JPS58200103A - Optical interference type length measuring device - Google Patents

Optical interference type length measuring device

Info

Publication number
JPS58200103A
JPS58200103A JP8284082A JP8284082A JPS58200103A JP S58200103 A JPS58200103 A JP S58200103A JP 8284082 A JP8284082 A JP 8284082A JP 8284082 A JP8284082 A JP 8284082A JP S58200103 A JPS58200103 A JP S58200103A
Authority
JP
Japan
Prior art keywords
light
output
phase
comparator
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8284082A
Other languages
Japanese (ja)
Inventor
Masanobu Yamamoto
山本 真伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP8284082A priority Critical patent/JPS58200103A/en
Publication of JPS58200103A publication Critical patent/JPS58200103A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To improve resolution readily, by multiplying the output of a light detector, comparing the phase of the output of the light detector and the phase of a reference frequency signal, and applying a constant speed servo action to a driving means of a material to be measured. CONSTITUTION:Laser light from a light source 8 becomes interference light L3 of light L1, which is reflected by a reference reflector 10 through a collimator lens 9, and light L2, which is reflected by a reflector 7. The intereference light L3 is inputted in a light detector 11. Its oputput is inputted in a comparator 13 through a preamplifier 12. The phase of its output rectangular waveform is compared with the phase of a reference signal from a reference frequency generating circuit 24 in a comparator 23. By its output, a constant servo action is applied to a moving stage 6 through a phase compensation circuit 25. Meanwhile, the output signal of a comparator 13 is multiplied by PLL, and the pulse output is inputted in a gate circuit 15 through a pulse generator 14. The reflected light from a ferrite block 3 is detected by the detector 3. A gate circuit 15 is opened through a comparator 20. The pulses are counted, and the width of a lap surface 5 is measured at high resolution.

Description

【発明の詳細な説明】 本発明はマイケルノン干渉計を用いた光干渉式副長装置
の改良に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of an optical interference sub-head device using a Michelnon interferometer.

従来、VTRの回転磁気ヘッド(ヘッドチップ)を製造
する場合に1マイケルノン干渉針を用いた光干渉式副長
装置が使用される。鮪1図はその回転磁気ヘッドな示し
、これはフェライトにて作られている。 (la)は磁
気ヘッド(1)のテープ対接面である。この磁気ヘッド
(1)はヘッド牛体(IA)、(IB)を貼り合ぜて構
成したものであって、その接合部は括れ、テープ対m面
C1a) K於いてギャップgが形成され、括れ部分に
は機械的補強の為にガラス(2)が充填されている。
Conventionally, when manufacturing a rotating magnetic head (head chip) for a VTR, an optical interference sub-head device using a 1-Michael non-interference needle is used. Figure 1 shows the rotating magnetic head, which is made of ferrite. (la) is the tape contacting surface of the magnetic head (1). This magnetic head (1) is constructed by bonding head bodies (IA) and (IB), and the joint is constricted, and a gap g is formed at the tape-to-m surface C1a). The narrow part is filled with glass (2) for mechanical reinforcement.

かかる磁気ヘッドを刺違するKは、#I2図に示す如く
、−面に、断@U字皺の# (4)が多数平行に形成さ
れると共に、その溝(4)関に細長のシップ面(5)が
形成されたフエライトプ四ツク(3)を1対設け、これ
らをその各ラップ面(5)が輪金するように接着剤を用
いて貼り合せ、第3図の一点鯖繍に示す如く切り離し、
次いで括れ@<ガラスを充填して、多数の回転磁気ヘッ
ドを得るようにしている。
As shown in Fig. #I2, the K used to pierce such a magnetic head has many # (4) cross sections @U-shaped wrinkles formed in parallel on the negative surface, and an elongated ship at the groove (4). A pair of ferrite strips (3) with surfaces (5) formed thereon are provided, and these are pasted together using adhesive so that each lap surface (5) forms a ring, creating the one-point mackerel embroidery shown in Figure 3. Separate as shown,
The tube is then filled with glass to obtain a large number of rotating magnetic heads.

