1) 度10 ’ ”ex−”
程度のp −Ink:Zn結晶層をクラ、ド層14とし
て成長させてダブルへテロ接合構造の発光ダイオードを
構成し、更にはp −InGaAsP:Zm結晶層15
を成長させたのちに101等の絶縁81gを介して電極
11を形成し九素子構造を有する。
For example, in the optical power converter shown in FIG.
.. It is characterized by having a value of 43 μmK. A light source capable of outputting all optical signals of such wavelengths is realized, for example, by a quaternary compound semiconductor radar device made of InGaAsP, the structure of which is shown in FIG. To explain this semiconductor radar element, n-type InP:a
An n-InP:SnIIt@crystal layer with an impurity concentration of 5×lO1 is formed on the m-semiconductor crystal substrate 11.
InG is grown on top of it to a thickness of about 0.4 μm.
An aAsP crystal is grown to form the Rede active layer 13, and furthermore, an impurity 1 on D is added to the layer 10'``ex-''.
A light-emitting diode with a double heterojunction structure is formed by growing a p-Ink:Zn crystal layer of about 100 to 100% as a clad layer 14, and further a p-InGaAsP:Zm crystal layer 15.
After growing, an electrode 11 is formed via an insulator 81g such as 101 to form a nine-element structure.

尚、図中18は基板11の裏面に設けた電極である。Note that 18 in the figure is an electrode provided on the back surface of the substrate 11.

このような半導体レーデ素子によれば、一般に1.00
μm乃至150J1m程度の発光波長を得ることができ
、例えば上記レーデ活性1111の厚みや、四元系の組
成とそのバンドギャップとを選ぶことによって、波長1
,40μmの安定なレーデ光t−得ることかoraとな
る。またその光出力も、250 tmA根度の電動電流
によって4〜5tmW程度確保することができる。
According to such a semiconductor radar element, generally 1.00
It is possible to obtain an emission wavelength of about μm to 150J1m.
, 40 .mu.m stable Raded light t- is obtained. Further, the light output can be secured at about 4 to 5 tmW with an electric current of 250 tmA.

しかして上記の如き半導体レーデ素子を光源とする光送
受信機JFi、上記レーデ素子が出力する光信号を、8
1!17の天井から、例えば±60’の指向角を以って
、床EiiK設置され九端末4の各光送受信機5に対し
て放射する。そして、光送受信機5は上記光信号を例え
ば±15°の指向角を以って受信する如く構成される。
The optical transmitter/receiver JFi, which uses the semiconductor radar element as a light source, transmits the optical signal output from the radar element to 8
The light is emitted from the ceiling of No. 1!17 with a directivity angle of, for example, ±60' to each optical transceiver 5 of the nine terminals 4 installed on the floor EiiK. The optical transceiver 5 is configured to receive the optical signal at a directivity angle of, for example, ±15°.

かくしてここに、光送受信機2の光源から光送受信機5
の各受光部に対して、波長13g、#B〜1.43μm
の光信号の空間伝搬による情報通信が行われる。
Thus, here, from the light source of the optical transceiver 2 to the optical transceiver 5
For each light receiving part, wavelength 13g, #B ~ 1.43μm
Information communication is performed through the spatial propagation of optical signals.

尚、床に設けられ喪光送受信機ξから光送受信機1への
光信号の空間伝搬も、上記l、38μm〜1.43声−
の波長の光信号を用いて行われる・但しこの場合、光信
号の通信方向によって、その光信号の波長を上記した波
長範囲において異ならせることが好ましい、また複数の
端末4にそれぞれ対応させて光信号の波長を上述した範
囲で異ならせることも可能である。
Incidentally, the spatial propagation of the optical signal from the optical transmitter/receiver ξ installed on the floor to the optical transmitter/receiver 1 is also within the range of l, 38 μm to 1.43 μm.
However, in this case, it is preferable to vary the wavelength of the optical signal within the above wavelength range depending on the communication direction of the optical signal. It is also possible to vary the wavelengths of the signals within the above-mentioned range.

以上のように波長1.38μm乃至l、43μmの光信
号を空間伝搬して情報通信を行う本方式によれば、背景
雑音光として最も影響の大きい太陽光の防害會受けるこ
となしK11号品質の高い良好な光情報通信を行うこと
が可能となる。即ち、太陽光のスペクトル分布は第3図
に示すように短波長域から長波長域に亘って広範囲に分
布している。但し、#!3図に示される/母うメーター
は、太陽光の受光角を示している。しかしてこのスペク
トル分布から明らかなように1波長1311a+m乃至
1.43μmの太陽光成分は、従来光通信用として主と
して用いられてきたα95μwh。
As described above, according to this method, which performs information communication by spatially propagating optical signals with wavelengths of 1.38 μm to 43 μm, there is no damage prevention effect from sunlight, which has the greatest influence as background noise light, and K11 quality is achieved. This makes it possible to perform high-quality optical information communication. That is, as shown in FIG. 3, the spectral distribution of sunlight is distributed over a wide range from a short wavelength region to a long wavelength region. however,#! The meter shown in Figure 3 indicates the acceptance angle of sunlight. However, as is clear from this spectral distribution, the sunlight component with one wavelength of 1311a+m to 1.43μm is α95μwh, which has been mainly used for optical communication in the past.

