JPS58199587A - Oscillation controller for semiconductor laser - Google Patents

Oscillation controller for semiconductor laser

Info

Publication number
JPS58199587A
JPS58199587A JP57082718A JP8271882A JPS58199587A JP S58199587 A JPS58199587 A JP S58199587A JP 57082718 A JP57082718 A JP 57082718A JP 8271882 A JP8271882 A JP 8271882A JP S58199587 A JPS58199587 A JP S58199587A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical system
face
plane
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57082718A
Other languages
Japanese (ja)
Inventor
Takumi Tomijima
富島 工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57082718A priority Critical patent/JPS58199587A/en
Publication of JPS58199587A publication Critical patent/JPS58199587A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/148External cavity lasers using a Talbot cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Abstract

PURPOSE:To obtain an optical system which does not vary oscillating wavelength even if the position of a laser is altered by introducing the light of a semiconductor laser incident to a dispersion optical system and a reflection optical system. CONSTITUTION:The light emitted from one end face of a semiconductor laser 1 becomes parallel light rays via an optical lens 3, incident to a dispersion optical system which is formed of a plane diffraction grating 5 and a reflecting surface 6 perpendicularly crossed with the normal in parallel with the etching direction of the grating 5, and the reflected parallel light rays are fed back to the laser 1. The light emitted from the other end face of the laser 1 is incident to a cat's eye which is formed of a lens 4 and a mirror 7, and the reflected light is returned to the laser 1. Similar operation is performed in a semiconductor laser 2. Equal wavelength lines exit in X-Y plane surface of focal point, and when two lasers are disposed on the same equal wavelength line, they oscillate with the same wavelength.

Description

【発明の詳細な説明】 本発明は半導体レーザーの発振制御装置に関するもので
ある。半導体レーザーの光を平面回折格子と平面反射面
を刻線の方向と平面反射面の法線が平行になるように直
交させた分散光学系や回折格子分散光学系の焦点面上に
平面あるいは凹面の微小鏡をおき、分散光を反射させ再
び回折格子分散光学系で分散させる形の分散光学系で分
光した後半導体レーザーに帰還することにより、発振光
のクロストークなしに複数個の半導体レーザーの発振波
長を任意の値に固定することができるが、この方法では
分散光学系と半導体レーザーの一端の反射面で共振器が
構成されるため個々の半導体レーザー相互間の振動等に
よる位置の変化が複数個の半導体レーザーの発振波長差
に影響を与える。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser oscillation control device. A dispersion optical system in which a semiconductor laser beam is directed to a plane diffraction grating and a plane reflection surface are orthogonal to each other so that the direction of the score lines and the normal to the plane reflection surface are parallel, or a plane or concave surface is placed on the focal plane of the diffraction grating dispersion optical system. The dispersion optical system uses a dispersion optical system to reflect the dispersed light and disperse it again using a diffraction grating dispersion optical system, and then returns it to the semiconductor laser. By doing so, multiple semiconductor lasers can be combined without crosstalk between the oscillated light. The oscillation wavelength can be fixed to an arbitrary value, but in this method, the resonator is constructed of a dispersive optical system and a reflecting surface at one end of the semiconductor laser, so the position of the individual semiconductor lasers does not change due to mutual vibration etc. Affects the difference in oscillation wavelength of multiple semiconductor lasers.

従って以上のごとき方法で制御された光は精密な光へテ
ロダイン計測の光源としては不適当である。
Therefore, the light controlled by the method described above is unsuitable as a light source for precise optical heterodyne measurement.

本発明は半導体レーザーに若干の位置の変化が発生して
も発振波長差には変化が及ばない発振制御光学系に関す
るもので、本発明によI)安定な波長着を有する複数個
のコヒーレント光を得ることができ、新しい光源として
光通信分野、光計測分野その他に新しい可能性を提供す
ること・・なった。
The present invention relates to an oscillation control optical system in which the oscillation wavelength difference does not change even if a slight change in position occurs in a semiconductor laser. As a new light source, it offers new possibilities in the optical communication field, optical measurement field, and other fields.

