JPS58200086A - Fluidic rotary apparatus - Google Patents

Fluidic rotary apparatus

Info

Publication number
JPS58200086A
JPS58200086A JP8274082A JP8274082A JPS58200086A JP S58200086 A JPS58200086 A JP S58200086A JP 8274082 A JP8274082 A JP 8274082A JP 8274082 A JP8274082 A JP 8274082A JP S58200086 A JPS58200086 A JP S58200086A
Authority
JP
Japan
Prior art keywords
rotation
valve plate
valve
fluid
swinging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8274082A
Other languages
Japanese (ja)
Inventor
Koji Okazawa
岡澤 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP8274082A priority Critical patent/JPS58200086A/en
Publication of JPS58200086A publication Critical patent/JPS58200086A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/14Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B1/141Details or component parts
    • F04B1/146Swash plates; Actuating elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To enable to prevent the rotation of an oscillating valve plate around its own axis that is used in a swash plate type piston pump or the like and driven eccentrically, by attaching a rotation preventing pin to the oscillating valve plate for preventing the rotation of the valve plate around its own axis, and moving and guiding the rotation preventing pin in a cylindrical hole formed in the fixed side of a valve chamber. CONSTITUTION:At least two or more rotation preventing pins 80 are fixed to an oscillating valve plate 62 or to a valve chamber having therein the oscillating valve plate 62, and a cylindrical hole 82 is formed in the fixed side facing the pin 80 or in the oscillating valve plate 62. By moving and guiding the rotation preventing pin 80 in the cylindrical hole 82, the oscillating valve plate 62 is revolved without causing rotation around its own axis.

Description

【発明の詳細な説明】 本発明は、ジェロータ型油圧ポンプ又はジェロータ型油
圧モー゛夕あるいは斜板型ピストンポンプ又は斜板型ピ
ストンモータとして知られた流体回転装置に関し、特に
流体圧力変換部に供給および排出する流体の流路を切換
える流体回転装置の分配弁機構に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fluid rotation devices known as gerotor type hydraulic pumps or gerotor type hydraulic motors or swash plate type piston pumps or swash plate type piston motors, and in particular to fluid rotation devices for supplying fluid pressure converters. The present invention also relates to a distribution valve mechanism for a fluid rotation device that switches the flow path of fluid to be discharged.

従来、この種の流体回転装置、例えばジェロータ型の油
圧ポンプ又は油圧モータを例にとると、流体圧力変換部
として、ステータ部材の内歯に、ステータ内歯より1つ
少ない数の外歯をもつロータ部材を偏心して噛み合せ、
回転駆動軸の回転によるロータ部材の公転によりステー
タ部材との関に順次膨張および収縮を繰り返えす作動小
室群を形成し、この作動小室群との間で流体の供給と排
出を順次行なわせる分配弁機構として、回転駆動軸によ
り偏心駆動されて揺動する弁板を設け、との(よ動弁板
の公転揺動により出力変換部の作動小室群に対する流路
の開閉を行なうようにしているこのような揺動弁板を用
いた分配弁機構−& L、ては、例えば特公昭43−2
1325号のジェロータ型流体回転装置における弁板の
端面に環状弁[J 1に設けたものがある。このように
、弁仮に環状弁口を設けているのは、弁板が回転駆動軸
により偏心駆動されるときに、弁板の摺接摩擦により公
転方向と逆方向に弁板が自転運動を起し、流体圧力変換
部の作動小室群に対応して独立した弁口を設け(いると
、弁板の自転で弁口の位置が変り、流路の切換えがうま
くできなくなることを防止rるためである。
Conventionally, in this type of fluid rotation device, for example, a gerotor type hydraulic pump or hydraulic motor, the stator member has internal teeth as a fluid pressure converting section, and the number of external teeth is one less than that of the stator internal teeth. The rotor members are engaged eccentrically,
A distribution system in which a group of small operating chambers that repeatedly expand and contract in sequence with the stator member is formed by the revolution of the rotor member due to the rotation of the rotary drive shaft, and fluid is sequentially supplied and discharged between the group of small operating chambers. The valve mechanism is provided with a valve plate that is eccentrically driven by a rotary drive shaft and swings, and the flow path for the operating chamber group of the output converter is opened and closed by the revolution and swing of the driven valve plate. A distribution valve mechanism using such a swinging valve plate is, for example,
In the gerotor-type fluid rotation device of No. 1325, an annular valve [J1 is provided on the end face of the valve plate. In this way, the reason why the valve is provided with an annular valve port is that when the valve plate is driven eccentrically by the rotational drive shaft, the valve plate causes rotational movement in the direction opposite to the revolution direction due to the sliding friction of the valve plate. In addition, independent valve ports are provided corresponding to the operating chamber groups of the fluid pressure converter (in order to prevent the position of the valve ports from changing due to the rotation of the valve plate, making it difficult to switch the flow path properly). It is.

ところが、弁板に環状弁口を設けることで自転。However, by providing an annular valve port on the valve plate, it can rotate.