このフェライトブロック(3)のラップ面部(5)の幅
dは、最近の回転磁気ヘッドの磁気!2!隙のトラッり
幅が狭くなったことから、%KAi精度に形成されるこ
とが必要で、これは溝(4)の加工精度によって決まる
ことになる。この為、製造時においてこのラップ面(5
)の幅dを正確に測長する必要がある。
The width d of the lapped surface portion (5) of this ferrite block (3) is determined by the magnetic field of recent rotating magnetic heads! 2! Since the track width of the gap has become narrower, it is necessary to form the gap with an accuracy of %KAi, which is determined by the processing accuracy of the groove (4). For this reason, this lap surface (5
) must be accurately measured.

そこで、先に本出願人が提案した、フェライトブロック
(3)のラップ面(5)の幅を測長する元干渉式側長装
置の一例を第4図を参照して説明する。(6)は移動ス
テージであって、その上に上述したフェライトブロック
(3)が被側定物体として載置されている。この移動ス
テージ(6)はブロック(3)の溝(4)と直交する方
向に移動するものとする。この移動ステージ(6)上に
は互いに直交する反射面(7a) 、 (7b)を有す
るリフレクタ(7)が取り付けられている。(8)は光
源であって、本例では例えばヘリウム・ネオンレーザf
t、源である。この光源(8)よりのレーザ光はコリメ
ーターレンズ(9)を介して基準リフレクタ翰′1: に入射せしめられる。基準リフレクタαQは、コリメー
ターレンズ(9)よりの光Loの方向に対し45度の角
度をなす−・−フミラー面(lon)と、この−・−フ
きラー面(10a)と夫々平行及び直交する反射面(1
0b) 、 (10c)を有するプリズムである。また
、リフレクタ(刀の反射面(7a)はノ・−フ2ツー面
(10m)と平行である。基準リフレクタα・に入射し
た党り。
Therefore, an example of an interferometric side length device previously proposed by the present applicant for measuring the width of the lap surface (5) of a ferrite block (3) will be explained with reference to FIG. (6) is a moving stage, on which the above-mentioned ferrite block (3) is placed as a fixed object. It is assumed that this moving stage (6) moves in a direction perpendicular to the groove (4) of the block (3). A reflector (7) having reflective surfaces (7a) and (7b) orthogonal to each other is mounted on the moving stage (6). (8) is a light source, and in this example, for example, a helium neon laser f
t, source. The laser beam from this light source (8) is made incident on the reference reflector ′1: via the collimator lens (9). The reference reflector αQ is parallel to the mirror surface (lon), which forms an angle of 45 degrees with respect to the direction of the light Lo from the collimator lens (9), and the mirror surface (10a), respectively. Orthogonal reflective surfaces (1
0b) and (10c). Also, the reflective surface (7a) of the reflector (sword) is parallel to the no-fu 2-2 surface (10 m).

の一部の光L1はノ・−フミラー面(10a)−反射面
(10b)−反射面(IOC)で反射を重ねた後光検出
器αBに入射する。また、元Loの他の一部の党L2は
ハーフ建う−面(10a)を通過し、リフレクタ(7)
の反射面C7m>、 C7b)−基準リフレクタ顛の−
・−7ミラ一面(10m)で反射を重ねた後光検出器(
1m)K入射する。そしてこれら党L1. Ltは互い
に干渉して、干渉jtLsとして光検出器tAIK入射
する。
A part of the light L1 is reflected by the nof mirror surface (10a), the reflective surface (10b), and the reflective surface (IOC), and then enters the photodetector αB. In addition, some other party L2 of the former Lo passed through the half-built surface (10a) and reflected at the reflector (7).
Reflecting surface C7m>, C7b) -Reference reflector frame-
・A photodetector that overlaps reflections on one side of -7 mirror (10m) (
1m) K is incident. And these party L1. Lt interfere with each other and enter the photodetector tAIK as interference jtLs.

光検出器叡υからは干渉jtLsの入射に基づいて第5
図λに示す如き正弦波の検出出力が発生する。
From the photodetector 叡υ, the fifth
A sine wave detection output as shown in FIG. λ is generated.

その光強度Iは次式の如く表わせる。The light intensity I can be expressed as shown in the following equation.