以下本発明の詳細を図面によって説明する。The details of the present invention will be explained below with reference to the drawings.

第1図は本発明の実施例である。第1図において半導体
レーザー1の一方の端面から出た光はレンズ3により平
行光線となり、平面回折格子5と平面回折格子5の刻線
方向と法線が平行になるごとく直交せしめられた反射面
6からなる分散光学系に入射し回折、反射された平行光
線はレンズ3により正確に半導体レーザー1に帰還され
る。また半導体レーザー1の他の端面から出た光はレン
ズ4ならびにレンズ4の共役点(こおかれた鏡7で構成
されるキャッツアイに入射し反射光は半導体レーザー1
の他の端面に正確に帰還され、半導体レーザー1の発振
波長が制御される。半導体レーサー2に関しても全く同
様で半導体レーザー1と半導体レーザー2の相互位置を
調整することにより発振波長差を任意の値に選ぶことが
できる。すなわち、この光学系においては帰還される光
の波長を決めるのは回折格子5における入射光のオフブ
レイノ角とイノブレイノ角という二つのパラメーターで
あるため、焦点面x −y平面においては等波長線30
が存在する。従って2個の半導体レーザーを同じ等波長
線」−に置けば2個の半導体レーザーは同一波長で発振
するし、等波長線に対し傾きを持った線」二におけば異
なった波長で発振させることができる。この光学系にお
いては半導体レーザー以外の光学系で共振器が構成され
ているため仮に半導体レーザーの位置がわずかに変化し
ても発振に勾える影響、は小さくしかも共通の共振器で
2個あるいはそれ以上の半導体レーザー発振条件を決定
しているので発振波長差は極めて安定したものとなる。
FIG. 1 shows an embodiment of the invention. In FIG. 1, the light emitted from one end face of the semiconductor laser 1 is converted into a parallel beam by the lens 3, and the plane diffraction grating 5 and the reflecting surface are made orthogonal so that the normal line is parallel to the groove direction of the plane diffraction grating 5. Parallel rays incident on the dispersion optical system consisting of 6, diffracted and reflected are accurately returned to the semiconductor laser 1 by the lens 3. In addition, the light emitted from the other end face of the semiconductor laser 1 enters the lens 4 and the cat's eye made up of the conjugate point of the lens 4 (the mirror 7 that is placed), and the reflected light is reflected by the semiconductor laser 1.
is accurately fed back to the other end face of the semiconductor laser 1, and the oscillation wavelength of the semiconductor laser 1 is controlled. The same applies to the semiconductor laser 2, and by adjusting the mutual positions of the semiconductor lasers 1 and 2, the oscillation wavelength difference can be selected to an arbitrary value. That is, in this optical system, the wavelength of the returned light is determined by two parameters, the off-Braino angle and the inno-Braino angle of the incident light on the diffraction grating 5. Therefore, in the focal plane x-y plane, the equiwavelength line 30
exists. Therefore, if two semiconductor lasers are placed on the same equiwavelength line, they will oscillate at the same wavelength, and if they are placed on a line that is inclined to the equiwavelength line, they will oscillate at different wavelengths. be able to. In this optical system, the resonator is made up of an optical system other than the semiconductor laser, so even if the position of the semiconductor laser changes slightly, the effect on the oscillation is small, and two or more resonators are used in a common resonator. Since the semiconductor laser oscillation conditions are determined as described above, the oscillation wavelength difference becomes extremely stable.

第3図は他の実施例である。半導体レーザー1の一方の
端面から出た光はレンズ3で平行光線となり平面回折格
子8で回折されレンズ20でスペクトルが結像される。
FIG. 3 shows another embodiment. The light emitted from one end face of the semiconductor laser 1 becomes a parallel beam by the lens 3, is diffracted by the plane diffraction grating 8, and the spectrum is imaged by the lens 20.

