JPS58199839A - Surface-activated amorphous alloy for cathode for electrolysis - Google Patents

Surface-activated amorphous alloy for cathode for electrolysis

Info

Publication number
JPS58199839A
JPS58199839A JP57081544A JP8154482A JPS58199839A JP S58199839 A JPS58199839 A JP S58199839A JP 57081544 A JP57081544 A JP 57081544A JP 8154482 A JP8154482 A JP 8154482A JP S58199839 A JPS58199839 A JP S58199839A
Authority
JP
Japan
Prior art keywords
amorphous alloy
alloy
cathode
electrolysis
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57081544A
Other languages
Japanese (ja)
Other versions
JPS6056409B2 (en
Inventor
Yoshinao Ihara
伊原 義尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57081544A priority Critical patent/JPS6056409B2/en
Publication of JPS58199839A publication Critical patent/JPS58199839A/en
Publication of JPS6056409B2 publication Critical patent/JPS6056409B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To obtain a surface-activated amorphous alloy for a cathode for electrolysis capable of consuming electric power effectively and stably by preparing an amorphous alloy consisting of a specified percentage of P, Si, B or C and the balance Ni or Co and by activating the surface of the alloy. CONSTITUTION:A molten alloy consisting of 4-35 atomic% one or more among P, Si, B and C and the balance Ni and/or Co is very rapidly cooled at >=about 10<4> deg.C/sec cooling rate to manufacture an amorphous alloy. In order to increase the activity of the alloy as a cathode for electrolysis, Zn or the like is diffused in the surface layer of the alloy and leached out with an alkali soln. to activate the surface. By the activation the amorphous alloy is provided with superior characteristics as a material for a cathode for electrolysis.

Description

【発明の詳細な説明】 本発明は、水素過電圧が低く、ま友充分な耐久性、耐食
性を有する表面を活性化した電解用非晶質合金陰極Kl
lするものである。
Detailed Description of the Invention The present invention provides an electrolytic amorphous alloy cathode Kl with a low hydrogen overvoltage, sufficient durability and corrosion resistance, and an activated surface.
It is something to do.

従来、水素発生反応を陰極の主反応とする水電解あるい
は塩化アルカリ水溶液の電解にお、いては、鉄電極が使
用されてきた。鉄は陰極材料としてコスト的に4安価で
あシ、又、かなシ低い水素過電圧を示す4のであるが、
−遅生、更にこれを改良する必要性が生じている。
Conventionally, iron electrodes have been used in water electrolysis or electrolysis of aqueous alkali chloride solutions in which hydrogen generation reaction is the main reaction at the cathode. Iron is inexpensive as a cathode material, and also exhibits a fairly low hydrogen overvoltage.
-Late maturation, and there is a need to further improve this.

通常、合金は固体状態では結晶化しているが、合金組成
を限定して急冷凝固させると、固体状態でも液体に類似
した結晶構造をもたない非晶質構造が得られる。このよ
うな合金を非晶質合金という。
Usually, alloys are crystallized in the solid state, but if the alloy composition is limited and rapidly solidified, an amorphous structure similar to that of a liquid without a crystalline structure can be obtained even in the solid state. Such alloys are called amorphous alloys.

\   この非晶質合金は、従来実用化されている金属
に比べ著しく高い強度を保有し、かつ、組成に応じて種
々の特性を示す。又、Znなどを合金の表面層に拡散浸
透させ、次いでこれを浸出させ、その合金のもつ特殊な
性質を助長させる処理を表面活性化処理という。本発明
はこのような処理を施した非晶質合金を電解用陰極とし
て用いることKより、電力を有効かつ安定して使用し得
るなど電解用陰極とじて優れた性能を備えた非晶質合金
を提供することを目的とするものである。
\ This amorphous alloy has significantly higher strength than conventional metals, and exhibits various properties depending on its composition. Furthermore, a process in which Zn or the like is diffused into the surface layer of an alloy and then leached out to promote the special properties of the alloy is called surface activation treatment. The present invention uses an amorphous alloy that has undergone such treatment as an electrolytic cathode.The present invention provides an amorphous alloy that has excellent performance as an electrolytic cathode, such as being able to use electric power effectively and stably. The purpose is to provide the following.

本発明は、下記二発明からなる。The present invention consists of the following two inventions.

t  p、  si、  BおよびCのいずれか一種あ
るいは二種以上4〜55原子−を含み、残部がMlおよ
びCoの中から一種あるいは二種からなる) 電解陰極用表面活性イし非晶質合金。
Surface active amorphous alloy for electrolytic cathode containing 4 to 55 atoms of any one or more of p, si, B and C, and the remainder consisting of one or two of Ml and Co. .