I −Io(1+α(2)(two、’λ))但し、I
oは初期値、αは変調度を決める係数、Dは移動ステー
ジ(6)の移動距離である。この場合コ レーザ光fll(8)よりの元の波長をλとすると、こ
のλ 検出出力の周期は−となる。この光検出器aυよりの検
出出力はプリアンプQ3を介してコンパレータαJに供
給されることにより、波形整形されて第5図BK示す如
き矩形波が得られる。この矩形波がパルス発生器α髪に
供給されることにより、これより第5図(4示す如く、
矩形波の立上り及び立下りに対応し、周期がλ/4のパ
ルス出方が帰うレ、これがゲート回路o9に供給される
I −Io(1+α(2)(two,'λ)) However, I
o is an initial value, α is a coefficient that determines the degree of modulation, and D is a moving distance of the moving stage (6). In this case, if the original wavelength of the colaser light fll(8) is λ, the period of this λ detection output is -. The detection output from the photodetector aυ is supplied to the comparator αJ via the preamplifier Q3, whereby the waveform is shaped and a rectangular wave as shown in FIG. 5BK is obtained. By supplying this rectangular wave to the pulse generator α, as shown in FIG.
When a pulse with a period of λ/4 corresponding to the rise and fall of the rectangular wave is output, this is supplied to the gate circuit o9.

他方光学式位置検出装置αDが設けられ、これの例えば
ヘリウム・ネオンレーザ光源よりの元が対物レンズQ8
を介してフェライトブロック(3)の表面、%にそのラ
ップ面(5)上に1〜2声mli度のスポット径を以つ
【焦点を結ぶようKM射せしめられ、その反射光が対物
レンズQlを介して光学式位置検出装置aηの光検出器
に戻り、ラップ面(5)に対応した位置検出出力を発生
する。その反射光に対する検出出力はラップ面(5)に
おいてレベルが大であり、1111(4) においてレ
ベルが少である。かくして、光学式位置検出装置07)
から、第ε図AK示す如き位置検出出力が得られ、これ
がプリアンプa9を介してコンパレータ(1)に供給さ
れて波形成形されることにより、第6図Bに示す如き矩
形波が得られる。
On the other hand, an optical position detection device αD is provided, and the source of this, for example, from a helium/neon laser light source is an objective lens Q8.
The surface of the ferrite block (3) is irradiated with a spot diameter of 1 to 2 mli degrees on the surface of the ferrite block (3) and its lapped surface (5). is returned to the photodetector of the optical position detection device aη, and generates a position detection output corresponding to the lap surface (5). The detection output for the reflected light has a high level at the wrap surface (5) and a low level at 1111 (4). Thus, the optical position detection device 07)
From this, a position detection output as shown in FIG. εAK is obtained, which is supplied to the comparator (1) via the preamplifier a9 and is waveform-shaped, thereby obtaining a rectangular wave as shown in FIG. 6B.

そして、矩形波が上述のゲート回路a9に供給されて、
第5図C及び第6図Cの周期がλ/4のパルスをゲート
する。かくすることKより、出力端子aeには第5図C
及びaS図Cic示す如きゲート出力が得られる。そし
て、このゲート回路05によってゲートされたパルスの
数を計数するととによりフェライトブロック(3)のラ
ップ面(5)の幅が測長される。
Then, the rectangular wave is supplied to the above-mentioned gate circuit a9,
The pulses shown in FIGS. 5C and 6C are gated with a period of λ/4. Thus, from K, the output terminal ae is shown as C in FIG.
And a gate output as shown in the aS diagram Cic is obtained. Then, by counting the number of pulses gated by this gate circuit 05, the width of the lap surface (5) of the ferrite block (3) is measured.

