JPS5819879A - Heat insulation and cooling of battery - Google Patents
Heat insulation and cooling of batteryInfo
- Publication number
- JPS5819879A JPS5819879A JP56117829A JP11782981A JPS5819879A JP S5819879 A JPS5819879 A JP S5819879A JP 56117829 A JP56117829 A JP 56117829A JP 11782981 A JP11782981 A JP 11782981A JP S5819879 A JPS5819879 A JP S5819879A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- heat
- temperature
- cooling
- heat medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/658—Means for temperature control structurally associated with the cells by thermal insulation or shielding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/656—Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
- H01M10/6567—Liquids
- H01M10/6568—Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/657—Means for temperature control structurally associated with the cells by electric or electromagnetic means
- H01M10/6571—Resistive heaters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はバッテリの保温および冷却方法に関するO
エネルギー密度の高い高効率バッテリとしては種々のも
のが提案・されており(例えばリチウム電池)、その応
用範囲は極めて広い。ところで、この種の高効率バッテ
リ社作動温度が100℃以上のものが多く、その使用に
あたっては保温装置が必要上なり、バッテリの温度維持
のために多くのエネルギーを消費し、また温゛度が上が
9過ぎて冷却する場合に奪い去られた熱れ何ら利用され
ずに捨てられるのみであり、1効に活用されていないと
いう欠点があった。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery heat retention and cooling method. Various types of high-efficiency batteries with high energy density have been proposed and proposed (for example, lithium batteries), and their range of application is extremely wide. By the way, many of these types of high-efficiency batteries have an operating temperature of 100°C or higher, and when using them, a heat insulator is required, consuming a lot of energy to maintain the battery temperature, and increasing the temperature. There is a drawback that when cooling after the temperature reaches 90 degrees, the heat taken away is simply thrown away without any use, and is not utilized for any purpose.
本発明は上記の点に鑑み提案されたものであり、加熱用
のヒータの他に太陽熱を並用し、バッテリの温度を維持
するために必要なエネルギーの節減を図り、更に冷却に
よって奪い去った熱を回収して再利用することにより、
排熱によるロスを除法したバッテリの保温および冷却方
法を提供せんとすることを目的とする0なお、本発明は
特に太陽光発電システム等、太陽光の摂取が容易である
ものに適用してその効果が大である。The present invention has been proposed in view of the above points, and uses solar heat in addition to a heater to reduce the energy required to maintain the temperature of the battery, and further utilizes the heat taken away by cooling. By collecting and reusing
It is an object of the present invention to provide a battery heat retention and cooling method that eliminates loss due to exhaust heat. The effect is great.
以下、実施例を示す図面に従って本発明を詳述する0
第1図に示すの社本発明の方法に用いられる装置の実施
例である。第1図において構成管説明すると、バッテリ
1の周囲、例えばバッテリ1の側面および底面にはバッ
テリ加熱用ヒータ2が設けられ、かつその周囲は第1の
保温材3で包囲されており、更にその周Sを水または空
気の如き熱媒体4の入る空間を隔てて第2の保温材5で
包囲し蓄熱槽ムを形成している。ま九、7は循環ポンプ
で、蓄熱槽内の熱媒体4を太陽熱コレクタ6を介して循
環させている。一方、電気系統の流れを示すと、太陽電
池10の出力端子はバッテリ1に接続されると共に接点
島を介してインバータ140入力端子に接続され、イン
バータ14の出力端子は屋内負荷16に接続されている
。■は電圧センナで、太陽電池10の出力端子すなわち
バッテリIK接続され、その検出信号は制御盤Uへ送出
されている。Hereinafter, the present invention will be described in detail with reference to the drawings illustrating the embodiments. Figure 1 shows an embodiment of the apparatus used in the method of the present invention. To explain the configuration in FIG. 1, a battery heater 2 is provided around the battery 1, for example, on the side and bottom of the battery 1, and the periphery is surrounded by a first heat insulating material 3. The circumference S is surrounded by a second heat insulating material 5 with a space in which a heat medium 4 such as water or air enters, thereby forming a heat storage tank. Reference numeral 9, 7 is a circulation pump that circulates the heat medium 4 in the heat storage tank via the solar heat collector 6. On the other hand, showing the flow of the electrical system, the output terminal of the solar cell 10 is connected to the battery 1 and is also connected to the input terminal of the inverter 140 via the contact island, and the output terminal of the inverter 14 is connected to the indoor load 16. There is. 2 is a voltage sensor connected to the output terminal of the solar cell 10, that is, the battery IK, and its detection signal is sent to the control panel U.
νは温度センナでバッテリ1の近辺の温度を検出し、そ
の検出信号は制御盤13に送出されているOf友、15
11商用電源の如き交流電源で、接点Msを讐介してヒ
ータ2に接続されると共に接点りを介して屋内負荷16
に接続されている。なお、接点Ml。ν is a temperature sensor that detects the temperature near the battery 1, and its detection signal is sent to the control panel 13.