1  P、  Si、  BおよびCのいずれか一種あ
るいは二種以上4〜35原子−を含み、かつ、II  
F・を45jiL子−以下 1 0u、  Mo、  Or、  MnおよびVの−
mあるいは二種以上、55原子慢以下 聯 ムj、  Znおよび8nの一種あるいは二櫨以上
、40原子嘩以下 4  Pt、 Ru、 Rh、 P(1,Xr、ムgお
よびAuのいずれか一種または二種以上、50原子嘔以
下 の詳のうちから選ばれた一群ま九は二群以上の合計量で
65原子チ以下含有し、実質的残部として15原子チ以
上のN1およびCOの中から一種ま九は二種を含み全体
を100原子−とする電解陰極用表面活性化非晶質合金
1 Contains 4 to 35 atoms of any one or more of P, Si, B and C, and II
45jiL children - less than 1 0u, Mo, Or, Mn and V -
m or two or more types, 55 atoms or less, Mj, one or more of Zn and 8n, 40 atoms or less4 Pt, Ru, Rh, P (any one of 1, Xr, Mg, and Au, or 1 group or 9 selected from 2 or more and 50 or less atoms contains 65 or less atoms in the total amount of two or more groups, and the substantial balance is one type of N1 and CO containing 15 or more atoms. Maku is a surface-activated amorphous alloy for electrolytic cathodes that contains two types and has a total of 100 atoms.

本発明において、前記組成の浴融合金を超急冷凝固して
得た非晶質合金は、各元素が均一に同浴した単相合金で
ある。元来、金属電極に特定の化学反応に対する選択的
活性蜜を付与するためには、有効元素を必要量含6合金
を作る必要がある。しかし、結晶質金属においては、多
種多量の多相構造となり、又、このため機械的強度を得
峻いことが多い。これに対し、本発明の非晶質合金は液
体状態から超急冷によって作製される非晶質構造である
友め、常に均一な琳相固溶体となシ、優れた機械的性質
ならびに耐食性を有すると共に安定、かつ均一な電極特
性を示す。
In the present invention, the amorphous alloy obtained by ultra-rapidly solidifying the bath alloy having the above composition is a single-phase alloy in which each element is uniformly contained in the same bath. Originally, in order to impart selective activity to a metal electrode for a specific chemical reaction, it is necessary to prepare an alloy containing the required amount of effective elements. However, crystalline metals have a multi-phase structure with many different types, and for this reason, mechanical strength is often difficult to obtain. On the other hand, the amorphous alloy of the present invention has an amorphous structure created by ultra-quenching from a liquid state, always forms a homogeneous phosphorous solid solution, and has excellent mechanical properties and corrosion resistance. Shows stable and uniform electrode characteristics.

さらに、電解用陰極としての活性度を高める丸めに、合
金表面層にZnなどを拡散浸透させ、次いでこれをアル
カリ溶液で浸出させるなど、表面活性化処理を施す必要
がある。結晶質金属ではKnなどの拡散浸透が主として
結晶粒界でおこるため、その後Zn、などを浸出させる
と金属表面から結晶粒が脱落し、金属が脆化するのみで
表面活性化が有効でない場合が多い。これに対し本発明
の非晶質合金は結晶質でないため、当然ながら結晶粒界
が存在せず、結晶粒界にZnなどが優先的に拡散浸透す
ることによる脆化は起こらないのみならず、本質的にZ
nなどの拡散速1が速いため、比較的低温の処理であっ
てもZnなどが合金の表面層全体に拡散浸透し、次いで
これを浸出させることによって表面を充分に活性化し九
非晶質合金が電解用陰極材料として優れ九特性を保有す
る理由である。
Furthermore, in order to increase the activity as a cathode for electrolysis, it is necessary to perform a surface activation treatment such as diffusing and penetrating Zn into the alloy surface layer and then leaching this with an alkaline solution. In crystalline metals, diffusion and infiltration of Kn, etc. mainly occurs at grain boundaries, so if Zn, etc. is subsequently leached, the crystal grains will fall off from the metal surface, and the metal will only become brittle, and surface activation may not be effective. many. On the other hand, since the amorphous alloy of the present invention is not crystalline, it naturally does not have grain boundaries, and not only does it not suffer from embrittlement due to preferential diffusion and penetration of Zn etc. into the grain boundaries. Essentially Z
Because the diffusion rate of Zn and other elements is fast, Zn and other elements diffuse into the entire surface layer of the alloy even when treated at a relatively low temperature, and then by leaching it out, the surface is sufficiently activated and an amorphous alloy is formed. This is the reason why it has excellent properties as a cathode material for electrolysis.

