JPS58199754A - Powder body preheating method and device - Google Patents

Powder body preheating method and device

Info

Publication number
JPS58199754A
JPS58199754A JP8080482A JP8080482A JPS58199754A JP S58199754 A JPS58199754 A JP S58199754A JP 8080482 A JP8080482 A JP 8080482A JP 8080482 A JP8080482 A JP 8080482A JP S58199754 A JPS58199754 A JP S58199754A
Authority
JP
Japan
Prior art keywords
powder
gas
heat exchanger
granular material
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8080482A
Other languages
Japanese (ja)
Other versions
JPH0375500B2 (en
Inventor
土田 鎮夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP8080482A priority Critical patent/JPS58199754A/en
Publication of JPS58199754A publication Critical patent/JPS58199754A/en
Publication of JPH0375500B2 publication Critical patent/JPH0375500B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、粉粒体予熱方法および、それを実施する装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preheating powder and granular material and an apparatus for carrying out the method.

従来、セメント原料などの粉粒体を加熱、焼成する炉に
おいて、熱エネルギー節約の目的で、粉粒体予熱装置と
して、サイクロン式サスペンションプレヒーターが多く
採用されている。その理由は他の予熱機と比較して、そ
の構造が簡単かつスケールアップが容易であることなど
、多くの利点を有することにある。
BACKGROUND ART Conventionally, in furnaces for heating and firing powder and granular materials such as cement raw materials, cyclone suspension preheaters have often been employed as powder and granular material preheating devices for the purpose of saving thermal energy. The reason for this is that it has many advantages compared to other preheaters, such as its simple structure and easy scale-up.

上記サスペンションプレヒーターtf、気体−粉粒体間
の熱交換を行なう機能と分離を行なう機能を、一つのユ
ニットに持たせ、当該ユニットを単数または複数組み合
わせて構成されている。上記ユニットを多段化し、熱交
換回数を増すことで、熱交換性能を向上させている。し
かし、サイクロンは圧力損失が大きい丸め、多段化する
ことによる燃料費減のメリットと圧力損失増加に伴う動
力エネルギー増加のデメリットの両方を考慮する必要が
ある。セメント焼成キルンでは、この点から、通常4段
式のものを使用している。
The suspension preheater tf has a function of heat exchange between gas and powder and a function of separation, and is configured by combining one or more units. The heat exchange performance is improved by making the units multistage and increasing the number of heat exchanges. However, it is necessary to consider both the advantage of reducing fuel costs due to rounding and multi-stage cyclones, which have a large pressure loss, and the disadvantage of increased power energy due to increased pressure loss. From this point of view, a four-stage cement kiln is usually used.

一方、最近、サイクロンの圧力損失を減らす研究が行わ
れて、細流サイクロン、横型サイクロンなどが開発され
、実用に供されつつある。
On the other hand, recently, research has been conducted to reduce pressure loss in cyclones, and trickle cyclones, horizontal cyclones, etc. have been developed and are being put into practical use.

しかし、これらのサイクロンは、従来のサイクロンと比
較して圧力損失は減少しているものの、その構造がより
複−となシ、安定運転上、間融を生じ4可能性が強かっ
た。また、その圧力損失低減効果も大幅な本のでないな
ど、多くの欠点を有していた。
However, although these cyclones have reduced pressure loss compared to conventional cyclones, their structures are more complex and there is a strong possibility of intermelting occurring in stable operation. In addition, it had many drawbacks, such as the fact that its pressure loss reduction effect was not significant.

さらに、複数個所に狭隘部を持つ垂直な熱交換機内を上
昇貫流するガスと粉粒体を対向渦流させ、熱交換を行な
う装置が提案されているが(%公昭46−224807
 、この装置によると、ガス自体も渦流となるので、圧
力損失が大と愈り、また傾斜部の傾斜角度が小であるた
め、粉粒体が熱交換機側部に堆積する欠点が6つ九。
Furthermore, a device has been proposed in which heat exchange is performed by causing the gas and powder particles flowing upward through a vertical heat exchanger having multiple narrow parts to flow in opposing vortices (Kokusho 46-224807
According to this device, the gas itself becomes a vortex flow, so the pressure loss is large and the inclination angle of the inclined part is small, so there are six drawbacks: powder and granules accumulate on the side of the heat exchanger. .

