JPS58200188A - Bed-detecting method for detecting area and state of flow of underground water - Google Patents

Bed-detecting method for detecting area and state of flow of underground water

Info

Publication number
JPS58200188A
JPS58200188A JP57082432A JP8243282A JPS58200188A JP S58200188 A JPS58200188 A JP S58200188A JP 57082432 A JP57082432 A JP 57082432A JP 8243282 A JP8243282 A JP 8243282A JP S58200188 A JPS58200188 A JP S58200188A
Authority
JP
Japan
Prior art keywords
water
flow
pipe
tube
borehole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57082432A
Other languages
Japanese (ja)
Inventor
Masahiro Yunoki
勇野喜 正裕
Toshiaki Kajiwara
梶原 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEIJI CONSULTANT KK
Original Assignee
MEIJI CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEIJI CONSULTANT KK filed Critical MEIJI CONSULTANT KK
Priority to JP57082432A priority Critical patent/JPS58200188A/en
Publication of JPS58200188A publication Critical patent/JPS58200188A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/20Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To perform detection accurately and simply in a short time by a method wherein a water-intercepting hollow insulation pipe serving as a guide pipe for moving a sonde vertically is inserted into a well to separate water in the well completely from the inside of the pipe and measurement is conducted in the state wherein the turbulence of the water in the well is prevented completely. CONSTITUTION:On the outer surface of an insulation electrode pipe 5 made of polyvinyl chloride or the like and separating water in a well completely from the inside of the pipe, a number of electrodes in the shape of a screw or the like are arranged at symmetrical positions on the circumference and in the longitudinal direction at appropriate intervals for measurement. A contact measurement rod 9 is inserted into the insulation electrode pipe 5 and lowered down to the bottom of the pipe. Then, while a specified constant current is made to flow between current electrodes A and B from a measuring unit, the rod is pulled up sequentially and a potential generated at each position of the electrodes is measured as a potential difference between the potential M and the electrode N. By this method, the turbulence of the water in the well can be prevented completely, and thus the detection can be performed accurately and simply in a short time.

Description

【発明の詳細な説明】 この発明は、地層内を流動している地下水の存在位置、
流動域および流速などの流動状態を、孔井内において孔
内水の流れを乱さない状態で、電気比抵抗法または誘導
電磁法によって測定・検知する検層方法に関するもので
ある。
[Detailed Description of the Invention] This invention provides a method for determining the location of groundwater flowing in a geological formation;
The present invention relates to a well logging method for measuring and detecting flow conditions such as flow range and flow velocity in a wellbore by an electrical resistivity method or an induced electromagnetic method without disturbing the flow of water in the borehole.

土木工事におけるトンネル、ダム、橋梁などの地下構造
物・基礎の建設、防災工事に対する斜面崩壊・地すペシ
の調査や対策工、地盤沈下対策、あるいは地下水の揚水
利用などにおいては地下滞水層の伏在や地下水の流動状
態を的確に把握することが甚だ重要である。そのため、
現在では種々の調査手法が考えられ、特に、調査対象条
件を検討した上で、電気検層、温度検層、放射能検層、
微流速−検層、食塩検層などが選択実施されている。し
かし、これらの方法はそれぞれに大きい特徴を有するも
のではあるが、地下水の流動を直接的に調査する上でに
検知能が不充分であったり、操作・取扱が面倒でかつ測
定に時間がかかり過ぎるなどの欠点がある。
Construction of underground structures and foundations such as tunnels, dams, and bridges in civil engineering work, investigation and countermeasures for slope failure and ground damage in disaster prevention work, countermeasures against ground subsidence, and pumping of groundwater use underground water retention aquifers. It is extremely important to accurately understand the underground and groundwater flow conditions. Therefore,
Currently, various survey methods are considered, and in particular, after considering the survey target conditions, electrical logging, temperature logging, radioactivity logging,
Microflow-velocity logging, salt logging, etc. are being selectively implemented. However, although each of these methods has significant characteristics, it is difficult to directly investigate the flow of groundwater due to insufficient detection capabilities, cumbersome operation and handling, and time-consuming measurements. There are drawbacks such as too much.