なお、znなどの拡散浸透は、例えばZn粉末中で合金
を熱処理するとか、合金に亜鉛メッキを施し先後、熱処
理を行なうなどによって実現する。
Incidentally, the diffusion and penetration of Zn and the like can be achieved, for example, by heat treating the alloy in Zn powder, or by applying zinc plating to the alloy and then heat treating it.

この場合、熱処理温度が為<、非晶質合金が結晶化する
ことは表面を活性化するためKは特に支障がない、友だ
し、結晶化が進行すると合金が脆化する場合があるので
結晶化の進行を避けることが望ましい。
In this case, since the heat treatment temperature is <, crystallization of an amorphous alloy activates the surface, so K is a good friend, and as crystallization progresses, the alloy may become brittle. It is desirable to avoid the progression of

次に1本発明の非晶質合金の製造方法を説明する。Next, a method for producing an amorphous alloy according to the present invention will be explained.

本発明の成分組成を有する合金浴湯tm融状態から約り
04℃/秒以上の冷却速度で超急冷することにより、非
晶質合金を製造することができる。
An amorphous alloy can be produced by ultra-rapidly cooling an alloy bath having the composition of the present invention from a molten state at a cooling rate of about 0.4° C./second or more.

冷却速度が約10407秒よシ遅いと完全に非晶質化す
ることはできない。従って、このような超急冷を実現で
きれば、どのような装置であっても本発明の非晶質合金
を製造することが原理的に可能である。
If the cooling rate is as slow as about 10407 seconds, complete amorphization cannot be achieved. Therefore, as long as such ultra-rapid cooling can be achieved, it is possible in principle to produce the amorphous alloy of the present invention using any type of equipment.

一例として、本発明の非晶質合金を作製する装置を図1
に示す0図において2は下方先端に垂直にノズル3を有
する石英管で、この石英管2の上端に設けられている送
入口1より原料4ならびに原料の酸化を防止する不活性
ガスを送入することができる。前記試料4を加熱するた
め石英管2の周囲に加熱炉5を設ける。ノズルSの垂直
下方に高速回転ロール7を設け、これをモーター6によ
って回転させる。非晶質合金の作製に#i所定の組成の
原料4t−1石英管2.不活性ガス雰囲気下で加熱炉5
によって加熱溶融し、この溶湯をモーター6によって1
.Goo 〜1(L口OQr、p、mで高速回転してい
るロール7の外周面上に加圧不活性ガスによって噴射さ
せると、例えば厚さくLO5■。
As an example, Fig. 1 shows an apparatus for producing the amorphous alloy of the present invention.
In Figure 0 shown in Figure 0, 2 is a quartz tube having a nozzle 3 vertically at its lower end, and a raw material 4 and an inert gas for preventing oxidation of the raw material are fed through an inlet 1 provided at the upper end of this quartz tube 2. can do. A heating furnace 5 is provided around the quartz tube 2 to heat the sample 4. A high-speed rotating roll 7 is provided vertically below the nozzle S, and is rotated by a motor 6. For production of amorphous alloy #i raw material 4t-1 quartz tube with predetermined composition 2. Heating furnace 5 under inert gas atmosphere
The molten metal is heated and melted by a motor 6.
.. Goo ~1 (If the pressurized inert gas is injected onto the outer circumferential surface of the roll 7 rotating at high speed at L mouth OQr, p, m, the gas will be thick, for example, LO5■.

幅10■、長さ数m@度の長い薄板として本発明の非晶
質合金を得ることができる。
The amorphous alloy of the present invention can be obtained as a long thin plate with a width of 10 mm and a length of several meters.

上記方法によシ作製し九本発明の非晶質合金は、同様の
方法にて表面を活性(?、、した結晶質N1などより、
水素ガス発生過電圧ば、小Iさく、シかも、結晶質N1
などは表面活性化鳩の崩壊により使用時間とともに水素
ガス発生過電圧がかなり増大するのに対し、本発明の表
面を活性化した非晶質合金の水素ガス発生過電圧は長時
間使用しても、はとんど変化せず、極めて安定である。
The amorphous alloy of the present invention produced by the above method has a surface activated (?,...) crystalline N1 etc. by the same method.
Hydrogen gas generation overvoltage, small I, high, crystalline N1
In contrast, the hydrogen gas generation overvoltage of the surface-activated amorphous alloy of the present invention does not increase even if used for a long time, whereas the It hardly ever changes and is extremely stable.