による間−は解決されているが、弁口を独立し−L設け
た場合に比べ、環状弁口は弁室の摺接殻との相対面積が
大きいので、弁体と弁室とのnB U)すさ用すると弁
板の側貢に加わる流体圧によって弁板の動きが悪くなる
という間融があった。
However, compared to the case where the valve port is provided independently, the annular valve port has a larger area relative to the sliding shell of the valve chamber, so the nB U between the valve body and the valve chamber is larger. ) When used in a hurry, there was a problem that the movement of the valve plate became difficult due to the fluid pressure applied to the valve plate side.

そこで、本願発明者等は、特願昭54−124427号
として、揺動弁体の自転を防止することにより、揺動弁
体に独立した弁口を設けるようにしたジェロータ型流体
回転装置を提案し、分配弁機構における液漏れの低減と
、^出城で使用しても弁板の勧きが急化しないようにし
ている。
Therefore, the inventors of the present application proposed a gerotor-type fluid rotation device in which an independent valve port is provided in the swinging valve body by preventing the swinging valve body from rotating. However, it reduces liquid leakage in the distributing valve mechanism and prevents the valve plate from becoming loose even when used in a castle.

ところが、上記の装置における揺動弁板の自転防止構造
Fi、弁板の外周に複数の外歯を形成すると共に、弁板
の傷IEI+旋回による外歯の包絡線群でなる内rit
tm室ステータの内周に形成した構造でおり、弁板の外
周に形成する外11!l′Jdよび外歯に相対して形成
する弁室ステータの内歯の形状が複雑、1 であるため、製造段階における機械加工が煩雑で噛合精
度を充分に得ることが困離であり、コスト的KA価にな
るという問題点かあった。
However, in the rotation prevention structure Fi of the swinging valve plate in the above device, a plurality of external teeth are formed on the outer periphery of the valve plate, and an inner rit consisting of the damage IEI of the valve plate + the envelope group of the external teeth due to the rotation.
The structure is formed on the inner periphery of the tm chamber stator, and the outer 11 is formed on the outer periphery of the valve plate. Because the shape of the internal teeth of the valve chamber stator, which are formed opposite to the external teeth and l'Jd, is complex, the machining at the manufacturing stage is complicated and it is difficult to obtain sufficient meshing accuracy, resulting in high costs. There was a problem that the KA value was high.

本発明は、このような問題点に着目してなされたもので
、回転駆動軸の周りに形成した膨張および収縮する作動
小室群に流体の供給と排出thなう複数の流体流路を有
し、前記回転駆動軸により偏心駆動されて自転を繋止し
た状態で公転揺−する揺動弁板の弁口により前記流体流
路の開閉を順次行なう流体回転装置に於いて、揺動弁板
もしくは揺動弁板を収納し、た弁室側に少くとも2つ以
上の自転防止ピンを取付けると共に、自転防止ビ/に相
対した固定側もしくは揺動弁板に円筒孔を設け、この円
筒孔内で自転防止ビンt−案内移動させることによって
自転を防止した揺動弁板の公転揺動を行なわせることに
より、自転防止構造を拳純化して機械加工が簡単で遊び
のない弁の開度精度も容易に得られるコスト的に一安価
な自転防止ピンを有する分配弁機構を備えた弁板部分で
の一洩の少ない流体回転装置′に提供することを目的と
する・ 以下、本発明を図面に基づいて説明する。
The present invention has been made with attention to such problems, and has a plurality of fluid flow paths for supplying and discharging fluid to a group of operating chambers that expand and contract and are formed around a rotational drive shaft. , in a fluid rotating device in which the fluid flow path is sequentially opened and closed by a valve port of a swinging valve plate that is eccentrically driven by the rotational drive shaft and revolves and swings in a state where rotation is locked, the swinging valve plate or The oscillating valve plate is housed, and at least two anti-rotation pins are installed on the side of the valve chamber, and a cylindrical hole is provided on the fixed side or the oscillating valve plate opposite to the anti-rotation pin, and inside this cylindrical hole By rotating the oscillating valve plate, which prevents rotation by guiding the rotation prevention bottle t, by making the rotation prevention structure simple, machining is easy, and the valve opening accuracy without play is achieved. It is an object of the present invention to provide a fluid rotating device with less leakage in the valve plate portion, which is equipped with a distribution valve mechanism having an anti-rotation pin that is easily obtained and is inexpensive in terms of cost. The explanation will be based on.

第1図は、ジェロータ型流体回転装置を例に収って本発
明の一実施例を示した軸方向の断面図でおる。
FIG. 1 is an axial cross-sectional view showing one embodiment of the present invention, taking a gerotor type fluid rotation device as an example.