本発明は、上記の従来技術の欠点を解消するべくなされ
たもので、拡大傾斜部を持つ容器内に、下部よ抄上向き
に噴流状をなしてガスを導入し、ガス速度を上部に向う
ほど低下させ、当該ガス流に粉粒体を容器側部よ抄投入
し、粉粒体を下部において加速し、上部にお埴て減速し
、その一部が沈降するように噴流層を上記傾斜部に形成
させ、それによってガスと粉粒体との間の熱交換を行な
い、ガスは容器の天井部から該容器の外側に排出し、側
壁に連結してlIlまたは複数個の分離管を設け、粉粒
体は分離管底部から排出するようにしたことを特徴とす
る粉粒体予熱方法およびそれを実施するための装置を提
供するものである・ 以下に添付図面に示し九実施例を参照しながら本発明を
説明する。
The present invention has been made to solve the above-mentioned drawbacks of the prior art. Gas is introduced in the form of a jet upward from the bottom into a container having an expanding slope, and the gas velocity is increased as the gas velocity increases toward the top. The powder and granules are introduced into the gas flow from the side of the container, and the powder and granules are accelerated in the lower part and decelerated in the upper part. forming a heat exchanger between the gas and the granular material, the gas is discharged from the ceiling of the container to the outside of the container, and is connected to the side wall and is provided with an IIl or a plurality of separation tubes; The present invention provides a method for preheating a powder or granule material, characterized in that the powder or granule material is discharged from the bottom of a separation tube, and a device for carrying out the method. Nine embodiments shown in the attached drawings are referred to below. The present invention will be explained below.

第1(A)、(B)図は、本発明の粉粒体予熱方法に使
用する装置のユニットを示し、(B)図は四回に示すD
 −D’部の断面図である。該ユニットは、熱交換機と
4つの分離管からなる。1は熱交換機、2は分離管、3
はガス導入口、4は粉粒体導入口、5は粉粒体移送口、
6tiガス排出口である。
Figures 1 (A) and (B) show the unit of the apparatus used in the method for preheating powder and granular material of the present invention, and Figure 1 (B) shows the D
- It is a sectional view of D' section. The unit consists of a heat exchanger and four separation tubes. 1 is a heat exchanger, 2 is a separation tube, 3
is a gas inlet, 4 is a powder inlet, 5 is a powder transfer port,
6ti gas outlet.

一ヒ記熱交換機、lは、傾斜した側壁8によって形成し
た拡大傾斜部L−を備えており、粉粒体の堆積を防ぐた
めに、側壁8の傾斜αlが55°以下とならぬように構
成され、しかも拡大傾斜部の上部8′のガス速度がガス
導入口3でのガス速度の1/2以下となるように構成さ
れている。ガス導入口3は絞9部を形成してお9、図示
のものはスロート状に構成されている。
The heat exchanger 1 is equipped with an enlarged slope portion L- formed by a sloped side wall 8, and is configured such that the slope αl of the side wall 8 is not less than 55° in order to prevent the accumulation of powder particles. Moreover, the gas velocity at the upper part 8' of the enlarged inclined portion is configured to be 1/2 or less of the gas velocity at the gas introduction port 3. The gas inlet 3 forms a constriction 9, and the illustrated one has a throat shape.

粉粒体導入口4は側壁8の所定の場所に設けられる。上
記粉粒体移送口5は、熱交換機lで熱交換された原料の
排出口であると□ともに、分離管2の粉粒体導入口でも
ある。
The powder inlet 4 is provided at a predetermined location on the side wall 8. The granular material transfer port 5 is an outlet for the raw material heat-exchanged in the heat exchanger 1, and is also an inlet for the granular material into the separation tube 2.

ガス排出ロ6Fi拡大傾斜部りの天井部9に設けられて
いる。
The gas exhaust hole 6Fi is provided on the ceiling part 9 of the enlarged inclined part.

第2図は、第1図に示した実施例の他の例を示し、第1
図と同一符号は同一部分を示す。この実施例は分離管を
側IR8の傾斜部の途中に設けた点において第1図の実
施例と相違して−る。
FIG. 2 shows another example of the embodiment shown in FIG.
The same reference numerals as in the figure indicate the same parts. This embodiment differs from the embodiment shown in FIG. 1 in that the separation tube is provided in the middle of the inclined portion of the side IR8.