さて、かかる元干渉式霧長装置の最小分解能はパルス発
生器04よりの周期がλ/4のパルスのカウント誤差で
決り、従つ【その精度は士λ/4となる。光III(8
1としてヘリウム・ネオンレーザ光源を用いた場合、λ
/4は0.15μmFC相当する。ところで冒1iiK
述べたように、最近のVTRの回転磁気ヘッドの磁気空
隙のトラック幅は頗る小さくなり、量i11に際し加工
精度の一層の向上が必要であることから、0.1b声m
Ii度の分解能では不十分となった。
Now, the minimum resolution of such an original interferometric fog length device is determined by the counting error of the pulses whose period is λ/4 from the pulse generator 04, and therefore the accuracy is λ/4. Light III (8
When using a helium-neon laser light source as 1, λ
/4 corresponds to 0.15 μmFC. By the way, 1iiK
As mentioned above, the track width of the magnetic gap in the rotating magnetic head of recent VTRs has become significantly smaller, and it is necessary to further improve the processing precision when it comes to the amount i11.
A resolution of Ii degrees was insufficient.

この分解能を向上させる手段としては、jt+1(81
よりの元をリフレフ!(7)に何度も往復反射させて実
質的に光路長を増大せしめることが考えられるが、光学
系の光路長が長くなると、光#(レーザ光源)としては
発生元の波長の高安定なものを使用しなければならず、
また、各光学要素の配置も一層高精度が要求されるなど
の欠点がある。
As a means to improve this resolution, jt+1(81
Riffref the original source! (7) can be reflected back and forth many times to substantially increase the optical path length, but as the optical path length of the optical system becomes longer, the light # (laser light source) has a highly stable wavelength of the source. have to use something,
Further, there is a drawback that even higher precision is required for the arrangement of each optical element.

かかる点に鑑み本発明は分解能を容易に向上させること
のできる元干渉式醐長装置を提案せんとするものである
In view of this point, the present invention proposes an interferometric type device that can easily improve the resolution.

本発明による光干渉式測長装置は、非掬定物体と一体的
に移動するりフレフタと、波長λの元を発生する九樺よ
りの参照光とそのリフレクタよりの反射光との干渉光を
検出する検出器と、この光検出器よりの検出出力が供給
されて周期がλ/4のパルス出力を発生するパルス発生
器とを有し、このパルス発生器よりのパルス出力を計数
することKより、被測定物体を濁長するようにした元干
渉式側長装置において、光検出器の検出出力またはパル
ス発生器よりのパルス出力な逓倍する逓倍器と、光検出
器よりの検出出力と基準周波数信号とを位相比較して被
測定物体を駆動する駆動手段に定速サーボをかけるす−
ボ回路とを設けて成るものである。
The optical interferometric length measuring device according to the present invention uses a reflector that moves integrally with a non-scooping object, and an interference light between a reference light from a nine birch tree that generates a source of wavelength λ and a reflected light from the reflector. K includes a detector for detection and a pulse generator that is supplied with the detection output from the photodetector and generates a pulse output with a period of λ/4, and counts the pulse output from the pulse generator. In the original interferometric side length measuring device designed to elongate the object to be measured, there is a multiplier that multiplies the detection output of the photodetector or the pulse output from the pulse generator, and the detection output from the photodetector and the standard. A constant speed servo is applied to the drive means that drives the object to be measured by comparing the phase with the frequency signal.
This is provided with a bot circuit.

次に第7図を参照して本発明の一実施例を!明するも、
上述の第4図と対応する部分には同一符号を付して重複
説明を省略して、第7図に於−1て第4図と異なる部分
のみを説明する。コンノ(レータ03とパルス発生器a
4との間に逓倍器としてのPLL 囚を挿入する。この
PLL Q2Jは)(ルス発生器Iとゲート回路a5と
の間に挿入してもよ(・、このPLL(2)の逓倍率は
2,3.4.・・・・・(ある−1は2,4゜8、・・
・・・)と任意の値を取り得、その価を導圧することに
よりそれだけ分解能が向上する。
Next, an embodiment of the present invention will be explained with reference to FIG. 7! Although it is clear,
Components corresponding to those in FIG. 4 described above are given the same reference numerals, redundant explanation will be omitted, and only the portions different from FIG. 4 will be explained with reference to FIG. 7. Conno (rater 03 and pulse generator a)
Insert a PLL capacitor as a multiplier between 4 and 4. This PLL Q2J may be inserted between the pulse generator I and the gate circuit a5 (・, the multiplication rate of this PLL (2) is 2, 3.4, etc. (is -1 is 2.4°8,...
...) can take any value, and by introducing that value, the resolution improves accordingly.