まず、構成を説明すると、流体回転装置は10゜12.
14,1@、1gからなる5つのケーシング区分に分け
られ、各ケーシング区分10〜18は通しポル)20に
よって軸方向に締め合わされ、ケーシング区分12には
ジェロータ型流体圧力変換部が内蔵され父、ケーシング
区分16KFi分配弁機構が内蔵されている。
First, to explain the configuration, the fluid rotation device has a rotation angle of 10° and 12°.
It is divided into five casing sections consisting of 14, 1, and 1g, and each casing section 10 to 18 is tightened in the axial direction by a through hole 20, and the casing section 12 has a built-in gerotor type fluid pressure converter. Built-in casing section 16KFi distribution valve mechanism.

ケーシング区分18に内蔵された流体圧力変換部は、1
−瓢IIFI11iを取り出した第2図に示すように、
7つの内歯22を有するステータ部材24の中に、内f
Ii22の数より一つ少ない外歯26を有するロータ部
材28がステータS材24の軸心線30に対する偏心軸
心32t4って回動自在に配置されている。ロータ部材
28の軸孔には、スプライン軸受34が切られており、
スプライン軸受34に中間駆動軸36の一端に形成した
スプライン38が噛み合い父、中間駆動軸36はスプラ
イン38の部分が軸心線30に対し紙面に向う方向に偏
移した傾きを持って納められており、中間駆動軸36の
他端に形成したスプライン4Orjケーシング区分10
に内蔵した駆動軸42の軸装部46内のスプライン軸受
に噛み合っている。
The fluid pressure transducer built into the casing section 18 has 1
-As shown in Figure 2 with the Gourd II FI11i taken out,
In the stator member 24 having seven internal teeth 22, an internal f.
A rotor member 28 having one fewer external teeth 26 than the number of Ii22 is rotatably arranged on an eccentric axis 32t4 with respect to the axis 30 of the stator S member 24. A spline bearing 34 is cut into the shaft hole of the rotor member 28.
A spline 38 formed at one end of an intermediate drive shaft 36 meshes with the spline bearing 34, and the intermediate drive shaft 36 is housed with the spline 38 at an angle offset toward the plane of the drawing with respect to the axis 30. spline 4 orj casing section 10 formed at the other end of the intermediate drive shaft 36
The drive shaft 42 is engaged with a spline bearing in the shaft mounting portion 46 of the drive shaft 42 built into the drive shaft 42.

この駆動軸42は、ポンプとして使用する時−こは電動
モータ等の回転力を伝達する人力軸となり、又モータと
して使用する時にはロータS材28の回転を外部に取り
出すための出力軸となる。
When the drive shaft 42 is used as a pump, it becomes a human power shaft for transmitting the rotational force of an electric motor, etc. When used as a motor, it becomes an output shaft for extracting the rotation of the rotor S material 28 to the outside.

尚、ケーシング−48はボルト50により駆動軸42の
軸装置m46をケーシング44内に軸装させている。 
       □。
Incidentally, the casing 48 has a shaft device m46 of the drive shaft 42 mounted in the casing 44 by bolts 50.
□.

ゝ1 このようなケーシング区分12に内蔵した流体圧力変換
部の作用は、駆動軸42及び中間tIjAIIlil軸
36により第2因に示したロータ部材28tM#を回り
方向、すなわち右回転したとすると、ロータ部材28は
ステータ部材24の内歯22との噛み合いをもって軸心
線30を中心に左方向に偏心軌道を描いて公転する。こ
のようにロータ部材28が公転すると、その偏心軸心3
2を中心にロータ部材28が自転し、ステータ部材の内
歯22の数が7つ、ロータ部材28の外歯26の数が1
つ少ない6つからなる図示の実施例の場合、ロータ部材
28が右回りに6回公転するとロータ部材28は左方向
に一回の自転を起すようになる。
(1) The action of the fluid pressure converter built in the casing section 12 is such that when the rotor member 28tM# shown in the second factor is rotated around the rotor member 28tM# shown in the second factor by the drive shaft 42 and the intermediate tIjAIIlil shaft 36, the rotor The member 28 engages with the internal teeth 22 of the stator member 24 and revolves around the axis 30 while drawing an eccentric orbit to the left. When the rotor member 28 revolves in this way, its eccentric axis 3
2, the number of internal teeth 22 of the stator member is 7, and the number of external teeth 26 of the rotor member 28 is 1.
In the illustrated embodiment, which includes six or fewer rotor members, when the rotor member 28 revolves clockwise six times, the rotor member 28 rotates once in the left direction.

このようにロータ部材28が公転する時、軸心線30及
び偏心軸心32を通る偏心線52の上側となる内歯22
と外歯26との間に形成される作動小室#は、ロータ部
材28が右回転するにつれて収縮し、一方偏Qll15
zの下側に示す内歯22と外*26との間に形成される
作動小室群は、口     □1−タ部材28が右回転
するにつれて膨張するようになる。
When the rotor member 28 revolves in this way, the inner teeth 22 are located above the eccentric line 52 passing through the axis 30 and the eccentric axis 32.
The operating chamber # formed between the external teeth 26 contracts as the rotor member 28 rotates clockwise, while the
The operating chamber group formed between the inner tooth 22 and the outer tooth 26 shown on the lower side of z expands as the mouth member 28 rotates clockwise.