通常の孔井内を懸垂移動するゾンデ形式の検層法では、
ゾンデおよびケ÷プルの移動によって孔内に流入・流出
する微弱な地下水の流動が乱されて検知が不能となるな
どの大きい難点があり、なた、沖積層地帯や地すべり域
などで比較的流速の大きい場合に採用される食塩検層は
、検知能も優れているが、電極数が多いため多芯電線を
必要とし、そのため電極部重量が甚だ重くな多側定長が
制限されるほか、電極の切換えが面倒で時間がかかるな
どの欠点がある。
In the normal logging method using a sonde that moves suspended inside a borehole,
The movement of the sonde and capsule disturbs the weak flow of groundwater flowing into and out of the borehole, making detection impossible. Salt logging, which is used when the amount of water is large, has excellent detection ability, but because it has a large number of electrodes, it requires multi-core wires, which makes the electrodes extremely heavy and limits the fixed length on multiple sides. There are disadvantages such as switching the electrodes is troublesome and time consuming.

本発明の検層方法は上記の欠点や難点を排除したもので
あり、孔井内にゾンデの上・上移動を行うためのガイド
管となる遮水中 空絶縁管を内押して孔内水と管内を隔
絶し、ゾンデおよびケーブルの移動による孔内水の攪乱
を完全に防止した状態で、電解物質溶解孔内水の地下水
流動に伴う・電気比抵抗や電導率の経時変化を測定し得
ることを特徴としたものであり、これによって正確に、
しかも簡易かつ短時間に検知が出来る利点がある。
The well logging method of the present invention eliminates the above-mentioned drawbacks and difficulties, and pushes inward the water-blocking hollow insulated tube that serves as a guide tube for moving the sonde up and down into the wellbore, thereby separating the borehole water and the inside of the tube. The feature is that it is possible to measure changes over time in electrical resistivity and conductivity associated with groundwater flow of electrolyte-dissolved water in the hole, while being isolated and completely preventing disturbance of the water in the hole due to the movement of sondes and cables. This means that exactly,
Moreover, it has the advantage of being able to be detected easily and in a short time.

以下に本発明の検層方法を詳述する〜 (”l  mm抗′!′!″[f!検検力方法般に、地
−の電気比抵抗(見掛比抵抗)    1を求める電気
検層には電流電極(A、B )、電位型m(M、N)の
配列の仕方によって2極法(ノルマル法)と3極法(ラ
テラル法)の測定方法があるが、本発明では、3極法と
してもその原理は全く同じであるので2極法を採用した
場合について説明するー 電気検層の2極法においては、電流電極の一方Aを孔内
電極、他方Bを地表接地電極としてこの両電極間に矩形
波電流(I)を流し、その結果中ずる孔内水を含めた地
層中の電位差(V)をAよりaなる電極間隔に離隔した
電位電極Mと地表接地電位電極N間で測定するものであ
り、この場合に測定される比抵抗値Pば P−4x−a’ ■ で示される。従って、い1一定電流を流した場合の孔内
水の比抵抗値の変化はVを測定することによって検知す
ることが出来る。
The well logging method of the present invention will be described in detail below. There are two methods of measurement for the layer, depending on the arrangement of current electrodes (A, B) and potential types m (M, N): two-pole method (normal method) and three-pole method (lateral method), but in the present invention, The principle is exactly the same for the three-pole method, so we will explain the case where the two-pole method is adopted.In the two-pole method of electric logging, one of the current electrodes A is the hole electrode and the other B is the ground electrode. A rectangular wave current (I) is passed between these two electrodes, and as a result, the potential difference (V) in the stratum including the water in the hole is changed between the potential electrode M and the ground surface ground potential electrode separated by an electrode spacing of a from A. The specific resistance value P measured in this case is expressed as P-4x-a'. Therefore, the specific resistance value of the water in the hole when a constant current is passed is Changes can be detected by measuring V.

そこで、孔井内に電解物質1例えば食塩などを投入して
孔内水に溶解させ、その電気比抵抗値を減少(従って電
導率゛を大きくする)させ、との電解物質溶解孔内水が
1局処的な地下水の流入、流動によって経時的に置換稀
釈される状態を上記電気検層法で測定11、比抵抗値P
の変化を特定時間ごとに繰りがえし追跡すれば、地下水
の流動域、流動状態を検知することが出来る。
Therefore, an electrolytic substance 1, such as salt, is introduced into the borehole and dissolved in the borehole water to reduce its electrical resistivity (thus increasing the conductivity). The state of displacement and dilution over time due to local groundwater inflow and flow was measured using the above electric logging method11, and the specific resistance value P
By repeatedly tracking changes in groundwater at specific time intervals, it is possible to detect groundwater flow areas and flow conditions.