従って、本発明の表面を活性化し先非晶質合金は水電解
あるいは塩化アルカリ水溶液電解における陰極として電
力を有効かつ安定して使用し得るなど優れ良性能を備え
ている。
Therefore, the surface-activated pre-amorphous alloy of the present invention has excellent performance such that electric power can be used effectively and stably as a cathode in water electrolysis or aqueous alkali chloride solution electrolysis.

次に本発明における成分組成を限定する理由を述べる。Next, the reason for limiting the component composition in the present invention will be described.

P、  1iii、  BおよびCの一種または二種以
上の合計が、4原子嘔未満ならびに35原子−を越える
と、非晶質構造を得ることが困難になる。従って、P、
  81.  BおよびCの一種または二種以上の合計
は、4〜35原子チの範囲にすることが必要であシ、な
かでも16〜25原子嗟の時に、非晶質構造が容易に得
られる。
When the total of one or more of P, 1iii, B and C is less than 4 atoms or more than 35 atoms, it becomes difficult to obtain an amorphous structure. Therefore, P,
81. The total amount of one or more of B and C must be in the range of 4 to 35 atoms, and in particular, an amorphous structure can be easily obtained when it is 16 to 25 atoms.

N1およびGoは、本発明の非晶質合金の基本元素であ
り、非晶質化および耐食性において有効な元素で、しか
4Znなどを拡散浸透させ、次いでこれを浸出させる表
面活性化処理において極めて有効な元素である。従って
、本発明の第2項において、N1およびCOO中から−
atたは二種の合計が15原子−以上含むことが必要で
ある。
N1 and Go are the basic elements of the amorphous alloy of the present invention, and are effective elements for amorphization and corrosion resistance, and are extremely effective in surface activation treatment in which 4Zn etc. is diffused and then leached out. It is an element. Therefore, in the second term of the present invention, from among N1 and COO -
It is necessary that the total number of at or two types is 15 or more atoms.

IPeは安価で、しかも非晶質化を容易にする元素であ
るが、多量添加すると、表面活性化処理の際、znなど
の拡散速度を低下させ、結晶化温度以下での拡散浸透が
困難であに、シかも多量添加により、電解用陰極として
使用する際、水素を吸蔵して脆化し易くなるため、本発
、明の第2項において?eは65原子チ以下にとどめる
必要がある。
IPe is an element that is inexpensive and facilitates amorphization, but when added in large quantities, it reduces the diffusion rate of Zn and other substances during surface activation treatment, making it difficult to diffuse and penetrate below the crystallization temperature. Addition of a large amount of oxidation gas makes it more likely to absorb hydrogen and become brittle when used as an electrolytic cathode. e must be kept to 65 atoms or less.

Ou、  Mo、  Cr、  MnおよびVは、いず
れも酸およびアルカリ溶液中における非晶質合金の耐食
性を改善する有効な元素であシ、適量の添加は非晶質化
を促進するが、多量添加すると非晶質化−bi困■とな
り、また非晶質合金の結晶化温度が低下する丸め、表面
活性化処理の際、脆化し易くなる。従って、本発明の第
2項において、Ou、 Mo、  Or。
Ou, Mo, Cr, Mn, and V are all effective elements that improve the corrosion resistance of amorphous alloys in acid and alkaline solutions.Addition of an appropriate amount promotes amorphization, but addition of a large amount This results in amorphous formation, which causes problems, and also makes the amorphous alloy susceptible to embrittlement during rounding and surface activation treatments, which lower the crystallization temperature of the amorphous alloy. Therefore, in the second item of the present invention, Ou, Mo, Or.

MnおよびVのうち、一種を九は二種以上の合計は55
厳子チ以下にとどめることが好ましい。
Among Mn and V, the total of 9 types is 2 or more types is 55
It is preferable to keep it below Itsuko Chi.

ムl、  Znおよび8nFi、活性化処理の際、アル
カリ等の溶液で浸透Zn等を浸出する時、ム4zntえ
は8nが非晶質合金素地より浴出するため、活性化がよ
り促進されるが、多量添加すると非晶質合金の結晶化温
度が低下し、表面活性化処理の際、脆化し鳥くなる丸め
、本発明の第2項において、ムl、  Znおよび8n
のうち一種または二種以上の合計が40原子嘩以下にと
どめることが好ましい。
When Zn and 8nFi are activated, when leaching Zn etc. with an alkali solution, activation is further promoted because 8n is leached out from the amorphous alloy base. However, when added in a large amount, the crystallization temperature of the amorphous alloy decreases, and during surface activation treatment, it becomes brittle and becomes rounded.
It is preferable that the total amount of one or more of these is 40 or less.