従って、ポンプとして使用する時には膨張する作動小室
群により外部から流体が吸入され、−h。
Therefore, when used as a pump, fluid is sucked in from the outside by the operating chambers that expand, and -h.

収縮する作動小室群から外部に高圧流体として111出
ばれ、又、モータとして使用する時には膨張する作動小
室群に高圧流体を導入することでロータ部材28を回転
駆動させるようKなる。
High-pressure fluid 111 is discharged from the contracting working chamber group to the outside, and when used as a motor, the rotor member 28 is rotationally driven by introducing high-pressure fluid into the expanding working chamber group.

再び第1図を参照するに、ケーシング区分14を構成す
る部材は、第2図のステータ部材24とロータ部材28
との間に形成される作動小楽群に開口する7つの流体流
路58′を環状に配置」7ている。
Referring again to FIG. 1, the members comprising casing section 14 include stator member 24 and rotor member 28 of FIG.
Seven fluid flow passages 58' are arranged in an annular manner and open to the actuation channel group formed between the two.

更に、ケーシング区分16には自転防止機能を備えた分
配弁機構が組み込まれており、膳−I断函を取り出して
示した第3図から明らかなように、ケーシング60の内
部に揺動弁板62°がケー/ノグ60の軸心30に対し
、偏心軸心66を回転中心として偏心配置されており、
軸心30及び偏心軸心66を通る揺動弁板62の軸心線
68Fi箒2図に示したロータ部材28の偏心線52に
対し、90度ずれた位置となっている。
Furthermore, a distribution valve mechanism with an anti-rotation function is incorporated in the casing section 16, and as is clear from FIG. 62° is arranged eccentrically with respect to the axis 30 of the key/nog 60 with the eccentric axis 66 as the rotation center,
The axis 68Fi of the swinging valve plate 62 passing through the axis 30 and the eccentric axis 66 is at a position shifted by 90 degrees with respect to the eccentric line 52 of the rotor member 28 shown in FIG.

父、傷勧弁板62は、破線で示すケーシング区分の流体
流路58に対応した7つの弁孔70を独立に設けており
、弁孔70のケーシング区分14側の開O部は破線で示
すように段付けをもって広げられている。このため揺動
弁板62が偏心回転tしても、流体流路58偶に開口し
た弁孔70の開口sFi常KtIL体流路58に関口し
た状態をもつ。
The injury prevention valve plate 62 is independently provided with seven valve holes 70 corresponding to the fluid flow paths 58 of the casing section shown by broken lines, and the opening O portion of the valve holes 70 on the casing section 14 side is shown by broken lines. It is spread out in steps like this. Therefore, even if the swinging valve plate 62 rotates eccentrically, the opening sFi of the valve hole 70 which opens into the fluid flow path 58 is always in a state where it is closed to the body flow path 58.

一方、揺−弁板62の外周の4箇所には自転防止ビン8
0が軸方向に装着されており、この自転防止ビン80に
相対したケーシング区分14側の端1iKは円筒孔82
が形成され、軸心3oを中心とした揺−弁板62の偏\
、心駆動により自転防止ビン80は円筒孔82の内11
t(ll接移動するようになる。
On the other hand, rotation prevention bins 8 are provided at four locations on the outer periphery of the rocking valve plate 62.
0 is mounted in the axial direction, and the end 1iK on the side of the casing section 14 facing the anti-rotation pin 80 is fitted with a cylindrical hole 82.
is formed, and the swing valve plate 62 is deflected around the axis 3o.
, the anti-rotation bottle 80 is driven by the center of the cylindrical hole 82.
t(ll) begins to move tangentially.

ここで自転防止ビア8Gを内設した円筒孔82の孔径り
としては、軸心30′に対する揺勧弁板62の偏心量1
02倍2!に自転防止ビン80の直径R′fr加えたD
=2J+Rとなる孔径を持つ。すなわち、円筒孔82の
孔径は軸心30を中心に細心軸心66を持って公転する
揺動弁板62の公転軌跡に基づいて定められるものであ
る。
Here, the diameter of the cylindrical hole 82 in which the anti-rotation via 8G is installed is the eccentricity of the swinging valve plate 62 with respect to the axis 30'.
02 times 2! plus the diameter R'fr of the anti-rotation bottle 80
It has a pore diameter of =2J+R. That is, the diameter of the cylindrical hole 82 is determined based on the orbit of the swinging valve plate 62 that revolves around the shaft center 30 with the fine shaft center 66.