第3図は最上段のユニットを示し、10は熱交換機、1
1はガス導入口、12は粉粒体導入口、13はガス移送
口、14Fiガス排出口、15はサイクロン、16は粉
粒体排出口である。
Figure 3 shows the top unit, 10 is a heat exchanger, 1
1 is a gas inlet, 12 is a powder inlet, 13 is a gas transfer port, 14 is a Fi gas outlet, 15 is a cyclone, and 16 is a powder outlet.

上記熱交換機10Fi傾斜した側壁17によって形成し
た拡大傾斜部を備えており、粉粒体の堆積を防ぐために
、側壁17の傾斜α?が55°以下とならぬように構成
され、しかも拡大傾斜部の上部17′でのガス連間がガ
ス導入口11でのガス速度の172以下となるように構
成されている。ガス導入口11Fi絞り部を形成してi
す、図示のものは、スロート状に構成されている。粉粒
体導入口12は側壁17の所定の場所に1個または複数
個設けられる。
The heat exchanger 10Fi has an enlarged slope formed by a sloped side wall 17, and the slope α? is configured such that the angle is not less than 55°, and the gas velocity at the upper portion 17' of the enlarged inclined portion is configured to be 172 degrees or less of the gas velocity at the gas inlet 11. Forming the gas inlet 11Fi constriction part i
The one shown has a throat-like structure. One or more powder introduction ports 12 are provided at predetermined locations on the side wall 17 .

上記第1図と第2図に示す実施例において、粉粒体導入
口4から入った粉粒体(図中実線矢印AJは、ガス導入
口3からの上向きガス(図中点線矢印B)と合流する。
In the embodiment shown in FIGS. 1 and 2 above, the granular material entering from the granular material inlet 4 (solid line arrow AJ in the figure) is connected to the upward gas from the gas inlet 3 (dotted line arrow B in the figure). join together.

ガスBは、15〜40rrmsの速度でスロート部を通
過し、粉粒偉人と合流し、拡大傾斜部り内に噴流層Cを
形成する。
Gas B passes through the throat at a speed of 15 to 40 rrms, merges with the powder particles, and forms a spouted bed C within the expanding slope.

スロート部ガス流はその速度を調節することによって、
スロート部より粉粒体が下部に落下するのを防止するこ
とが好ましい。
By adjusting the speed of the throat gas flow,
It is preferable to prevent the powder from falling to the lower part from the throat part.

上記噴流層Cにおいて、上向きの噴流ガスによって粉粒
体は上下に移動するとともに、ガス流によって何回も粉
粒体が加速を受ける。ガスBと粉粒体Aとの熱交換は、
粉粒体がガス流によって加速を受けているときにとくに
激しく行なわれるので、上記噴流層において効率の良い
熱交換が行なわれ、る。なお、従来方法によっても、ガ
ス中に粉i体が均一に分散できれば、本発明と同程度の
効率で熱交換がなされるはずであるが、実際の装置にお
いては、粉粒体の均一な分散は非常に困難であり、効率
的な熱交換が不可能であった。さらに、熱交換機の拡大
傾斜部の傾斜αを55°以上にすることによって、粉粒
体が側壁に堆積しないで、噴流層の形成を容易にして熱
交換の効率が改善され丸。
In the spouted bed C, the powder and granules are moved up and down by the upward jet of gas, and the powder and granules are accelerated many times by the gas flow. The heat exchange between gas B and powder A is
This occurs particularly violently when the powder or granules are accelerated by the gas flow, so that efficient heat exchange takes place in the spouted bed. Note that even with the conventional method, if the powder particles can be uniformly dispersed in the gas, heat exchange should be performed with the same efficiency as the present invention, but in actual equipment, it is difficult to uniformly disperse the powder particles was extremely difficult and made efficient heat exchange impossible. Furthermore, by setting the inclination α of the enlarged inclined portion of the heat exchanger to 55° or more, the powder particles do not accumulate on the side walls, facilitating the formation of a spouted bed, and improving the efficiency of heat exchange.