しかし、通常の電気検層法では、孔内電極ゾンデおよび
これを懸垂するケーブル線を孔内水中で移動させるため
、孔内水を攪乱し、微弱な地下水の流入・流動が乱され
て、この1までは測定・検知が殆んど不可能である。
However, in the normal electrical logging method, the borehole electrode sonde and the cable line that suspends it are moved within the borehole water, which disturbs the borehole water and disrupts the weak inflow and flow of groundwater. Measurement and detection are almost impossible up to 1.

そこで、本発明では、電極を取付けた絶縁管を孔外中に
挿入し、管外孔内水を乱すことなく管内を自由に移動す
る接触測定枠によって電気検層が行えるようにしている
。これを図について説明すると次のようである。
Therefore, in the present invention, an insulated tube with an electrode attached is inserted into the outside of the borehole, and electrical logging can be performed using a contact measurement frame that freely moves inside the tube without disturbing the water inside the borehole outside the tube. This can be explained with reference to the diagram as follows.

@1図中、■は掘さくされた孔外で、■は電解物質1例
えば食塩などの投入溶解によって電気比抵抗値をバンク
グラウンドの1/10〜1/201またはそれ以上に低
下させた孔内水を、↓は滞水層@から孔内へ流入し、流
出する地下水を示す。
@1 In the figure, ■ indicates the outside of the drilled hole, and ■ indicates the hole where the electrical resistivity value has been lowered to 1/10 to 1/201 or more than the bank ground by dissolving electrolyte 1 such as salt. ↓ indicates groundwater flowing into and out of the borehole from the aqueous layer @.

(0は孔内水と管内とを隔絶させる塩ビ製などの絶縁電
極管で、その外面にはネヂ状などの電極■を第2図に示
すように円周上対象位置、および第1図に示す縦方向に
適当な測定間隔(通常5〜10cm)で多数配列する。
(0 is an insulated electrode tube made of PVC or the like that isolates the borehole water from the inside of the tube. On its outer surface, screw-shaped electrodes are placed at symmetrical positions on the circumference as shown in Figure 2, and as shown in Figure 1. A large number of samples are arranged at appropriate measurement intervals (usually 5 to 10 cm) in the vertical direction shown.

■は電極■の管内接触端子であり、■は電極部の漏水を
防止するためのシリコンゴム製などの円板・(ツキンで
ある。
■ is the contact terminal inside the tube of the electrode ■, and ■ is a disc made of silicone rubber or the like to prevent water leakage from the electrode part.

■は絶縁電極管(りの管内に挿入され自由に移動可能な
接触測定桿を示し、これには電極■の管内接触端子に接
触するスプリング状接触子[相]およびOと下端に重錘
@を備える。
■ indicates a freely movable contact measurement rod that is inserted into the insulated electrode tube, and includes a spring-like contact [phase] that contacts the in-tube contact terminal of the electrode ■, and a weight @ at the bottom end of the insulated electrode tube. Equipped with

◎は接触子σ9,0にそれぞれ接続された取出しケーブ
ルで地表の電気比抵抗測定器@に接続される。この測定
器は、電源0(通常り、012V)からの給電によって
、ト、ランジスタ低周波インバーターなどにより150
V〜600V、 100〜200m+1A。
◎ is connected to the electrical resistivity measuring device @ on the earth's surface with take-out cables connected to contacts σ9 and 0, respectively. This measuring instrument can be powered from a power supply of 0 (normally 012V) to a voltage of 150V using a transistor, low frequency inverter, etc.
V~600V, 100~200m+1A.

10〜40 Hzの矩形波電流を孔内電流電極[相]即
ちKと地表接地電流電極@即ち8間に流す電流発生部と
、この電流によって発生する電位を孔内電位電極@即ち
Mと地表接地電位電極qψ即ちNにより整流測定する電
位差計部から構成される。
A current generating part that flows a rectangular wave current of 10 to 40 Hz between the borehole current electrode [phase], that is, K, and the ground current electrode @, that is, 8, and the potential generated by this current is passed between the borehole potential electrode @, that is, M, and the ground surface. It consists of a potentiometer section that performs rectification and measurement using a ground potential electrode qψ, ie, N.