Pt、 Ru、 Rh、 PI、  工r、ムgおよび
ムUは共に水素発生反応における電極触媒能を高め、し
かも非晶質合金の耐食性を著しく改善する元素であるが
、非常に高価であること、および多量添加すると非晶質
合金の結晶化温暖が低下し、表面活性化処理の際、脆化
し烏くなるため、本発明の第2項において、Pt、  
Ru、 Rh、 P(1,工r、ムgおよびAuのうち
一種または二種以上の合計が50原子チ以下にとどめる
ことが好ましい。
Pt, Ru, Rh, PI, Ru, Mug, and Mu are all elements that enhance the electrocatalytic ability in the hydrogen generation reaction and significantly improve the corrosion resistance of amorphous alloys, but they are very expensive. In the second aspect of the present invention, Pt,
It is preferable that the total of one or more of Ru, Rh, P(1, Cr, Mug, and Au) is kept to 50 atoms or less.

この他、a、 os、 テi、  Zr、  Wb、 
 Taなどの元素はいずれも非晶質構造を安定化するも
のであって、5嘔未満の添加は本発明の目的に何ら支障
をきたさない。
In addition, a, os, te, Zr, Wb,
Elements such as Ta stabilize the amorphous structure, and addition of less than 50% does not impede the purpose of the present invention.

次に、本発明を実施例によりさらに詳しく説明するが、
これら実施例のみに限定されるものではない。
Next, the present invention will be explained in more detail by examples.
The present invention is not limited to these examples.

実施例1 所定の組成の合金を加熱ms俵、超魚冷して厚さ20〜
50μm9幅a5〜7−の非晶質合金薄板を得喪。これ
ら非晶質合金薄板よシ所定の長さに切り出し、これに9
0%硫酸亜鉛、90%硫酸ナトリウム、30%食塩、1
a8%ホウ酸からなるpi[4,20℃の水浴液中、1
ム/lhl鵞の一定電流密度で亜鉛メッキを施し友6次
いでこれらを200−500℃で1時間熱処理して亜鉛
を拡散浸透させた後、90℃の4891水醗化ナトリウ
ム水浴液中で、亜鉛を浸出させ、これを試料電極とし、
90℃、52−水酸化ナトリウム溶液中で50 mV/
winの電位送引速変の動電位法によりカソード分極−
線を求め喪。゛( 一例として表2に90℃、52−水酸化ナトリウム溶液
中、10ム/dIl鵞の陰極電流密tt示す電極電位を
動電位分極!1llsから求めて、まとめて記しえ。
Example 1 An alloy of a predetermined composition is heated in bales and ultra-cooled to a thickness of 20~
An amorphous alloy thin plate with a width of 50 μm and a width of a5 to 7 was obtained. These amorphous alloy thin plates were cut to a specified length, and 9
0% zinc sulfate, 90% sodium sulfate, 30% salt, 1
a pi consisting of 8% boric acid [4, 1 in a water bath solution at 20 °C]
Zinc plating was carried out at a constant current density of 200°C to 200°C, followed by heat treatment at 200-500°C for 1 hour to diffuse and infiltrate the zinc. leached and used this as a sample electrode,
90°C, 50 mV/in 52-sodium hydroxide solution
Cathode polarization is achieved using the potentiodynamic method of changing the potential transfer speed of win.
Mourning in search of a line. (As an example, in Table 2, in 52-sodium hydroxide solution at 90°C, determine the electrode potential exhibiting a cathodic current density tt of 10 μm/dIl from the potentiodynamic polarization !1lls and write it down.

本発明の表面を活性化した非晶質合金は、比較例として
示す結晶質、IF・、 Niに比較して責な電位を示し
、極めて優れた水素ガス発生触媒能倉有する。さらに表
SK示す如く、本発明と同じ条件て表面を活性化した)
Ti Fi、電解当初優れた水素ガス発生触媒能を示す
が、徐々に電位は卑の方向に移行するのに対し、本発明
の表面を活性化した非晶質合金は、初期の優れ走電極電
位に変動がなく安定である。これは結晶質合金の表面活
性化が主に結晶粒界で行なわれているため、電解時間の
経過とともに活性化層の崩壊脱落が進行するのに対し、
非晶質合金の表面活性化層の機械的安定性が極めて優れ
ていることを示している。従って、本発明の表面を活性
化した非晶質合金は、水電解用陰極として極めて優れた
水素ガス発生触媒能を有し、さらにその電極安定性が優
れていると言える。
The surface-activated amorphous alloy of the present invention exhibits a lower potential than the crystalline, IF, Ni shown as a comparative example, and has an extremely excellent hydrogen gas generation catalytic capacity. Furthermore, as shown in Table SK, the surface was activated under the same conditions as in the present invention)
TiFi exhibits excellent hydrogen gas generation catalytic ability at the beginning of electrolysis, but the potential gradually shifts to a less noble direction, whereas the surface-activated amorphous alloy of the present invention has an excellent initial running electrode potential. It is stable with no fluctuation. This is because the surface activation of crystalline alloys occurs mainly at grain boundaries, and as the electrolysis time progresses, the activated layer disintegrates and falls off.
This shows that the mechanical stability of the surface activated layer of the amorphous alloy is extremely excellent. Therefore, it can be said that the surface-activated amorphous alloy of the present invention has an extremely excellent hydrogen gas generation catalytic ability as a cathode for water electrolysis, and also has excellent electrode stability.