このように揺動弁板62に装着した自転防止ビン80を
固定側に形成した円筒孔82の内jlK摺接して案内移
動させるようにすることで、流体圧力変換部のロータ部
材28に同期して所定の位相差をもって行なわれる揺動
弁板62の公転運動に於いては、自転防止ビン800円
筒孔82内の案内移動により揺動弁板62自身の自転運
動は阻止され、揺動弁板62は図示の弁板姿勢を保った
まま相対的な偏心運動だけを行なう、    −この結
果、揺′動弁板62d・自転運動を起さないので流体圧
力変換部に通ずる流体流路58に対し、独立して設けた
弁孔70のそれぞれは、流体流路&8と1対1の対応関
係を當に維持できる。
By sliding the anti-rotation pin 80 attached to the swinging valve plate 62 in sliding contact with the inside of the cylindrical hole 82 formed on the fixed side and guiding it, it can be synchronized with the rotor member 28 of the fluid pressure converter. When the swinging valve plate 62 revolves with a predetermined phase difference, the rotation of the swinging valve plate 62 itself is prevented by the guided movement in the cylindrical hole 82 of the anti-rotation pin 800, and the swinging valve plate 62 is prevented from rotating. 62 performs only a relative eccentric movement while maintaining the valve plate posture shown in the figure. - As a result, the swinging valve plate 62d does not make any rotational movement, so it is , each of the independently provided valve holes 70 can maintain a one-to-one correspondence with the fluid flow path &8.

父、揺動弁板62に取り付けた自転防止ビン80と固定
11に形成した円筒孔82でなる揺動弁板62の機械加
工は、簡単な切削と孔あけ加工により実現で龜ることが
ら加工が容易で円筒孔内8zを摺接移動する自転防止ビ
ン80に遊びが生じないように加工精度を上げることが
容易にでき、構造が簡単であることからコスト的にも安
価にできる。
The machining of the swinging valve plate 62, which consists of the anti-rotation pin 80 attached to the swinging valve plate 62 and the cylindrical hole 82 formed in the fixing member 11, can be accomplished by simple cutting and drilling. This makes it easy to increase the machining accuracy so that there is no play in the anti-rotation pin 80 that slides in the cylindrical hole 8z, and because the structure is simple, the cost can be reduced.

再び菖1図′を参照するにケーシング区分18は蓋部材
84でなり、蓋部材84は2箇所に流体接続口86.8
8を有し、流体接続口86は揺動弁板62との摺接面に
設けた内側の環状溝90に連通し、父、流体接続口88
は環状溝90の外側に形成した環状溝92に連通してい
る。このような蓋部材84の環状m9 G 、 92に
対し、−心運動を行なう揺−弁板62の弁孔70のうち
纂3図に、1 示す下側に位置する弁孔70が外側の環状溝92と連通
し、一方、上側の弁孔70が内側の環状溝90と連通す
るようになる。
Referring again to Fig. 1', the casing section 18 includes a lid member 84, which has two fluid connection ports 86.8.
8, the fluid connection port 86 communicates with an inner annular groove 90 provided in the sliding surface with the swinging valve plate 62, and the fluid connection port 88
communicates with an annular groove 92 formed on the outside of the annular groove 90. With respect to the annular shape m9 G, 92 of the lid member 84, among the valve holes 70 of the rocking valve plate 62 that performs a heart motion, the valve hole 70 located on the lower side shown in FIG. The upper valve hole 70 communicates with the inner annular groove 90 .

父、第1図に於いて揺動弁板62を偏心駆動する弁駆動
軸94は、ケーシング44内の中間部動軸36のスプラ
イン3891!lの端部にビン96vCて連結きれてお
り、ロータ部材28の公転に同期した所定の位相差をも
った動きを揺動弁板62に伝達している。
Father, in FIG. 1, the valve drive shaft 94 that eccentrically drives the swinging valve plate 62 is connected to the spline 3891 of the intermediate moving shaft 36 inside the casing 44! A pin 96vC is connected to the end of the rotor member 28, and transmits movement with a predetermined phase difference in synchronization with the revolution of the rotor member 28 to the swing valve plate 62.

すなわち、弁駆動軸94はビン96の偏心同転を軸心線
30を中心とする弁駆動軸94の回転に戻し、偏心軸部
94mにて揺動弁板62i流体圧力変換部のロータ部材
28の公転に同期し、且つ%度の位相差をもった偏心運
動に変換して伝え゛ている。
That is, the valve drive shaft 94 returns the eccentric rotation of the bottle 96 to the rotation of the valve drive shaft 94 about the axis line 30, and the eccentric shaft portion 94m rotates the rotor member 28 of the fluid pressure converting portion of the swinging valve plate 62i. It is synchronized with the revolution of the earth and is transmitted by converting it into eccentric motion with a phase difference of % degrees.

纂4図は、第1図の流体回転装置の分配弁機構の他の実
施例を示した断面図であり、この実施例は自転防止ビン
を弁機構の固定側に取り付け、自転防止ビンに摺接する
円筒孔tm勧弁板側に設けたことを特徴とする。
Figure 4 is a sectional view showing another embodiment of the distribution valve mechanism of the fluid rotation device shown in Figure 1. In this embodiment, an anti-rotation bottle is attached to the fixed side of the valve mechanism, and a slider is attached to the anti-rotation bottle. It is characterized in that the adjacent cylindrical hole tm is provided on the valve recommendation plate side.