(へ)は絶縁電極管に適当な間隔(例えば50”〜10
″′)で装着したゴム製などのヒレ状円板形・くツカ−
であり、被圧地下水の孔内における上・下流動を出来る
だけ抑制・防止し地下水の水平方向流動を的確に把握す
る目的をもつものである− 以上の構成における本発明の検層方法は次の様に行う。
(f) is an appropriate interval for the insulated electrode tube (for example, 50" to 10"
A fin-like disk-shaped piece made of rubber etc. attached with
The purpose is to suppress and prevent the upward and downward flow of pressurized groundwater in the borehole as much as possible, and to accurately grasp the horizontal flow of groundwater. Do it like this.

1)孔内水中に食塩などの電解物質を投入攪拌して溶解
させ、その電気比抵抗値をノくツクグラウンドの1/l
O〜1/20. vたはそれ以下に低下させる。
1) Pour an electrolyte such as salt into the borehole water and stir to dissolve it, and check its electrical resistivity to 1/l of the ground.
O~1/20. v or less.

11)孔外内に絶縁電極管■を必要長連続して挿入する
。  □°                 111
1)絶縁電極管内に接触測定桿を挿入し管底1で降らし
た後、測定器から電流電極A、B間に特定した定電流を
流し乍ら順次引上げ、各電極位置における発生電位を電
位電極M。
11) Insert the insulated electrode tube (2) continuously into the hole for the required length. □° 111
1) Insert the contact measuring rod into the insulated electrode tube and let it drop at the tube bottom 1, then raise it sequentially while passing a specified constant current between current electrodes A and B from the measuring device, and measure the generated potential at each electrode position M.

N間の電位差として測定してゆき、これを当初の測定値
(表示には測定電位V値、v/I−R値。
This is measured as the potential difference between N and this is the initial measured value (displayed as measured potential V value, v/I-R value).

またFOP−4xa・−値を適当に選定)とする。In addition, the FOP-4xa.- value is appropriately selected).

iv)  上記111)の測定を特定経過時間ごと(例
えば5分間隔)に数回繰りかえし、電解物質溶解孔内水
の地下水流入・流動による置換稀釈に基く比抵抗の変化
を計測する。
iv) The above measurement in 111) is repeated several times at specific elapsed time intervals (for example, every 5 minutes) to measure the change in resistivity based on displacement dilution caused by groundwater inflow/flow of water in the electrolyte dissolution hole.

■)以上の測定結果を図面表示し、比抵抗値の経時的増
大箇所とその変化量から、地下水の流動域、流動状態を
解析する。
■) Display the above measurement results on a diagram, and analyze the flow area and flow state of groundwater from the locations where the resistivity value increases over time and the amount of change.

なお、孔外が深い場合の測定では絶縁電極管内に電解゛
物質を溶解させない比抵抗の高い水を注水し、管の浮き
上がりや孔内水の浸入を防止する方法をとるが、測定上
は何等の不都合は無い。
In addition, in measurements when the outside of the hole is deep, water with high resistivity that does not dissolve electrolyte substances is poured into the insulated electrode tube to prevent the tube from floating and water from entering the hole, but this does not affect the measurement. There is no inconvenience.

第3図は、本発明の検層方法により、沖積層の粘土・砂
層互層域における地下水流動を追跡した実施例であり、
電解物質(食塩)溶解孔内水の比抵抗値の経時的変化・
増大から、砂層内の地下水流動状態は容易に判定するこ
とが出来る。
FIG. 3 is an example of tracking groundwater flow in an alternating clay/sand layer area of an alluvial layer using the well logging method of the present invention.
Changes over time in the specific resistance of electrolyte (salt) dissolving water in the pores
From the increase, the groundwater flow state within the sand layer can be easily determined.

(2)  誘導電磁法による検層方法 誘導電磁法は電磁誘導の原理を利用して地層の導電率ま
たは比抵抗値を測定するものであり、孔内の検層法とし
ても利用されている。
(2) Well logging method using the induced electromagnetic method The induced electromagnetic method uses the principle of electromagnetic induction to measure the conductivity or specific resistance value of a stratum, and is also used as an in-hole logging method.