実施例2 実施例1と同様にして作製した試料電極を用い、80C
,pHi4.4M食塩溶液中にて動電位カソード分極曲
線を測定した。これら動電位分極曲線より求めた10ム
/がの陰極電流密度を示す電位を同様の方法で求めた結
晶質Feの電位を基準にして電位差として表4に示す。
Example 2 Using a sample electrode prepared in the same manner as Example 1, 80C
, the potentiodynamic cathodic polarization curve was measured in a pHi4.4M saline solution. Table 4 shows potentials representing cathodic current densities of 10 mu/ga determined from these potentiodynamic polarization curves as potential differences based on the potential of crystalline Fe determined in a similar manner.

この電位差が正の債とは、結晶質νeに比較して水素ガ
ス発生過電圧が小さいことを示し、本発明の表面を活性
化した非晶質合金は結晶i[Feに比較していずれも1
50〜200mV水素カス発生過電圧が小さく、従って
、アルカリ塩溶液電解用陰極として、極めて効率良く水
素ガスを発生し得る優れ九陰極材料であると言える。
A positive potential difference means that the hydrogen gas generation overvoltage is smaller than that of crystalline νe, and the surface-activated amorphous alloy of the present invention has a positive potential difference of 1 compared to crystalline i[Fe.
It has a low hydrogen sludge generation overvoltage of 50 to 200 mV, and therefore can be said to be an excellent cathode material that can generate hydrogen gas extremely efficiently as a cathode for alkaline salt solution electrolysis.

表2500℃で亜鉛の拡散浸透処[1を施しその後Zn
を浸出させて表面會活性化 した試料を用い90℃、32s水酸化 ナトリウム溶液中で測定し九動電位分極曲線から求めた
10ム/diKおける水素ガス発生電位 試  料   電位■(vsHgO/’Hg−lNNa
0H)本発明合金 11    −t095 ム 2    −1105 Jf65    −L116 ム 4    −4145 ム 5    −t104 Jl、!     −t117 蔦 7    −1105 A  8    −t09B ム ?     −t113 410    −1.094 411    −1.125 Ji12    −1.136 ム13    −1.090 414    −tot8 扁15    −1.112 416    −1.064 ム17    −1084 41B     −tllo 419    −1.094 420    −toas 421    −1.062 扁22    −1.093 A25    −1.066 轟24    −t059 雇25    −t078 比較例 結晶質IPe      −t274e  N
i      −1285 090℃、52嘩NaOH浴液中におけ電位V : H
gO/Hg−1M NaOH表4 500℃で亜鉛を拡
散浸透処理を施しその後Znを浸出させて表面を活性化 線を測定しこれら勧分他曲線より求め 7’(10A〆Vの陰極電流密度を示す電位を同様の方
法で求めた結晶[Faの 試  料    10〜福?陰極電流密’fKおける結
晶質Feとの電位差(7) JP&1           +α190ム 2  
         +(1170ム 5       
 +α150 A4         +(Ll、20蔦 5    
    十1178 ム 6        +α145 A7         +(L185 ム 6        +1190 ム 9        +α146 轟10         +1194 A11         +α125 ム12        +α112 ム13        +α201 ム14         +a182 .415         +1152414    
     +(L207Ji、17         
十α190418         +0.143ム1
9        +112 414         +α196 421          +(1202I622  
       +α195屋23         +
α209 424           十α214、≦25  
        十0201
Table 2: Zinc diffusion treatment [1] was applied at 2500°C, and then Zn
Hydrogen gas generation potential at 10 μm/diK was measured in a sodium hydroxide solution at 90°C for 32 s using a surface-activated sample by leaching HgO. -lNNa
0H) Invention alloy 11 -t095 Mu 2 -1105 Jf65 -L116 Mu 4 -4145 Mu 5 -t104 Jl,! -t117 Tsuta 7 -1105 A 8 -t09B Mu? -t113 410 -1.094 411 -1.125 Ji12 -1.136 Mu13 -1.090 414 -tot8 Bian15 -1.112 416 -1.064 Mu17 -1084 41B -tllo 419 -1.094 420 -toas 421 -1.062 Flat 22 -1.093 A25 -1.066 Todoroki 24 -t059 Hire 25 -t078 Comparative example Crystalline IPe -t274e N
i -1285 090℃, potential V in 52℃ NaOH bath solution: H
gO/Hg-1M NaOH Table 4 Zinc was diffused and penetrated at 500°C, then Zn was leached out, the activation line was measured on the surface, and the cathode current density of 7' (10A〆V) was determined from these recommended curves. The potential shown by the crystal [Fa sample 10~F?Cathode current density'fK potential difference with crystalline Fe (7) JP & 1 + α190 μm 2
+(1170m 5
+α150 A4 +(Ll, 20 ivy 5
11178 Mu6 +α145 A7 +(L185 Mu6 +1190 Mu9 +α146 Todoroki 10 +1194 A11 +α125 Mu12 +α112 Mu13 +α201 Mu14 +a182 .415 +1152414
+(L207Ji, 17
10α190418 +0.143mu1
9 +112 414 +α196 421 +(1202I622
+α195ya23 +
α209 424 10 α214, ≦25
10201