ズ1 波長成分に比して極めて小書く、L/I O以下のレベ
ルである。また太陽光のスペクトルミ180フ1m乃i
it、ss^mo献長4−でも非常に小さい。
Level 1 This is extremely small compared to the wavelength component, and is at a level below L/I O. Also, the spectrum of sunlight is 180 mm.
It, ss^mo Kencho 4- is also very small.

従りて、光通信に用いる光信号波長を上記1.38μm
乃至143Jmに定めれば太陽光の影響を大輪に@滅す
る仁とが可能となる。マ九光信号波兼を1.80μm乃
至1.85jmK定めることも可能であるが、この場合
光源としての出力強度を半導体し〜デ素子として十分に
確保できない郷の間鴫がある。
Therefore, the optical signal wavelength used for optical communication is 1.38 μm.
If it is set to between 143 Jm and 143 Jm, it becomes possible to eliminate the influence of sunlight on a large scale. It is also possible to set the optical signal wave length in the range of 1.80 μm to 1.85 mK, but in this case, there is a problem in which the output intensity as a light source cannot be sufficiently secured as a semiconductor element.

ま7tJII4all#1波長α95Ja+の光信号を
空間伝搬する際の、伝送速度と必要受信光電力との関係
を示したもので、ム嬬背景雑音光がない場合の特性、墓
は背景雑音光がある場合の特性を示している。この関係
から示されるように背景雑音光が存在すると、その分だ
け必要受信光電力を大きくする必lI!があ〕、従って
本方式のように太陽光の影響を受け―い波長の光信号を
用いて情報伝送することにより、上記必要受信光電力を
低く抑えゐことが可能となる。
7tJII4all#1 This shows the relationship between the transmission speed and the required received optical power when propagating an optical signal of wavelength α95Ja+ in space. It shows the characteristics of the case. As shown by this relationship, if background noise light exists, the required received optical power must be increased by that amount! However, by transmitting information using an optical signal with a wavelength that is not affected by sunlight as in this method, it is possible to keep the required received optical power as described above low.

故に、本方式に:よ□れば、背景雑音光の悪影響を大幅
に@滅してシ、、)雑音を抑え、高品質な光信号の空間
伝搬による情報過信を行うむとが可能となる。そして、
a−カルエリア光ネ。
Therefore, by using this method, it is possible to significantly eliminate the negative influence of background noise light, suppress noise, and perform information overconfidence through spatial propagation of high-quality optical signals. and,
a- Caleria Hikane.

トワークを簡易に構築する仁とが可能となり、その実用
的利点は非常に高い。
This makes it possible to easily construct a network, and its practical advantages are very high.

尚、本発明は上記実施例にのみ限定されるものではない
0例えば半導体レーデ素子をh−一以外の他の四元系化
合物半導体素子を用いて構成して4よい、また屋外にお
ける近距離光通信にも適用することができる。*するに
本発明はその要旨を逸脱しない範囲で種々変形して爽纏
することができる。
It should be noted that the present invention is not limited to the above-mentioned embodiments.For example, the semiconductor radar device may be constructed using a quaternary compound semiconductor device other than h-1. It can also be applied to communications. *This invention can be modified and modified in various ways without departing from its gist.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例方式を説明するもので、第1図は
実施例方式が適用されるローカルエリア光ネ、)’7−
10構成E、Nz、rlAliflilkLssμm=
143μmの光信号を出力する光源としての半導体レー
デ素子の構造を示す図、菖3図は太陽光のスペクトル分
布を示す図、謳4図は光信号の伝送速度と必要受信光強
度との関係を示す図である。 2・・・光送受信機、J・・・光信号(空間伝11i)
、4・・・端末、5・・・光送受信機、11・・・半導
体結晶基板、II・・・レーデ活性層。 出願人代理人  弁理士 鈍 江 武 彦21図 才2図 7 Wavelength (pm) JIk基遼泉(bps)
The figure explains one embodiment of the present invention. Figure 1 shows a local area optical network to which the embodiment is applied.
10 configuration E, Nz, rlAriflikLssμm=
Figure 3 shows the structure of a semiconductor radar element as a light source that outputs a 143 μm optical signal, Figure 3 shows the spectral distribution of sunlight, and Figure 4 shows the relationship between the transmission speed of the optical signal and the required received light intensity. FIG. 2... Optical transceiver, J... Optical signal (Space Transmission 11i)
, 4... Terminal, 5... Optical transceiver, 11... Semiconductor crystal substrate, II... Radical active layer. Applicant's agent Patent attorney Takehiko Dane 21 figures 2 figures 7 Wavelength (pm) JIk Ki Liaoquan (bps)