その測定原理は、発信コイルに一定の高周波交流電流を
流し周囲の導電性地層を励磁すると地層中に渦流を生じ
所謂グランドルーフを形成するが、これがさらに二次磁
界を作り相互誘導によって受信コイルに周囲の地層の導
電率に比例した電圧を誘起するので、その電圧の変化か
ら地層構成や状態を検層するものであめ。この場合、受
信コイルには、地層の導電率に比例した抵抗成分と90
’の位相差をもつ誘導性成分が合成電圧として検出され
ているため、通常、位相弁別回路により誘導性成分は除
去されるように考慮されている。
The measurement principle is that when a constant high-frequency alternating current is passed through the transmitter coil and the surrounding conductive strata are excited, vortices are created in the stratum and a so-called ground roof is formed, which in turn creates a secondary magnetic field that is directed to the receiver coil by mutual induction. It induces a voltage that is proportional to the electrical conductivity of the surrounding strata, so the structure and condition of the strata can be logged from changes in that voltage. In this case, the receiving coil has a resistance component proportional to the conductivity of the stratum and a resistance component of 90%.
Since an inductive component having a phase difference of ' is detected as a composite voltage, the inductive component is usually removed by a phase discrimination circuit.

この誘導電磁法によって測定される見掛けの導電率σa
は次式で示される。
Apparent conductivity σa measured by this induction electromagnetic method
is expressed by the following equation.

σa−aWIIFW十01+FI十anllFn十σe
’Feたたし Fw+Fl +Fn+Fs−1ここで1
 σW、σ1.σn、J孔内泥水、泥水浸入孔内泥水液
泥水浸入領域電率で、Fw、Fl、Fa。
σa−aWIIFW101+FI10anllFn10σe
'Fe count Fw+Fl +Fn+Fs-1 here 1
σW, σ1. σn, J hole mud water, mud water infiltration hole mud water liquid mud water intrusion area electric rate, Fw, Fl, Fa.

Feiそれぞれの幾何学的係数である。Fei is a geometric coefficient of each.

通常の誘導電磁性検層では2つの主要コイル以外に補助
コイルを使用し、泥水柱の影響や隣接層の影響が最小と
なるように設計されており、測定値は孔内水・泥水およ
び泥水浸入領域の影響を受けない地層の真の導電率を対
象として求められることに特徴がある。
Normal induction electromagnetic logging uses an auxiliary coil in addition to the two main coils, and is designed to minimize the influence of muddy water columns and adjacent layers, and the measured values are based on borehole water, muddy water, and muddy water. It is unique in that it targets the true conductivity of the strata, which is not affected by the infiltrated area.

本発明の場合は、上記の特徴とは逆に孔内水それ自体の
導電率σWを主体に測定するものであり、従って検層ゾ
ンデにおける発信コイル、受信コイル間隔を小さく選定
(例えば3〜5CjI)シ、かつ発信コイル励起周波数
を高周波域(例えば100100KHz−I )’に選
択設定するなどの機器上の設計は当然必要なことであり
、lた、孔内水の導電率を測定することから、検層ゾン
デおよびこれに連結するケーブルの移動による孔内水の
攪拌を防止する対策を考慮しなければならない。そこで
、本発明では、上記の条件に適合するよう設計された機
器を使用(7、孔外中拓電解物質溶解孔内水と管内を隔
絶状態とした絶縁性ガイド管を入れ、この管内に検層ゾ
ンデを挿入移動して管外孔内水を乱すことなくその導電
率の地下水流入・流動による経時的な変化減少状態を測
定出来るようにしている。
In the case of the present invention, contrary to the above-mentioned characteristics, the conductivity σW of the borehole water itself is mainly measured. ), and equipment design such as selecting and setting the transmitter coil excitation frequency to a high frequency range (for example, 100,100 KHz-I) is necessary. Measures must be taken to prevent agitation of water in the borehole due to movement of the logging sonde and the cables connected to it. Therefore, in the present invention, equipment designed to meet the above conditions is used (7. An insulating guide tube is placed in which the inside of the tube is isolated from the water inside the hole where the electrolyte is dissolved outside the hole, and the inside of the tube is isolated from the inside of the tube. By inserting and moving a layer sonde, it is possible to measure changes and decreases in electrical conductivity over time due to the inflow and flow of groundwater without disturbing the water inside the borehole outside the pipe.

これを図について説明すると次の様である。This can be explained with reference to the diagram as follows.

第4図中、■は掘さくされた孔外で、■は電解物質、例
えば食塩などを溶解させ電気比抵抗をバックグラウンド
のl/10〜1/20.’Eたはそれ以下に低下させ導
電性を与えた孔内水を、(4)は滞水層■から孔内へ流
入し流出する地下水を模式的に示す。
In Fig. 4, ■ indicates the area outside the drilled hole, and ■ indicates the electrical resistivity obtained by dissolving an electrolytic substance, such as salt, to 1/10 to 1/20 of the background. (4) schematically shows the underground water that flows into and out of the hole from the aqueous layer (2).