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の非晶質合金を製造する装置の一例を示す
概略図である。 1・・・原料及び不活性ガス送入口 2・・・石英管 S・・・ノズル部 5・・・加熱炉 6・・・モーター 7・・・^速回転ロール 特許出願人 東洋曹達工業株式会社 ′1:
FIG. 1 is a schematic diagram showing an example of an apparatus for producing the amorphous alloy of the present invention. 1... Raw material and inert gas inlet 2... Quartz tube S... Nozzle section 5... Heating furnace 6... Motor 7... ^ Speed rotating roll Patent applicant Toyo Soda Kogyo Co., Ltd. '1:

Claims (1)

【特許請求の範囲】[Claims] (1)  P、  81.  BおよびCのいずれか一
種あるいは二種以上4〜55原子嘔を含み、残部がMl
およびCoの中から一種あるいは二撫からなる電解陰極
用表面活性化非晶質合金。 (21F、  81.  BおよびCのいずれか一種あ
るいは二種以上4〜35原子憾を含み、かつ、11  
Feを65原子チ以下 意I  Cu、  Mo、 Or、 MnおよびVの一
種あるいは二種以上、55原子参以下 3) ム4.Znおよび8nの−mまたは二種以上、4
0原子−以下 4)  Pt、 Ru、 Rh、 P(1,Ir、ムg
およびムUのいずれか一種また社二種以上、sO原原子
塊以 下群のうちから選ばれ友−評を九は二群以上の合計量で
、65原子チ以下含有し、実質的残部として15原子悌
以上のMlおよびCOO中から一種ま九は二種を含み、
全体を100原子−とする電解陰極用表面活性化非晶質
合金。
(1) P, 81. Contains 4 to 55 atoms of one or more of B and C, and the remainder is Ml
A surface-activated amorphous alloy for an electrolytic cathode consisting of one or both of Co and Co. (21F, 81. Contains 4 to 35 atoms of any one or more of B and C, and 11
Fe means 65 atoms or less I; one or more of Cu, Mo, Or, Mn and V, 55 atoms or less 3) Mu4. -m or two or more of Zn and 8n, 4
0 atoms - 4) Pt, Ru, Rh, P(1, Ir, Mug
9 is the total amount of two or more groups, containing 65 atoms or less, and the substantial remainder is 15 1 or 9 of Ml and COO of atomic strength or higher include two species,
A surface-activated amorphous alloy for electrolytic cathodes having a total of 100 atoms.
JP57081544A 1982-05-17 1982-05-17 Surface activated amorphous alloy for electrolytic cathode Expired JPS6056409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081544A JPS6056409B2 (en) 1982-05-17 1982-05-17 Surface activated amorphous alloy for electrolytic cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081544A JPS6056409B2 (en) 1982-05-17 1982-05-17 Surface activated amorphous alloy for electrolytic cathode

Publications (2)

Publication Number Publication Date
JPS58199839A true JPS58199839A (en) 1983-11-21
JPS6056409B2 JPS6056409B2 (en) 1985-12-10

Family

ID=13749230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081544A Expired JPS6056409B2 (en) 1982-05-17 1982-05-17 Surface activated amorphous alloy for electrolytic cathode