すなわち、自転防止ビン80は、ケーシング区分14を
形成するケー7ング部材に装着され、この自転防止ビン
80に相対した1!@弁板62の端内に円筒孔82を形
成し、固定側となる自転防止ビン80に摺接した円筒孔
82の案内移動により、弁駆動軸94により偏心駆動さ
れる揺動弁板62の自転を防止するようKしている。こ
の実施例に於ける揺−弁板62に設けた円筒孔82の孔
径りも、揺動弁板62の偏心量402倍に自転防止ビン
80のti径を加え合わせた孔径となり、自転防止ビン
80の収り付は及び円筒孔82の形成については簡単な
孔加工により行なうことができるので、機械加工が容易
であるとともに自転防止ビン80と円筒孔82の閾の遊
びが生ずることのない加工精度を容易に得ることができ
る。
That is, the anti-rotation pin 80 is attached to the casing member forming the casing section 14, and the 1! @A cylindrical hole 82 is formed in the end of the valve plate 62, and the swinging valve plate 62 is eccentrically driven by the valve drive shaft 94 by the guided movement of the cylindrical hole 82 that is in sliding contact with the rotation prevention pin 80 on the fixed side. K is applied to prevent rotation. The hole diameter of the cylindrical hole 82 provided in the rocking valve plate 62 in this embodiment is also the diameter of the cylindrical hole 82 which is the sum of the eccentricity of the rocking valve plate 62 times 402 and the ti diameter of the rotation prevention bin 80, 80 can be accommodated and the cylindrical hole 82 can be formed by simple hole machining, so machining is easy and processing that does not cause play between the anti-rotation bottle 80 and the threshold of the cylindrical hole 82. Accuracy can be easily obtained.

崗、上記の実施例で祉侭動弁板もしくは分配弁機構の固
定側に4本の自転防止ビンを装置するようにしているが
、揺動弁板62は少なくとも211所で位置決めされて
いれば自転を防止することができるので、自転防止ビン
及び円筒孔は少なくとも2つ以上であれば任意の数とす
ることができる。
In the above embodiment, four anti-rotation bins are installed on the fixed side of the welfare valve plate or distribution valve mechanism, but if the swinging valve plate 62 is positioned at at least 211 positions, Since rotation can be prevented, any number of anti-rotation bins and cylindrical holes can be used as long as they are at least two.

第5図は、ピストン型流体回転装置に於ける本発明の他
の実施例を示した断面図である。
FIG. 5 is a sectional view showing another embodiment of the present invention in a piston-type fluid rotation device.

まず、構成を説明すると、ピストン型流体回転装置は出
力軸100の周囲に配設したシリンダブロックのシリン
ダ102a内に複数のピストン104を設け、揺動弁板
106によりシリンダ102mに対する流体の供給と排
出を順次切り換えてピストン104をvE復名せ、ビス
) 7104の往諷運動【斜設したスワラシャプレート
108及びヨーク110に介して出力軸100の回転力
に変換する構造t−有する。
First, to explain the configuration, the piston-type fluid rotating device includes a plurality of pistons 104 in a cylinder 102a of a cylinder block disposed around an output shaft 100, and a swing valve plate 106 to supply and discharge fluid to and from the cylinder 102m. The reciprocating movement of the piston 104 (screw) 7104 is sequentially switched to restore the piston 104 to VE (screw).

このピストンtJ1tiL体回転装置に於いても、ジェ
ロータmm体回転装置と同様に、膓動弁板1t)@#i
偏心駆動軸112により出力軸100に同期して制心回
転される分配弁機構をMk成し、*張する/す/ダニ0
21と収縮するシリンダ102aとの閾で流体の供給と
排出を行表うように順次流路を切り換えており、このた
め、揺動弁板106とシリンダブロック102との間に
ピストン104に対応した数の流体流路114t!tけ
、更KI11部材116には第1図の実施例と同様に、
流体接続口86.88及び環状溝90.92を形成して
いる。
In this piston tJ1tiL body rotation device, as well as the gerotor mm body rotation device, the sliding valve plate 1t) @#i
Mk constitutes a distribution valve mechanism that is rotated under control in synchronization with the output shaft 100 by an eccentric drive shaft 112,
The flow paths are sequentially switched so that the fluid is supplied and discharged at the threshold between the cylinder 102a and the cylinder 102a that contracts. Number of fluid channels 114t! Furthermore, the KI11 member 116 has the same structure as in the embodiment shown in FIG.
A fluid connection port 86,88 and an annular groove 90,92 are formed.

このようなピストン型流体回転装置に於いて一揺動弁板
106には自転防止ビン80が少なくとも2本以上装着
されており、この自転防止ビン80に相対したシリンダ
ブロック102 K円筒孔82が形成され、−心組動軸
112による揺動弁板lθ6の偏心駆−により自転防止
ビ/80は円筒孔82の内at摺接して案内移−され、
これによって揺動弁板106の自転が防止され、揺動弁
板106に形成した弁孔tシリンダブロック102の流
体流路114と1filに対応させることができる。
In such a piston-type fluid rotating device, at least two anti-rotation bins 80 are attached to one swinging valve plate 106, and a cylindrical hole 82 is formed in the cylinder block 102 facing the anti-rotation bins 80. Then, by eccentric driving of the swinging valve plate lθ6 by the central assembly shaft 112, the anti-rotation valve 80 is guided and moved into sliding contact with the inside of the cylindrical hole 82,
This prevents the swinging valve plate 106 from rotating, and allows the valve holes formed in the swinging valve plate 106 to correspond to the fluid passages 114 and 1fil of the cylinder block 102.