拶は、電解物質溶解孔内水と管内を隔絶する     
λ・塩ビ製などの遮水中空絶縁管で、検層ゾンデ0のガ
イドの役目を果すものであり、その表面には、被圧地下
水の孔内流人による孔内水の上・下流動を極力抑制・防
止E7て地下水の水平方向流動を的確に把握するための
ゴム製などによるヒレ秋田板形パッカー・を適当な間隔
で配列装着させる。
Separates the inside of the pipe from the water inside the electrolyte dissolution hole.
This is a submersible hollow insulated pipe made of λ/PVC, etc., which serves as a guide for the logging sonde 0, and its surface has a surface that prevents the upward and downward flow of pressurized groundwater into the borehole. Suppression and prevention E7: In order to accurately grasp the horizontal flow of underground water, fin Akita plate-shaped packers made of rubber or the like are arranged and installed at appropriate intervals.

♀Φは検層ゾンデであり、内部に発信器@と発信コイル
に)および、これと適当に離れた受信コイル[相]と前
置増巾器@を装備している。
♀Φ is a well logging sonde, which is equipped with a transmitter @ and a transmitting coil), a receiving coil [phase] and a preamplifier @ appropriately separated from this.

[株]はシールドされた信号取出しケーブルで、地表の
測定器[株]・に連結される。このIII定器には増巾
回路、位相弁別回路などの必要な電気回路が組み込1れ
ておシ、測定された導電率(または比抵抗表示)の値は
記録器@に記録されるようになっている。なお、[株]
は電源である。
It is connected to a measuring device on the ground using a shielded signal extraction cable. This III regulator is equipped with necessary electric circuits such as an amplification circuit and a phase discrimination circuit, and the measured conductivity (or specific resistance display) value is recorded on the recorder@. It has become. In addition, [stock]
is the power supply.

以上の構成における本発明の検層方法は次のように行う
The well logging method of the present invention with the above configuration is performed as follows.

I)孔内水中に食塩などの電解物質を投入攪拌して溶解
濾せ、その電気比抵抗値をパックグラウンドのl/10
〜1/2o、またはそれ以下に低下させ導電性を附与す
る。
I) Electrolytic substances such as common salt are poured into the borehole water, stirred, dissolved and filtered, and the electrical resistivity value is 1/10 of the pack ground.
- 1/2o or less to impart conductivity.

11)孔外内に検層ゾンデのガイドとなるヒレ秋田板形
パッカー装着の絶縁管[相]を挿入する。
11) Insert an insulated tube [phase] equipped with a fin Akita plate packer to serve as a guide for the logging sonde into the outside of the hole.

111)絶縁管内部に検層ゾンデ[相]を挿入して管底
1で降ろした後、電源斡、測定器[株]:により給電し
、発信器すな動作させて、発信コイル中から所定励起周
波数の電磁波を出し、孔内水および地層中に発生させた
渦流によるグランドループ[相]の作る二次磁界に基く
周辺孔内水の導電率に比例した電圧を受信コイル[相]
内に誘起させ、前置増巾器[相]で増巾後、地表の測定
器で測定し記録しながら検層ゾンデを孔口1で引き揚げ
、これを当初の測定値とする。
111) After inserting the logging sonde [phase] inside the insulated tube and lowering it at the tube bottom 1, power is supplied from the power supply box and the measuring instrument [Co., Ltd.], the transmitter is operated, and a predetermined signal is emitted from the inside of the transmitting coil. An electromagnetic wave with an excitation frequency is emitted, and a voltage proportional to the conductivity of the surrounding water in the borehole is sent to the receiving coil [phase] based on the secondary magnetic field created by the ground loop [phase] caused by the eddy current generated in the borehole water and the stratum.
After amplification with a preamplifier [phase], the logging sonde is pulled up at hole 1 while measuring and recording with a measuring device on the ground surface, and this is taken as the initial measurement value.

+v)  上記11:)の測定操作を特定経過時間ごと
(例えば5分間隔)に数回繰りかえし、電解物質溶解孔
内水の地下水流入・流動による置換稀釈に基く導電率(
または比抵抗値)の変化を計測する。
+v) The measurement operation in 11:) above is repeated several times at specific elapsed time intervals (for example, every 5 minutes), and the conductivity (
or specific resistance value).