(3)は光検出器αυよりの検出出力と基準周波数信号
発生器(2)よりの基準jIH数信号(移動ステージ(
6)の送り速度によってその劉妓数を決める)とを位相
比較して、被測定物体を駆動する駆動手段Qυに定速サ
ーボをかけるサーボ回路である。即ち、コンパレータ峙
の出力と基準周波数信号発生回路Q41よりの基準信号
とを位相比較器(ハ)Kて比較し、その比較出力を位相
補償回路(ハ)を介して駆動アンプ(ハ)K供給し、そ
の駆動アンプ(ホ)の出力を駆動手段0IJK供給する
ものである。この駆動手段Q11としては不感部の無い
リニアモータな用い、摩擦の無い静圧空気軸受を使用す
るを可とする。移動ステージ(6)の移動速度は例えば
5〜lQmm/l1alCである。
(3) is the detection output from the photodetector αυ and the reference jIH number signal from the reference frequency signal generator (2) (moving stage (
This is a servo circuit that compares the phase of the measuring object (6) with the feeding speed (determining the Liu's number) and applies constant speed servo to the driving means Qυ that drives the object to be measured. That is, the output of the comparator and the reference signal from the reference frequency signal generation circuit Q41 are compared by the phase comparator (C) K, and the comparison output is supplied to the drive amplifier (C) K via the phase compensation circuit (C). The output of the drive amplifier (E) is supplied to the drive means 0IJK. As this driving means Q11, a linear motor without a dead section or a static pressure air bearing without friction can be used. The moving speed of the moving stage (6) is, for example, 5 to lQmm/l1alC.

PLLのの逓倍率を例えば8に選べば、分解能は0.0
19871mとなる。
For example, if the PLL multiplication rate is chosen to be 8, the resolution will be 0.0.
It becomes 19871m.

上述せる本発明によれば、容J11に分解能を向上させ
ることのできる光干渉式測長装置を得ることができる。
According to the present invention described above, it is possible to obtain an optical interference type length measuring device that can improve resolution to a level J11.

因みに逓倍回路を設けるがサーボ回路を設けない場合は
、PLL等の逓倍回路のロック範囲に限界がある為、追
従しきれなくなるが本発明によればそのような虞は無い
ものである。
Incidentally, if a multiplier circuit is provided but a servo circuit is not provided, there is a limit to the lock range of the multiplier circuit such as a PLL, so the tracking cannot be completed, but according to the present invention, there is no such possibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光干渉式測長装置を製造時に使用して好
適な回転磁気ヘッドを示す斜視図、第2図はその回転磁
気ヘッドを形成する素材となるフェライトブロックを示
す斜視図、第3図はそのフェライトブロックの側面図、
第4図は本出願人が先に提案した光干渉式副長装置の原
理的装置な示すブロック線図、第5図及び第6図&ま第
4図の装置の説明に共する波形図、第7図は本発明によ
る光干渉式測長装置の一実施例を示すブロック線図であ
る。 (3)は被測定物体、(6)は移動ステージ、(力を1
リフレクタ、(8)は光源、Q(Iは基準リフレクタ、
Ql)+家元検出器、a4はパルス発生器、09はゲー
ト回路、a?)は光学式位置検出装置、なυは駆動手段
、のkt逓倍器としてのPLL%αはサーボ回路である
。 同      松  隈  秀  盛 −′)
FIG. 1 is a perspective view showing a rotating magnetic head suitable for use in manufacturing the optical interferometric length measuring device of the present invention, FIG. 2 is a perspective view showing a ferrite block that is a material forming the rotating magnetic head, and FIG. Figure 3 is a side view of the ferrite block.
FIG. 4 is a block diagram showing the principle of the optical interference type sub-head device previously proposed by the present applicant, a waveform diagram accompanying the explanation of the device in FIGS. 5 and 6, and FIG. FIG. 7 is a block diagram showing an embodiment of the optical interference type length measuring device according to the present invention. (3) is the object to be measured, (6) is the moving stage, (force is 1
reflector, (8) is a light source, Q (I is a reference reflector,
Ql) + head detector, a4 is the pulse generator, 09 is the gate circuit, a? ) is an optical position detection device, υ is a driving means, and PLL% α is a servo circuit as a kt multiplier. Hide Mori Matsukuma)