父、揺動弁板iosの自転防止機構は自転防止ビン80
0装着と円筒孔82の形成で済むことから機械加工が簡
単で済み、自転防止ビン8oと円筒孔82との間の遊び
をなくす精積の高い加工も谷挑にでき、コスト的にも安
価にできる。
Father, the rotation prevention mechanism of the swinging valve plate ios is the rotation prevention bin 80
The machining is simple as it only requires installation of the cylindrical hole 82 and the formation of the cylindrical hole 82, and the highly precise machining that eliminates the play between the anti-rotation pin 8o and the cylindrical hole 82 can be done easily, and the cost is also low. Can be done.

尚、第5図のピストン型庫体回転ii!値に於いてもJ
II41p!Jの実施例と同様に、自転防止ビン8oを
亀部材lid側に固着し、揺動弁板106側に円筒孔8
2を形成するようにして4良い。
Incidentally, the rotation of the piston type storage body ii in Fig. 5! Even in terms of value, J
II41p! Similarly to the embodiment J, the anti-rotation bottle 8o is fixed to the turtle member lid side, and a cylindrical hole 8 is formed on the swinging valve plate 106 side.
2 is formed and 4 is good.

以上説明して龜たように5本発明によれば、回転駆動軸
の回りに形成した膨張及び収縮する作動小室群に流体の
供給と排出を順次行なう複数の流体流路を有し、繭重回
転駆動軸により偏心駆動場れて自転を両正した状態で公
転する揺動弁板の弁孔により前記流体流路の開閉を行な
う流体回転装置に於いて、揺動弁板もしくは弁板上収納
した弁室固定側に少なくとも2つ以上の自転防止ビンを
取り付けるとともに、この自転防止ビンに相旬した弁室
固定側もしくは畑鋤弁側に巴拘孔を設轄。
As explained above, according to the present invention, the cocoon weight In a fluid rotating device in which the fluid flow path is opened and closed by a valve hole of a swinging valve plate that revolves with its rotation corrected by an eccentric drive field caused by a rotational drive shaft, the swinging valve plate or the valve housing is stored on the valve plate. At least two or more anti-rotation bins are installed on the fixed side of the valve chamber, and a tomoe restraint hole is installed on the fixed side of the valve chamber or the field plow valve side that corresponds to the anti-rotation bins.

この円筒孔内で自転防止ビンを案内移動させることによ
って偏心駆動される揺動弁板の自転を防止するようにし
たため、分配弁機構に於ける弁板の回転防止構造が簡略
′化されて機械加工が簡単に行なえるとともに精度の高
い弁の開度も容易に得ることができ、又、a械加工の簡
略化に伴なってコストの大幅な低減を図ることができ、
自転防止機能を有する分配弁機構を備えた流体回転装置
の量産化を図ることができるという効果が得られる。
By guiding and moving the anti-rotation bottle within this cylindrical hole, the rotation of the eccentrically driven swinging valve plate is prevented, which simplifies the anti-rotation structure of the valve plate in the distribution valve mechanism. It is easy to process, it is easy to obtain a highly accurate valve opening, and it is possible to significantly reduce costs by simplifying machining.
The effect is that it is possible to mass-produce a fluid rotation device equipped with a distribution valve mechanism having an anti-rotation function.

【図面の簡単な説明】[Brief explanation of drawings]

第111!1は本発明の一実施例を示したジェロータ型
流体回転装置の軸方向断面図、第2図は第1図の1−鳳
断向図、$13図は第1図のト]断面図、纂4図は第1
図の実施例に用いる分配弁機構の他の実施例會示した断
面図、纂5図はピストン型流体回転1!1allK適用
した本発明の他の実施例を示した験th1図である。 IQ、12.14,16.18 ・・・ケーン/グ区分
20・・・通しボルト  22・・・内歯24・・・ス
テータ部材 26・・・訃歯28・・ロータ部材   
30・軸心線32・・・偏心軸心    34・・スプ
ライン軸受36・・中間駆動軸   38.40・スブ
フイ。
111!1 is an axial cross-sectional view of a gerotor-type fluid rotating device showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line 1-1 in FIG. Cross-sectional view, Figure 4 is the first
A sectional view showing another embodiment of the distribution valve mechanism used in the embodiment shown in the figure, Figure 5 is an experimental th1 diagram showing another embodiment of the present invention to which a piston-type fluid rotation 1!1allK is applied. IQ, 12.14, 16.18 ... Cane/g division 20 ... Through bolt 22 ... Internal tooth 24 ... Stator member 26 ... Lateral tooth 28 ... Rotor member
30. Axis center line 32...Eccentric shaft center 34..Spline bearing 36..Intermediate drive shaft 38.40.Subfi.