■) 以上の測定結果を図面表示し、導電率の経時的低
減域(または、比抵抗値の経時的増大域)とその変化量
から、地下水の流動域、流動状態を解析する。
■) Display the above measurement results in a diagram, and analyze the flow area and flow state of groundwater from the area where the electrical conductivity decreases over time (or the area where the resistivity value increases over time) and the amount of change.

なお、孔外が深い場合の測定では、孔外内に挿入する絶
縁管内に電解物質を溶解させない比抵抗の高い水を注水
し、管の浮き上がりや孔内水の浸入を防止する方法をと
るが、測定上は何等の不都合は無い。
In addition, for measurements when the outside of the hole is deep, water with high resistivity that does not dissolve electrolytes is poured into the insulated tube inserted outside the hole to prevent the tube from floating and water from entering the hole. , there is no problem in measurement.

第5図は、本発明の検層方法によシ、亀裂の発達した風
化安山岩中の地下水流動を探査した実施例であり、測定
値は見易くするため、導電率の逆数の比抵抗値を指標と
して8.I単位で表現している。図から判るように地下
水の流動域や流動状態は詳細に容易に判断することが出
来る。
Figure 5 shows an example in which groundwater flow in weathered andesite with developed cracks was investigated using the logging method of the present invention.In order to make the measured values easier to see, the specific resistance value, which is the reciprocal of the electrical conductivity, is used as an indicator. As8. It is expressed in units of I. As can be seen from the figure, the flow area and flow state of groundwater can be easily determined in detail.

【図面の簡単な説明】[Brief explanation of the drawing]

(1)  第1図は本発明の比抵抗法による検層方法に
ついて、各部構成と操作状況を示し、第2図は電極部と
接触子の断面詳細を示す。第3図は本発明の検層方法に
よる実施結果の1例である。 (2)  第4図は本発明の誘導電磁法による検層方法
について、各部構成と操作状況を示し、第5図は実施結
果の1例を示す。 以上 特許出願人 明治コンサルタント株式会社 社長 山  口  敏  雄 、寡3vA 、1、第5図
(1) Fig. 1 shows the configuration of each part and operating conditions regarding the well logging method using the resistivity method of the present invention, and Fig. 2 shows details of the cross section of the electrode part and the contact. FIG. 3 shows an example of the results obtained using the well logging method of the present invention. (2) Fig. 4 shows the configuration of each part and operation status of the well logging method using the induction electromagnetic method of the present invention, and Fig. 5 shows an example of the implementation results. Patent applicant: Toshio Yamaguchi, President of Meiji Consultant Co., Ltd., 3vA, 1, Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1) 電解物質を溶解させて電気比抵抗を低下させた
孔内水と管内とを隔絶きせる塩ビ製などの絶縁管に適当
な測定間隔で管の内・外を貫通させたネヂ状などの電極
を円周上や縦方向に多数配列I2て絶縁電極管とし、こ
の管の外面に孔内水の上・下流動を抑制するためのヒレ
状を板形・ζツカ−などを適当な間隔で多数装着して、
これを孔井内に連結挿入し、この管内に電極と複数個ず
つ同時に接触しながら自由に移動する接触測定枠を内挿
して、特定時間ごとりこ連続的に移動し、これによって
地層内からの局処的地下水の流入・流動による電解物質
溶解孔内水の経時的置換稀釈に基〈比抵抗値の変化・増
大を、孔内水の流れを乱すことなく測定し、その結果か
ら地下水の流動域・流動状態を検知する検層方法。
(1) An insulated tube made of PVC or other material is used to separate the inside of the tube from the water in the hole in which an electrolytic substance has been dissolved to lower the electrical resistivity. A large number of electrodes are arranged circumferentially or vertically to form an insulated electrode tube, and plate-shaped fins, ζ-shaped fins, etc. are placed at appropriate intervals on the outer surface of this tube to suppress the upward and downward flow of water in the hole. Attach a large number of
This is connected and inserted into a wellbore, and a contact measurement frame that moves freely while simultaneously contacting multiple electrodes is inserted into this tube, and moves continuously at a specific time, thereby detecting localized areas from within the stratum. Changes and increases in resistivity are measured without disturbing the flow of water in the borehole based on the time-dependent displacement and dilution of electrolyte dissolution water in the borehole due to the inflow and flow of groundwater, and the results are used to determine the flow area of groundwater. - Logging method to detect flow conditions.
(2)  電解物質を溶解させて電気比抵抗を低減し導
電率を増大させた孔内水と管内とを隔絶させる塩ビ製な
どの絶縁管の外面に、孔内水の上・下流動を抑制するた
めのヒレ秋田板形パフカーなどを適当な間隔で多数配列
装着し、これを孔井内に連結挿入し、この絶縁管内に高
周波発信コイルと受信コイルを装備する誘導電磁検層ゾ
ンデを内挿して、特定時間ごとに連続的に移動し、地層
内からの局処的地下水の流入・流動による電解物質溶解
孔内水の経時的置換稀釈に基く電導率の変化減少状態を
、孔内水の流れを乱すことなく測定することによって、
地下水の流動域・流動状態を検知する検層方法。
(2) The outer surface of an insulated pipe made of PVC or other material is used to isolate the inside of the pipe from the water inside the pipe, which has an electrolyte dissolved therein to reduce the electrical resistivity and increase the electrical conductivity, to suppress the upward and downward flow of the water inside the hole. A large number of fin and Akita board-shaped puff cars, etc., are arranged at appropriate intervals and inserted into the borehole, and an induction electromagnetic logging sonde equipped with a high-frequency transmitting coil and a receiving coil is inserted into this insulated tube. , the flow of water in the borehole continuously moves at specific time intervals, and describes the state of decrease in conductivity due to the replacement and dilution of electrolyte dissolving water in the borehole over time due to the inflow and flow of local groundwater from within the formation. By measuring without disturbing the
A logging method for detecting groundwater flow areas and flow conditions.
JP57082432A 1982-05-18 1982-05-18 Bed-detecting method for detecting area and state of flow of underground water Pending JPS58200188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082432A JPS58200188A (en) 1982-05-18 1982-05-18 Bed-detecting method for detecting area and state of flow of underground water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082432A JPS58200188A (en) 1982-05-18 1982-05-18 Bed-detecting method for detecting area and state of flow of underground water