Country Status (1)

Country Link
JP (1) JPS6056409B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167732A (en) * 1984-09-07 1986-04-07 Daiki Gomme Kogyo Kk Surface-activated amorphous alloy for electrode for electrolysis of solution
FR2571658A1 (en) * 1984-08-14 1986-04-18 Bridgestone Corp Amorphous alloy reinforcement material
JPS6263633A (en) * 1985-09-13 1987-03-20 Mitsubishi Steel Mfg Co Ltd Copper-base alloy with flexibility
JPH04254538A (en) * 1991-02-01 1992-09-09 Masanobu Tachibana Corrosion-resistant copper alloy
JP2004137587A (en) * 2002-10-21 2004-05-13 Daiki Engineering Kk Alloy electrode for hydrogen generation and its production method
CN113134623A (en) * 2021-04-28 2021-07-20 西北工业大学 Water-soluble amorphous noble metal nano particle and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236405A (en) * 1985-04-10 1986-10-21 Diesel Kiki Co Ltd Chucking device of machine tool

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571658A1 (en) * 1984-08-14 1986-04-18 Bridgestone Corp Amorphous alloy reinforcement material
JPS6167732A (en) * 1984-09-07 1986-04-07 Daiki Gomme Kogyo Kk Surface-activated amorphous alloy for electrode for electrolysis of solution
JPH0445572B2 (en) * 1984-09-07 1992-07-27 Daiki Gomu Kogyo Kk
JPS6263633A (en) * 1985-09-13 1987-03-20 Mitsubishi Steel Mfg Co Ltd Copper-base alloy with flexibility
JPH0535207B2 (en) * 1985-09-13 1993-05-26 Mitsubishi Steel Mfg
JPH04254538A (en) * 1991-02-01 1992-09-09 Masanobu Tachibana Corrosion-resistant copper alloy
JP2004137587A (en) * 2002-10-21 2004-05-13 Daiki Engineering Kk Alloy electrode for hydrogen generation and its production method
CN113134623A (en) * 2021-04-28 2021-07-20 西北工业大学 Water-soluble amorphous noble metal nano particle and preparation method thereof
CN113134623B (en) * 2021-04-28 2022-06-03 西北工业大学 Water-soluble amorphous noble metal nano particle and preparation method thereof

Also Published As

Publication number Publication date
JPS6056409B2 (en) 1985-12-10

Similar Documents

Publication Publication Date Title
Archer et al. The electrochemical properties of metallic glasses
US4781803A (en) Electrolytic processes employing platinum based amorphous metal alloy oxygen anodes
US5112388A (en) Process for making nanocrystalline metallic alloy powders by high energy mechanical alloying
Robinson et al. On the effects of antimony and glue on zinc electrocrystallization behaviour
Hashimoto Chemical properties
JPS58199839A (en) Surface-activated amorphous alloy for cathode for electrolysis
JPH0465913B2 (en)
US3065535A (en) Methods of making coated metal bodies and composite metal sheets
EP0164200A1 (en) Improved electrolytic processes employing platinum based amorphouse metal alloy oxygen anodes
JPH0748658A (en) Material for sacrificial electrode for preventing corrosion excellent in corrosion resistance
GB2146660A (en) Surface-activated amorphous alloys for electrodes in the electrolysis of solutions
JP5229563B2 (en) Corrosion-resistant conductive film, corrosion-resistant conductive material, polymer electrolyte fuel cell and separator thereof, and method for producing corrosion-resistant conductive material
JPH0512425B2 (en)
JPS6167732A (en) Surface-activated amorphous alloy for electrode for electrolysis of solution
US7381368B2 (en) Palladium-boron alloys and methods for making and using such alloys
JPS61281889A (en) Electrode material for electrolysis
JPS5849632B2 (en) Amorphous alloy electrode material for electrolysis
US2997783A (en) Methods of applying nickel phosphorus coatings upon base metal bodies
Moffat et al. Effects of Alloy Chemistry on the Corrosion of FeNi Metal-Metalloid Metallic Glasses
JPS58131656A (en) Surface activated amorphous alloy for fuel electrode of methanol system fuel cell
JPH08288444A (en) Lead frame preparation
JPH03180481A (en) Production of copper oxide powder by electrolysis
Wojtas et al. Corrosion and electrochemical characterization of rapidly solidified Cu B, Cu Al B, Cu Cr Zr alloys
KR20220111532A (en) Fabrication of petal-shaped bismuth subcarbonate by the immersion method
JPS5983798A (en) Method and apparatus for metal plating