Claims (1)

【特許請求の範囲】 (リ 光送信機から所定の光受信機に対して光2信号を
空間伝搬して情報通信を行うに際し、前記光送信機の光
源が出力する上記光信号の発光波長を1.38μm乃至
1.43μmK定めたことを特許とする光空間伝搬通信
方式。 (2)光送信機の光源は、1.38μm乃至1.43声
mの波長のレーデ光を出力する四元系化合物半導体レー
デ素子からなるものである特許請求の範囲第1項記載の
光空間伝搬通信方式。
[Claims] (Li) When performing information communication by spatially propagating two optical signals from an optical transmitter to a predetermined optical receiver, the emission wavelength of the optical signal output from the light source of the optical transmitter is Optical space propagation communication system patented as having a wavelength of 1.38 μm to 1.43 μm. (2) The light source of the optical transmitter is a quaternary system that outputs radar light with a wavelength of 1.38 μm to 1.43 μm. The optical space propagation communication system according to claim 1, which comprises a compound semiconductor radar element.
JP57084324A 1982-05-19 1982-05-19 Communication system by propagation of light in space Pending JPS58200646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57084324A JPS58200646A (en) 1982-05-19 1982-05-19 Communication system by propagation of light in space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57084324A JPS58200646A (en) 1982-05-19 1982-05-19 Communication system by propagation of light in space

Publications (1)

Publication Number Publication Date
JPS58200646A true JPS58200646A (en) 1983-11-22

Family

ID=13827326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57084324A Pending JPS58200646A (en) 1982-05-19 1982-05-19 Communication system by propagation of light in space

Country Status (1)

Country Link
JP (1) JPS58200646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142399A (en) * 1989-12-01 1992-08-25 Societe Anonyme De Telecommunications Message transmission system
US7336903B2 (en) 2003-04-07 2008-02-26 Victor Company Of Japan, Limited Optical wireless transmission apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142399A (en) * 1989-12-01 1992-08-25 Societe Anonyme De Telecommunications Message transmission system
US7336903B2 (en) 2003-04-07 2008-02-26 Victor Company Of Japan, Limited Optical wireless transmission apparatus

Similar Documents

Publication Publication Date Title
Piesiewicz et al. Performance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments
US10530479B2 (en) Systems with optical network units (ONUs) for high bandwidth connectivity, and related components and methods
Hirata et al. Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies
Wake et al. A comparison of radio over fiber link types for the support of wideband radio channels
US20070292136A1 (en) Transponder for a radio-over-fiber optical fiber cable
US20080031628A1 (en) Wireless/Optical Transceiver Devices
Gupta et al. A survey of free space optical communication network channel over optical fiber cable communication
JPH0521903A (en) Semiconductor optical amplifier, and optical communication network and integrated optical node using the amplifier
Shen et al. Laser-based visible light communications and underwater wireless optical communications: a device perspective
US20210194589A1 (en) Optical communication system and optical communication method
US20190373485A1 (en) Wireless communication device, wireless communication method and building provided with wireless communication device
Palitharathna et al. Lightwave power transfer in full-duplex NOMA underwater optical wireless communication systems
Ma et al. Outage performance analysis and parameter optimization of hovering UAV-based FSO system
CN109525318A (en) A kind of full duplex light carrier radio communication system
Nallagonda et al. Performance analysis of FSO based inter-UAV communication systems
JPS58200646A (en) Communication system by propagation of light in space
US11296479B2 (en) PSE device and powered device of optical power supply system, and optical power supply system
JP7370186B2 (en) optical transmission system
Alnajjar et al. The effect of atmospheric turbulence on the performance of end-users antenna based on WDM and hybrid amplifier
Nandi et al. Study of Variation of Q-Factor Using Minimum Power Under Different Weather Conditions
Haq et al. Weather-limited in-band full-duplex transceiver model for free-space optical communication
Yashchyshyn et al. Technologies and applications of microwave photonic antennas
Gupta et al. Free space optical communication
Chizh et al. Transmitting and receiving photonic antennas for wireless LAN
US11381320B2 (en) Optical transmission system