結像点には微小中を有する反射鏡10がおかれており反
射光は再び平面回折格子8に入射する。再度回折された
光は非分散光となり半導体レーザー1に正確に帰還され
る。また半導体レーサーの他の端面から出た光はレンズ
4で平行光線となり三角屋根形鏡9で反射され正確に半
導体レーザー1に帰還される。微小中を有する鏡と半導
体レーザー1.2を並べる方向(焦点面内での)により
発振波長ならびに発振波長を変化させることができる。
A reflecting mirror 10 having a small diameter is placed at the imaging point, and the reflected light enters the plane diffraction grating 8 again. The re-diffracted light becomes non-dispersive light and is accurately fed back to the semiconductor laser 1. Further, the light emitted from the other end face of the semiconductor laser is converted into a parallel beam by the lens 4, reflected by the triangular roof mirror 9, and accurately returned to the semiconductor laser 1. The oscillation wavelength and the oscillation wavelength can be changed depending on the direction (within the focal plane) in which the mirror having a microscopic center and the semiconductor laser 1.2 are arranged.

第4図に示す実施例ではレンズ3とレンズ20を共通の
ものとした例である。図においては半導体レーザー1.
2と微小1]を有する鏡10.11はインブレイノ上に
おかれているが、オフブレイノ上に並べるのが現実的で
ある。また本実施例では凹面鏡14と反射鏡12、】3
で正立像をつくる光学系を構成している。
The embodiment shown in FIG. 4 is an example in which the lens 3 and the lens 20 are common. In the figure, semiconductor laser 1.
The mirrors 10 and 11 having the mirrors 2 and 1] are placed on the inbrain, but it is more realistic to arrange them on the off-brain. In addition, in this embodiment, the concave mirror 14 and the reflecting mirror 12, ]3
This constitutes an optical system that creates an erect image.

第5図に示す実施例においては平面格子の代りに凹面回
折格子を用いている。
In the embodiment shown in FIG. 5, a concave diffraction grating is used instead of a plane grating.

分散光学系と正立像反射光系の例をいくつか挙げたが両
者の組合せは任意である。また殆んどすべての光路を透
明な誘電体とし光学系を固体化することができる。
Although some examples of a dispersive optical system and an erect image reflective optical system have been given, the combination of the two is arbitrary. In addition, almost all optical paths can be made of transparent dielectric material, and the optical system can be solidified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例、第2図は本発明の詳細な説明
図、第3図、第4図、第5図は本発明の他の実施例であ
る。 1.2・・・・・半導体レーザー 3.4・・・・・・・・・ レンズ 5・・・  平面回折格子 6 ・・・・ 平面反射面 7  ・ 反射面 xvy・・・・・・・・・・・座標軸 8 ・・  平面回折格子 9 ・・・・・・三角屋根形反射鏡 10.11.12.13・・ ・・・・微小中を有する
反射面14・・・・・ 凹面反射面 15・・・・・・・・・・凹面回折格子30・・・・・
・ 等波長線 才I(¥J 峰 z(9 忰 41辺 429
FIG. 1 shows an embodiment of the invention, FIG. 2 is a detailed explanatory diagram of the invention, and FIGS. 3, 4, and 5 show other embodiments of the invention. 1.2... Semiconductor laser 3.4... Lens 5... Planar diffraction grating 6... Planar reflective surface 7 - Reflective surface xvy... ...Coordinate axis 8 ... Plane diffraction grating 9 ... Triangular roof-shaped reflecting mirror 10.11.12.13 ... ... Reflection surface 14 with microscopic holes ... Concave reflection Surface 15...Concave diffraction grating 30...
・Equiwavelength ray I (¥J peak z(9 忰 41 sides 429

Claims (1)