一般にガス−粉粒体の混合物では、固気比を高めると、
固気比が低い時は単一粒子として挙動していたものが、
粒子群として挙動する傾向が強まり、見掛上、粗大粒子
と同じ働きをするようになる。
Generally, in a gas-powder mixture, increasing the solid-gas ratio will result in
When the solid-gas ratio is low, what behaves as a single particle becomes
They tend to behave as a group of particles, and appear to function in the same way as coarse particles.

上記実施例では、熱交換機内に噴流層Cを形成させ、そ
れによって固気比を高め(すなわち、粉粒体濃度を高め
)るので側壁近傍の噴流層の粉粒体は見掛上粗大粒子と
しての挙動を示すため、熱交換を完了した粉粒体は、上
部側壁に分離管を設けることにより、圧力損失のほとん
どないガス−粉粒体の分離が可能となる。また、排出口
に接続される排出シュートには、ガスの逆流による粉粒
体の再飛散を防止する目的で、フラップダンパー等のエ
アロツク装置を設けることが好ましい。
In the above embodiment, the spouted bed C is formed in the heat exchanger, thereby increasing the solid-air ratio (that is, increasing the powder and granule concentration), so that the powder and granules in the spouted bed near the side wall are apparently coarse particles. Therefore, by providing a separation tube on the upper side wall of the granular material that has undergone heat exchange, it becomes possible to separate the gas from the granular material with almost no pressure loss. Further, it is preferable to provide an aerodynamic device such as a flap damper on the discharge chute connected to the discharge port in order to prevent the powder from being re-scattering due to the backflow of gas.

従来のサイクロンは、その分離効率を高めるために、サ
イクロンの入口風速を高めることが必要であり、圧力損
失は大幅に増加した。そこで最終段のサイクロンは排ガ
ス処理、ダスト処理の便のだめ分離効率を95チ前後と
し、他殺のサイクロンについては60〜90%の分離効
率に留めざるを得なかった。従来のサイクロンでは、粒
子群に遠心力を与え、粒子群を破壊し、壁際に移送して
ガス速度を遅くし、粉粒体を沈降させていた。さらに、
対向渦流を用いた熱交換機では、ガス自体が渦流になる
ため圧力損失が大きくなり、また粉粒体が熱交換機の側
壁に堆積して熱交換の効率を悪くさせ、同時に粉粒体の
排出を妨げていた。
Conventional cyclones require increasing the cyclone inlet wind speed to increase their separation efficiency, and the pressure drop increases significantly. Therefore, the final stage cyclone had a separation efficiency of around 95% for waste gas treatment and dust treatment, and the cyclone for murder had no choice but to limit the separation efficiency to 60 to 90%. Conventional cyclones apply centrifugal force to particle groups to break them up and transport them to the wall, slowing down the gas velocity and causing the particles to settle. moreover,
In a heat exchanger that uses opposed vortices, the gas itself becomes a vortex, resulting in a large pressure loss, and powder and granules accumulate on the side walls of the heat exchanger, reducing heat exchange efficiency. It was hindering me.

本発明では、熱交換機を、下段の熱交換機のガス排出口
を上段の熱交換機の熱交換部のガス導入口に連結するこ
とによって上下に複数段設けることができ、分離管の構
造が簡単であり、熱交換部と分離管を一体とし、自立型
の構造を採ることができ、サイクロン型分離機を使わな
いため、圧力損失が小さい。
In the present invention, multiple stages of heat exchangers can be provided vertically by connecting the gas discharge port of the lower stage heat exchanger to the gas inlet of the heat exchange section of the upper stage heat exchanger, and the structure of the separation tube is simple. The heat exchange part and separation tube are integrated, allowing for a self-supporting structure, and since a cyclone separator is not used, pressure loss is small.

上記のように、本発明では、熱交換機に噴流機能があり
、粉粒体が繰ヤ返しガス流によって加速され、熱交換が
行なわれるため、従来の気流方式より熱交換性が優れて
いる。まえ、粉粒体とガスの分離管は遠心分離によるガ
スと粉粒体の分離作用を用いることなしに、粉粒体の凝
集作用(粒子群化)を利用したものであるため、高い分
離効率が低圧力損失で得られる。さらに、熱交換機の構
造が単純である。
As described above, in the present invention, the heat exchanger has a jet function, and the granular material is repeatedly accelerated by the gas flow to perform heat exchange, so that the heat exchange performance is superior to the conventional air flow method. First, the separation tube for powder and gas utilizes the agglomeration effect (particle clustering) of powder and granule, without using the separation effect of gas and powder by centrifugation, resulting in high separation efficiency. can be obtained with low pressure loss. Furthermore, the structure of the heat exchanger is simple.