Publications (1)

Publication Number Publication Date
JPS58200188A true JPS58200188A (en) 1983-11-21

Family

ID=13774394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082432A Pending JPS58200188A (en) 1982-05-18 1982-05-18 Bed-detecting method for detecting area and state of flow of underground water

Country Status (1)

Country Link
JP (1) JPS58200188A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931905A (en) * 1972-07-28 1974-03-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931905A (en) * 1972-07-28 1974-03-23

Similar Documents

Publication Publication Date Title
EP0656547B1 (en) Method and appparatus for surveying and monitoring a hydrocarbon reservoir
RU2386810C2 (en) Method and system for exact direction of drilling of double wells
US4372398A (en) Method of determining the location of a deep-well casing by magnetic field sensing
US2459196A (en) Electrical logging method and apparatus
US6534986B2 (en) Permanently emplaced electromagnetic system and method for measuring formation resistivity adjacent to and between wells
US8418782B2 (en) Method and system for precise drilling guidance of twin wells
US20120067644A1 (en) Method and Apparatus for Directional Well Logging
US10088593B2 (en) Impedance analysis for fluid discrimination and monitoring
US5084678A (en) Method and apparatus for determining the direction to a metal-cased well from another well
US10228483B2 (en) Tools for use in observation wells
US2171840A (en) Method for determining the position of cement slurry in a well bore
NO20170855A1 (en) A single wire guidance system for ranging using unbalanced magnetic fields
US1913293A (en) Electrical process for the geological investigation of the porous strata traversed by drill holes
JP3341040B2 (en) Method and apparatus for predicting rapid movement in the crust based on electromagnetic field observation
CA2689815C (en) Method and system for precise drilling guidance of twin wells
US2842735A (en) Apparatus for electrical logging
JP3048415B2 (en) Crust fracture detection system
JPS58200188A (en) Bed-detecting method for detecting area and state of flow of underground water
US2251900A (en) Well surveying
CA1174276A (en) Method of determining the location of a deep-well casing by magnetic field sensing
RU2736446C2 (en) Method for electrical monitoring of reservoir-collector characteristics during development of oil deposits using steam pumping
US2281766A (en) Logging of permeable formations traversed by wells
EA005902B1 (en) Process of electric logging of cased well
US2401371A (en) Electrical prospecting method and apparatus
GB2114752A (en) Method of determining the location of a deep-well casing by magnetic field sensing