Claims (1)

【特許請求の範囲】 被測定物体と一体的に移動するリフレクタと、波長λの
元を発生するf源よりの参照元とその上記リフレクタよ
りの反射光との干渉光を検出する光検出器と、該光検出
器よりの検出出力が供給されて周期がλ/4のパルス出
力を発生するパルス発生器とを有し、該パルス発生器よ
りのパルス出力を計数することにより上記被測定物体な
渕長するようにした光干渉式副長装置におい【、上記光
検出器の検出出力または上記パルス発生器よりのパルス
出力な逓倍する逓倍器と、上記光検出器よりの検出出力
と基準周波数信号とを位相比較して上記被測定物体を駆
動する駆動手段に定逼す−〆をかけるサーボ回路とを設
けて成る光干渉式副長装置。
[Scope of Claims] A reflector that moves integrally with the object to be measured, and a photodetector that detects interference light between a reference source from an f source that generates an element of wavelength λ and the reflected light from the reflector. , and a pulse generator that is supplied with the detection output from the photodetector and generates a pulse output with a period of λ/4, and by counting the pulse output from the pulse generator, it is possible to measure the object to be measured by counting the pulse output from the pulse generator. In the optical interference type sub-head device which is configured to have an edge length, a multiplier that multiplies the detection output of the photodetector or the pulse output from the pulse generator, and a multiplier that multiplies the detection output of the photodetector and the reference frequency signal. and a servo circuit that compares the phases of the signals and applies a constant load to a driving means for driving the object to be measured.
JP8284082A 1982-05-17 1982-05-17 Optical interference type length measuring device Pending JPS58200103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8284082A JPS58200103A (en) 1982-05-17 1982-05-17 Optical interference type length measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8284082A JPS58200103A (en) 1982-05-17 1982-05-17 Optical interference type length measuring device

Publications (1)

Publication Number Publication Date
JPS58200103A true JPS58200103A (en) 1983-11-21

Family

ID=13785587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8284082A Pending JPS58200103A (en) 1982-05-17 1982-05-17 Optical interference type length measuring device

Country Status (1)

Country Link
JP (1) JPS58200103A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881443A (en) * 1972-02-01 1973-10-31
JPS50118187A (en) * 1974-03-01 1975-09-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881443A (en) * 1972-02-01 1973-10-31
JPS50118187A (en) * 1974-03-01 1975-09-16

Similar Documents

Publication Publication Date Title
US20200318949A1 (en) Displacement sensor for frequency modulation continuous wave laser interference optical fiber and displacement detection method therefor
JP2755757B2 (en) Measuring method of displacement and angle
US4813782A (en) Method and apparatus for measuring the floating amount of the magnetic head
US20230417532A1 (en) Interferometer displacement measurement system and method
EP0208276B1 (en) Optical measuring device
JPH116719A (en) Interference measuring apparatus
JPH0820235B2 (en) Straightness measuring device
JPH06174844A (en) Laser distance measuring apparatus
JPS58200103A (en) Optical interference type length measuring device
US6269066B1 (en) Electronically translocatable optical stylet
US5101393A (en) Optical position error detection using complementary steep angle reflections/transmissions
JP3332192B2 (en) Measurement method of flying characteristics of magnetic head
US3357238A (en) Surface profile gauge
US4104573A (en) Speed control device for a moving member
JP2001281142A (en) Gas refractometer
Schede Interferometers for use as integral parts of machine tools
RU2498214C1 (en) Device to measure electromagnetic radiation speed space anisotropy
SU1179103A1 (en) Interferometer for distance measurement
RU2281471C1 (en) Reflectometer of multiple reflection based on plane mirrors
JPH0510733A (en) Three-dimensional shape measuring apparatus
JP2591143B2 (en) 3D shape measuring device
SU1730533A1 (en) Device for measuring angular position of an object
RU2047090C1 (en) Device for determination of position and lateral dimension of part
JPS62112235A (en) Position detecting device for objective lens
JP2550872Y2 (en) Sheet material online measuring device