第4図(+)〜fc)は本発明に使用することのできる
熱交換機の他の実施例を示す。
FIGS. 4(+) to fc) show other embodiments of the heat exchanger that can be used in the present invention.

本図(a)は、ガス導入口3をオリフィス状にし、天井
部を円形にしたタイプ、(blは、ガス導入口をスロー
ト状にし、天井部9を円形にしたタイプ、(C)は天井
部9を平らにしガス導入口3をオリフィス状にしだタイ
プである。
This figure (a) shows a type in which the gas inlet 3 is shaped like an orifice and the ceiling part is circular, (bl is a type in which the gas inlet is made into a throat shape and the ceiling part 9 is circular, and (C) shows the type in which the ceiling part is circular. It is a type in which the part 9 is flattened and the gas inlet 3 is shaped like an orifice.

上記いずれの実施例によって4、効率の良い熱交換と分
離を行表わせることができる。
4. Efficient heat exchange and separation can be performed using any of the above embodiments.

本発明の粉粒体予熱方法を適用した多段式プレヒーター
を第5図と第6図に示す。
A multistage preheater to which the method for preheating powder or granular material of the present invention is applied is shown in FIGS. 5 and 6.

第5図において、11〜14ti熱交換機、21〜24
は分離管、19はロータリーキルン、20は接続ダクト
であり、図中実線矢印は粉粒体の挙動を示し、点線矢印
はガス流を示す。
In Fig. 5, 11-14ti heat exchanger, 21-24
19 is a separation tube, 19 is a rotary kiln, and 20 is a connecting duct. In the figure, solid line arrows indicate the behavior of the powder and granular material, and dotted line arrows indicate the gas flow.

また、第5図に示す多段式プレヒーターの最下段の熱交
換機にバーナとクーラー抽気ダクトを設け、仮焼炉とし
ての作用をもたせることもできる。この場合、熱交換機
はもう一台増設する。
Further, a burner and a cooler bleed duct can be provided in the heat exchanger at the lowest stage of the multistage preheater shown in FIG. 5, so that it can function as a calcining furnace. In this case, one more heat exchanger will be added.

第6図において、第5図と同−附号は同一部分を示す。In FIG. 6, the same numbers as in FIG. 5 indicate the same parts.

同図に示すものは、上記多段式プレヒータの最下段のガ
ス導入口に特願昭51−81344に開示された装置の
サイクロン上部ガス排出口を接続したもので、21はス
ロート部、nはバーナ、23は、仮焼炉、24Fi2次
空気導入口、5は拡大空間部゛゛□、あけサイクロンを
示す。
In the figure, the gas inlet at the bottom of the multi-stage preheater is connected to the upper gas outlet of the cyclone of the device disclosed in Japanese Patent Application No. 51-81344, where 21 is the throat portion and n is the burner. , 23 is a calcining furnace, 24 is a secondary air inlet, 5 is an enlarged space section, and an opening cyclone.

上記実施例において、最上段の分離管21に電気集塵機
(図示せず)を付設してもよい。
In the above embodiment, an electrostatic precipitator (not shown) may be attached to the uppermost separation tube 21.

上述の実施例装置は、従来のサイクロン式サスペンショ
ンプレヒーターに比して熱効率が高く、圧力損失が極め
て小さく、構造が単純で装置の配置が楽Knる力ど種々
の利点がある。
The device of the above embodiment has various advantages over the conventional cyclone type suspension preheater, such as high thermal efficiency, extremely low pressure loss, simple structure, and easy arrangement of the device.