【特許請求の範囲】[Claims] 両端面より光を放出する複数個の半導体レーザーの一方
の端面より放出される光を、平面回折格子と該平面格子
の刻線方向と法線が平行であるごとく平面反射面を直交
させた分散光学系、あるいは凹面または平面回折格子分
散光学系のスペクトルの生ずる焦点面上に平面または凹
面の微小鏡をおき分散したスペクトルを反射せしめ誠分
散的あるいは加分数的に前記凹面または平面回折格子分
散光学系に入射せしめ再度の回折光を前記半導体レーザ
ーの一方の端面に帰還せしめると共に前記半導体レーザ
ーの他の端面より放出される光をキャッツアイあるいは
三角屋根形鏡等正立像をつくる反射光学系で反射せしめ
前記半導体レーザーの他の端面に帰還し、複数個の半導
体レーザーを任意の同一・波長または異なる波長で発振
せしめることを特徴とする半導体レーザー発振制御装置
Dispersion of light emitted from one end face of a plurality of semiconductor lasers that emit light from both end faces, with a plane diffraction grating and a plane reflection surface perpendicular to each other so that the normal line is parallel to the groove direction of the plane grating. A flat or concave micromirror is placed on the focal plane where the spectrum of an optical system or a concave or flat diffraction grating dispersion optical system is generated to reflect the dispersed spectrum, and the concave or flat diffraction grating dispersion is reflected dispersively or additively. A reflective optical system that makes the diffracted light incident on the optical system return to one end face of the semiconductor laser and that emits the light emitted from the other end face of the semiconductor laser into an erect image such as a cat's eye or a triangular roof mirror. A semiconductor laser oscillation control device characterized in that the semiconductor laser is reflected and returned to the other end face of the semiconductor laser to cause a plurality of semiconductor lasers to oscillate at the same arbitrary wavelength or different wavelengths.
JP57082718A 1982-05-17 1982-05-17 Oscillation controller for semiconductor laser Pending JPS58199587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57082718A JPS58199587A (en) 1982-05-17 1982-05-17 Oscillation controller for semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57082718A JPS58199587A (en) 1982-05-17 1982-05-17 Oscillation controller for semiconductor laser

Publications (1)

Publication Number Publication Date
JPS58199587A true JPS58199587A (en) 1983-11-19

Family

ID=13782185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57082718A Pending JPS58199587A (en) 1982-05-17 1982-05-17 Oscillation controller for semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58199587A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762572A1 (en) * 1995-09-12 1997-03-12 Trw Inc. Laser mode control using external inverse cavity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762572A1 (en) * 1995-09-12 1997-03-12 Trw Inc. Laser mode control using external inverse cavity

Similar Documents

Publication Publication Date Title
US7413311B2 (en) Speckle reduction in laser illuminated projection displays having a one-dimensional spatial light modulator
JP2716211B2 (en) Grating tuned laser
JP4068566B2 (en) Retroreflective devices especially for tunable lasers
US6038239A (en) Tunable alignment-stable laser light source having a spectrally filtered exit
US5524012A (en) Tunable, multiple frequency laser diode
US20140085393A1 (en) Optical scanning apparatus, system and method
KR20020062625A (en) Device for producing optically-controlled incremental time delays
JP2000137139A (en) Optical luminous flux converter
JPS61502507A (en) Deep UV lithography
US4963003A (en) Laser optical system
US20060165144A1 (en) Semiconductor laser device
JPH0876152A (en) Laser scanning and oscillating device
US5016951A (en) Fiber optic diffraction grating maker
JPH0693044B2 (en) Prism optical system and information device using the same
US6337940B1 (en) Wavelength filtering self-aligned retroreflecting optical system, a monochromator and a laser incorporating such a system
KR101353657B1 (en) Optical system and method for shaping a profile of a laser beam
JPH05145148A (en) Solid state laser resonator
JPS58199587A (en) Oscillation controller for semiconductor laser
JPS63211624A (en) Optical device for illumination
JPS6354235B2 (en)
JPH0527195A (en) Scanning optical system
JPH02276283A (en) Narrow band laser device
JP2002236237A (en) Optical device
JP2761899B2 (en) Diffraction grating exposure system
JPS59205783A (en) Optical feedback type semiconductor laser device