11 An AC power source such as a commercial power source, which is connected to the heater 2 through the contact Ms, and is connected to the indoor load 16 through the contact.
It is connected to the. Note that the contact point Ml.
M! −Ms IIi前記制御盤肋の動作にエリ適切に
開閉するものである。M! -Ms IIi Opens and closes appropriately according to the operation of the control panel.
以下、その動作を説明する。いま、バッテリ1の温度が
所定の作動温度よりも低い場合には温度センサシの検出
信号により一調御盤Bが動作し、接点Mat” ON
Lヒータ2に交流電圧が印加されてバッテリ1への加熱
が行われる。この加熱はバッテリ1の温度が適温に達す
るまで続き、所定の温度に達すると接点M、Fi、0F
F−jる。この際、太陽熱コレクタ6によりあ友ためら
れた勢媒体4の循環に □より蓄熱槽A内の温度は
かなり高められているので、ヒータの加熱に賛するエネ
ルギーは少なくて良く、その分エネルギーの節約を図る
ことができる。その後バッテリ1鉱保温材3t−介して
適度に冷却され、充放電の作動に伴う温度上昇をおさえ
るが、放散したバッテリ1の熱鉱蓄熱槽内の熱媒体4に
:伝達され、循環されて熱回収ができるので、排熱ロス
がなく、更に効率が高められる。また、接点鳩−hlb
n連動して駆動されるもので、ノくツテリ1の出力電
圧が正常である時にはM、がON%M雪がOFFとなっ
てバッテリ1の電力がインバータ14で交流電力に変換
されて屋内負荷16に供給され、パッチ91の過放電に
より出力電圧が低下した場合にFi接点M、 、 M、
は反転し、商用電源の如き交流電源「から屋内負荷16
へ電力が供給されるようになっている。The operation will be explained below. If the temperature of the battery 1 is lower than the predetermined operating temperature, the control panel B is activated by the detection signal of the temperature sensor, and the contact Mat" is turned ON.
AC voltage is applied to the L heater 2 to heat the battery 1. This heating continues until the temperature of the battery 1 reaches the appropriate temperature, and when the temperature reaches the predetermined temperature, the contacts M, Fi, 0F
F-jru. At this time, the temperature inside the heat storage tank A is considerably raised due to the circulation of the energy medium 4 that has been amended by the solar heat collector 6, so the energy required for heating the heater is small, and the energy is saved accordingly. You can save money. After that, the battery 1 is moderately cooled through 3 tons of heat insulating material to suppress the temperature rise associated with charging and discharging operations, but the heat is transferred to the heat medium 4 in the heat storage tank of the battery 1, where the heat is dissipated. Since it can be recovered, there is no waste heat loss, further increasing efficiency. Also, contact pigeon-hlb
When the output voltage of the battery 1 is normal, M is ON and %M is OFF and the power of the battery 1 is converted to AC power by the inverter 14 and the indoor load 16 is driven in conjunction with n. When the output voltage decreases due to overdischarge of the patch 91, the Fi contacts M, , M,
is reversed, and the indoor load 16 is
Electricity is now being supplied to.
なお、充放電量の変化が大で、バッテリ1の温度上昇が
大きい場合、第2図に示すように、第1図に示した装置
に強制冷却の機能を付加すれば嵐い。すなわち、バッテ
リ1t−包囲する保温材轢バッテリおよび熱媒体の温度
から最適の保温性能および冷却性能に決定されているが
、それでも充放電量の変化が大きいときに冷却不足とな
る仁とがあるが、この装置によれば蓄熱槽内に冷却ポン
プ8が設けられ、バッテリlの周囲に設けた冷却バイ1
9に蓄熱槽内の熱媒体4Yt循環させるようになってい
るため、バッテリl’に適温に冷却することができる。Incidentally, if the change in the charge/discharge amount is large and the temperature of the battery 1 rises greatly, it will be possible to add a forced cooling function to the device shown in FIG. 1, as shown in FIG. 2, to solve the problem. In other words, the optimal heat retention performance and cooling performance are determined based on the temperature of 1 ton of battery, the surrounding heat insulating material, the battery, and the heat medium, but even then, there may be cases where insufficient cooling occurs when the charge/discharge amount changes greatly. According to this device, a cooling pump 8 is provided in the heat storage tank, and a cooling pump 1 is provided around the battery l.
Since the heat medium 4Yt in the heat storage tank 9 is circulated, the battery l' can be cooled to an appropriate temperature.