本発明によれば、構造の単純な圧力損失の極めて小さい
粉粒体予熱方法および装置を提供することができる。
According to the present invention, it is possible to provide a method and apparatus for preheating powder or granular material with a simple structure and extremely low pressure loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)、第2図囚、(同、第3図は本発
明にかかる粉粒体予熱装置の横断面図及び縦断面図、第
4図1a)〜fc)は熱交換機の実施例の横断面図であ
る。第5図は本発明を多段式ブレヒーターに適用した場
合の立面−図、第6図は本発明を仮焼炉付き多段式プレ
ヒーターに適用した場合の立面図である。 1.10・・・・・・熱交換機、2.15・・・・・・
分離管、3.11・・・・・・ガス導入口、 4.12・・・・・・粉粒体導入口、 5.13・・・・・・粉粒体移送口、 6.14・・・・・・ガス排出口、 7.16・・・・・・粉粒体排出口、 8.17・・・・・・側壁、 19・・・・・・ロータリーキルン、 20・・・・・・接続ダクト、 n・・・・・・仮焼炉
、4・・・・・・燃料バーナー。 第1図 (A) (B) 第2図 (A) (B)
Figures 1 (A) and (B), Figures 2 and 3, (Figures 3 and 3 are cross-sectional views and vertical cross-sectional views of the powder and granular material preheating device according to the present invention, and Figure 4 1a) to fc) are 1 is a cross-sectional view of an embodiment of a heat exchanger; FIG. FIG. 5 is an elevational view when the present invention is applied to a multistage preheater, and FIG. 6 is an elevational view when the present invention is applied to a multistage preheater with a calcining furnace. 1.10... Heat exchanger, 2.15...
Separation tube, 3.11... Gas inlet, 4.12... Powder inlet, 5.13... Powder transfer port, 6.14. ... Gas discharge port, 7.16 ... Powder discharge port, 8.17 ... Side wall, 19 ... Rotary kiln, 20 ...・Connection duct, n...Calcination furnace, 4...Fuel burner. Figure 1 (A) (B) Figure 2 (A) (B)

Claims (7)

【特許請求の範囲】[Claims] (1)下部より上向きに噴流状をなしてガスを容器内に
導入し、その容器に形成し九拡大傾斜部によってガス速
度を上部に向う1はど低下させ、容器側部より該ガス流
に粉粒体を導入し、粉粒体を下部においては加速し、上
部においては減速し、その一部が沈降するようにして噴
流層を上記拡大傾斜部に形成させ、それによってガスと
粉粒体との熱交換を行ない、ガスは容器の天井部から排
出し、一方粉粒体は容器の側部に連結された1個または
複数個の分離管から排出することを特徴とする粉粒体予
熱方法。
(1) Gas is introduced into the container in the form of a jet upward from the bottom, and the gas velocity is reduced upward by a 9-enlarged slope section formed in the container, and the gas flow is introduced from the side of the container. Powder is introduced, the powder is accelerated in the lower part, decelerated in the upper part, and a part of it settles to form a spouted layer on the expanding slope, thereby causing the gas and the powder to preheating of powder and granular material, characterized in that the gas is discharged from the ceiling of the container, while the powder and granular material is discharged from one or more separation pipes connected to the side of the container. Method.
(2)上記の粉粒体とガスとの熱交換と分離が複数段に
わたって行なわれることを特徴とする特許請求の範囲第
(1)項記載の粉粒体予熱方法。
(2) The method for preheating a granular material according to claim 1, wherein the heat exchange and separation between the granular material and the gas are performed in multiple stages.
(3)下部に小径のガス導入口、側部に粉粒体導入口、
上部にガス排出口を設け、ガス導入口から上方に向けて
拡大傾斜部を設けた熱交換機と、該熱交換機の上部側壁
に連結された分離管とからなるユニットを備えたことを
特徴とする粉粒体予熱装置。
(3) Small diameter gas inlet at the bottom, powder inlet at the side,
A unit comprising a heat exchanger having a gas discharge port at the top and an expanding slope extending upward from the gas inlet, and a separation pipe connected to the upper side wall of the heat exchanger. Powder preheating device.
(4)上記熱交換機のガス排出口を上段の熱交換機の下
部ガス導入口に連結し、上段の分離管の下部排出口を下
段の熱交換機の粉粒体導入口に連結して上記ユニットを
複数段連結してなる特許請求の範囲第(3)項記載の粉
粒体予熱装置。。
(4) Connect the gas outlet of the heat exchanger to the lower gas inlet of the upper heat exchanger, and connect the lower outlet of the upper separation tube to the powder inlet of the lower heat exchanger to complete the unit. A powder preheating device according to claim (3), which is formed by connecting multiple stages. .
(5)上記熱交換機のガス排出口を上段の熱交換機の下
部ガス導入口に連結し、上段の分離管の下部排出口を下
段の熱交換機の粉粒体導入口に連結して上記ユニットを
複数段連結してなる特許請求の範囲第(3)項または第
(4)項記載の粉粒体予熱装置。
(5) Connect the gas outlet of the heat exchanger to the lower gas inlet of the upper heat exchanger, and connect the lower outlet of the upper separation tube to the powder inlet of the lower heat exchanger to complete the unit. A granular material preheating device according to claim (3) or (4), which is formed by connecting multiple stages.
(6)最上段の上記ユニットの分離装置がサイクロン分
離機である特許請求の範囲第(4)項または第(5)項
記載の粉粒体予熱装置。
(6) The powder preheating device according to claim (4) or (5), wherein the separation device of the uppermost unit is a cyclone separator.
(7)最下段の上記ユニットな仮焼炉および/を九は焼
成炉に連結してなる特許請求の範囲第(4)項または第
(5)項記載の粉粒体予熱装置。
(7) The granular material preheating device according to claim (4) or (5), wherein the unit calcining furnace and/or the lowermost unit are connected to a firing furnace.
JP8080482A 1982-05-13 1982-05-13 Powder body preheating method and device Granted JPS58199754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8080482A JPS58199754A (en) 1982-05-13 1982-05-13 Powder body preheating method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8080482A JPS58199754A (en) 1982-05-13 1982-05-13 Powder body preheating method and device