Claims (1)

【特許請求の範囲】 回転駆動軸の周りに形成した膨張および収縮する作動小
室群に流体の供給と排出を行なう複数の流体流路を有し
、riI配回転躯勧軸により一ε%mrjIJされて自
転を請出した状態で公転する揺動弁板の弁口によ゛り萌
配流体流路の開閉を順次行なう流体回転装置に於いて、 前記揺動弁板もしくは諌揺勧弁板を収納した弁室側のい
ずれか一方に少なくとも2つ以上の自転防止ビンを取付
け、 骸自転防止ビンに相対する前記弁室−もしくは揺動弁板
の端内に自転防止ビンt^接して案内する円筒孔を設け
、 該円筒孔は前記回転駆動軸により偏心躯勧される前記揺
動弁板の偏心−の2倍にIIQml自転防止ビンの直径
を加えた孔径としたことを特徴とする流体回転装置。
[Claims] It has a plurality of fluid channels for supplying and discharging fluid to a group of operating chambers that expand and contract formed around a rotation drive shaft, and has a rotational speed of 1ε%mrjIJ by an riI rotation axis. In a fluid rotating device that sequentially opens and closes a distributing fluid flow path by means of a valve port of a swinging valve plate that revolves in a rotating state, the swinging valve plate or the swinging valve plate is At least two or more anti-rotation bins are attached to either side of the stored valve chamber, and the anti-rotation bins are guided in contact with the end of the valve chamber or the swinging valve plate facing the skeleton anti-rotation bin. A cylindrical hole is provided, and the cylindrical hole has a hole diameter that is twice the eccentricity of the swinging valve plate eccentrically rotated by the rotational drive shaft plus the diameter of the IIQml anti-rotation bottle. Device.
JP8274082A 1982-05-17 1982-05-17 Fluidic rotary apparatus Pending JPS58200086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8274082A JPS58200086A (en) 1982-05-17 1982-05-17 Fluidic rotary apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8274082A JPS58200086A (en) 1982-05-17 1982-05-17 Fluidic rotary apparatus

Publications (1)

Publication Number Publication Date
JPS58200086A true JPS58200086A (en) 1983-11-21

Family

ID=13782808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8274082A Pending JPS58200086A (en) 1982-05-17 1982-05-17 Fluidic rotary apparatus

Country Status (1)

Country Link
JP (1) JPS58200086A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104580A (en) * 1979-02-02 1980-08-11 Teijin Seiki Co Ltd Liquid-pressure drive device
JPS5647693A (en) * 1979-09-27 1981-04-30 Tokyo Keiki Co Ltd Fluid rotating device of gerotor type
JPS56104580A (en) * 1980-01-25 1981-08-20 Hitachi Ltd Monitor system by reflective mirror control
JPS5647693B2 (en) * 1977-10-27 1981-11-11

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647693B2 (en) * 1977-10-27 1981-11-11
JPS55104580A (en) * 1979-02-02 1980-08-11 Teijin Seiki Co Ltd Liquid-pressure drive device
JPS5647693A (en) * 1979-09-27 1981-04-30 Tokyo Keiki Co Ltd Fluid rotating device of gerotor type
JPS56104580A (en) * 1980-01-25 1981-08-20 Hitachi Ltd Monitor system by reflective mirror control

Similar Documents

Publication Publication Date Title
KR100307279B1 (en) Relative rotating device for rotating the shaft of internal combustion engine and operating method
US4867000A (en) Linear motion power cylinder
KR930000939B1 (en) Two-speed valve-in star motor
US4639202A (en) Gerotor device with dual valving plates
US3516765A (en) Fluid actuated actuator
US3106163A (en) Pumps, motors and like devices
US3316814A (en) Rotary fluid pressure device
US4759186A (en) Self-powered rotary actuator utilizing rotation-generated centrifugal head
US3910732A (en) Gerotor pump or motor
US4008018A (en) Rotary fluid displacement device having improved porting
US4598627A (en) Fluid motors
JPS58200086A (en) Fluidic rotary apparatus
US3697203A (en) Rotary engine
US3302584A (en) Valving arrangement for fluid pressure device
JPS60184974A (en) Volume type machine, especially, hydraulic motor build-in cycloid star gear apparatus
US3531226A (en) Bearing support means and drive for rotary valve in fluid pressure device
US3302528A (en) Twin compression chamber motor
JPS5941033B2 (en) Variable capacity fluid conversion device
US5326238A (en) Rotating piston machine having cam controlled alternating pistons
SU857532A1 (en) Blade-type hydraulic motor
US3703343A (en) Bearing support means and drive for rotary valve in fluid pressure device
CN216342766U (en) Hydraulic track machine
JPS5844876B2 (en) Gerotor type fluid rotation device
JP2539742B2 (en) Pendulum type wave power generator
US20020076344A1 (en) Variable displacement hydraulic gear pump