Publications (2)

Publication Number Publication Date
JPS58199754A true JPS58199754A (en) 1983-11-21
JPH0375500B2 JPH0375500B2 (en) 1991-12-02

Family

ID=13728647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8080482A Granted JPS58199754A (en) 1982-05-13 1982-05-13 Powder body preheating method and device

Country Status (1)

Country Link
JP (1) JPS58199754A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123982A (en) * 1979-03-19 1980-09-24 Sumitomo Cement Co Multiichamber tentative baking device for power material
JPS58145881A (en) * 1982-02-23 1983-08-31 Nippon Cement Co Ltd Preheating method of particulate material and apparatus thereof
JPS58176153A (en) * 1982-04-08 1983-10-15 日本セメント株式会社 Grain body preheating method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123982A (en) * 1979-03-19 1980-09-24 Sumitomo Cement Co Multiichamber tentative baking device for power material
JPS58145881A (en) * 1982-02-23 1983-08-31 Nippon Cement Co Ltd Preheating method of particulate material and apparatus thereof
JPS58176153A (en) * 1982-04-08 1983-10-15 日本セメント株式会社 Grain body preheating method and device

Also Published As

Publication number Publication date
JPH0375500B2 (en) 1991-12-02

Similar Documents

Publication Publication Date Title
US4378234A (en) Particulate material collecting apparatus
US4344538A (en) Cyclone separator with influent guide blade
CN106568331A (en) Large suspension kiln and production process thereof
US4318692A (en) Helical duct gas/meal separator
CN1018023B (en) Heat exchanger
US4326845A (en) Suspension preheater for cement calcining plant
US4312650A (en) Particle separator
JPS58199754A (en) Powder body preheating method and device
JPS58176153A (en) Grain body preheating method and device
CN1011408B (en) Calcination apparatus for use in fluidized bed burning installation for powdery raw material
JPS58145881A (en) Preheating method of particulate material and apparatus thereof
JP2918111B1 (en) Method and apparatus for preheating cement raw material and method of using the apparatus
CN207196473U (en) CFB boiler with the effect of certain abrasionproof
US4285142A (en) Suspension type heat exchanger
CN1298433C (en) Through flow type air-solid separator
JP3316372B2 (en) Powder material dispersion equipment
JPS6014496Y2 (en) Heat exchange unit between powder and gas
JPS6130156Y2 (en)
CA1128430A (en) Suspension type heat exchanger
JPS61231393A (en) Particulate material heat exchanger
JPH0127880Y2 (en)
JPS6123015B2 (en)
JPH0431520Y2 (en)
JPS6031794Y2 (en) cyclone separator
JPS5916687Y2 (en) floating heat exchanger