なお、冷却パイプを用いずに直接熱媒体4tlimlさ
せてもよい〇一方、電気系統において蝶前記冷却ボ、ン
グ8t−駆動させるための回路が設けられ、冷却ポンプ
8の電源端子には制御盤lの動作で開閉する接点M、を
介して交流電源15が接続されているoしかして、バッ
テリ1の温度が所定の温度を上まわると接点M、がON
L冷却ポンプ8が作動して冷却が行われる。なお、この
場合も冷却によって奪った熱は蓄熱槽内の熱媒体4に伝
達されるので、熱回収が可能であり、排熱ロスが全くな
い0またその他の動作鉱前述した第1の実施例と同様で
あるので重1[ヲ避ける意味でその説v4は省略する。Note that it is also possible to directly supply the heat medium 4tliml without using a cooling pipe.On the other hand, a circuit for driving the cooling pump 8t is provided in the electrical system, and a control panel is connected to the power terminal of the cooling pump 8. An AC power source 15 is connected through a contact M, which opens and closes according to the operation of the battery 1. However, when the temperature of the battery 1 exceeds a predetermined temperature, the contact M turns ON.
The L cooling pump 8 operates to perform cooling. In this case as well, the heat removed by cooling is transferred to the heat medium 4 in the heat storage tank, so heat recovery is possible and there is no waste heat loss. Since it is the same as the above, theory v4 will be omitted to avoid weight 1.
以上のように本発明のバッテリの保温および冷却方法に
あっては、高温で作動するIくツテリを保温および冷却
するにつき、バッテリを保温材で包囲し、頁にその周囲
を熱媒体を介し保温材で包囲して蓄熱槽を形成し、熱媒
体を蓄熱槽と太陽熱コレクタとの間IL−循環させると
共に、)5ツテリの近傍に設けられたヒータ管適切に制
御して適正温度に保つようにしたので、太陽熱の利用に
エリノ(ツテリの温度維持のためのエネルギー消費が少
なくてすみ、また冷却によって放散した熱り熱回収が可
能なので排熱ロスが全くなく、極めて効率のよいバッテ
リの保温および冷却方法を提供することができる効果が
ある。As described above, in the battery heat preservation and cooling method of the present invention, in order to heat and cool a battery that operates at high temperatures, the battery is surrounded by a heat insulating material, and the surrounding area is heat insulated via a heat medium. A heat storage tank is formed by surrounding the heat medium with a heat storage tank, and the heat medium is circulated between the heat storage tank and the solar heat collector, and a heater pipe installed near the (5) tubes is appropriately controlled to maintain the appropriate temperature. Therefore, solar heat can be utilized to maintain the temperature of the battery with less energy consumption, and the heat dissipated by cooling can be recovered, so there is no waste heat loss, making it extremely efficient for battery heat retention and storage. This has the effect of providing a cooling method.
第1図、第2図は本発明の第1.第2の実施例を示し、
太陽光発電システムに適用した例である。
1・・・−バッテリ、2・−・−・ヒータ、3,5・・
・・・・保温材、4・・・−・熱媒体、6−・−太陽熱
コレクタ、7・・・・・・循環ポンプ、8・・・−・冷
却ポンプ、9・・・・・・冷却パイプ、10−−−・太
陽電池、11−・・・・電圧センサ、ルー・−・温度セ
ンサ、肋・・・−制御盤、14・・・・・・インバータ
、「・・・・−交流電源、16−−−−一鳳内負荷、M
、 、 M2 。
Ml、&・・・・・・接点、5A・・・・・・蓄熱槽特
許出願人 松下電工株式会社
71図
361FIGS. 1 and 2 show the first embodiment of the present invention. A second example is shown,
This is an example of application to a solar power generation system. 1...-Battery, 2...-Heater, 3,5...
...Heat insulation material, 4...-Heat medium, 6--Solar heat collector, 7...Circulation pump, 8...-Cooling pump, 9...Cooling Pipe, 10--Solar cell, 11--Voltage sensor, Roux--Temperature sensor, Rib...-Control panel, 14--Inverter, "...-AC Power supply, 16----Ichiho internal load, M
, , M2. Ml, &...Contact, 5A...Heat storage tank Patent applicant Matsushita Electric Works Co., Ltd. 71 Figure 361
Claims (2)
るにつき、前記バッテリを保温材で包囲し、災にその周
囲を熱媒体を介し保温材で包囲して蓄熱槽を形成し、前
記熱媒体を前記蓄熱槽と太陽熱コレクタとの間を循環さ
せると共に、前記バッテリの近傍に設けられたヒータを
適切に制御して適正温度に保つことを特徴としたバッテ
リの保温および冷却方法。(1) To insulate and cool a battery that operates at high temperatures, the battery is surrounded by a heat insulating material, the surrounding area is surrounded by a heat insulating material via a heat medium to form a heat storage tank, and the heat medium is A battery heat retention and cooling method characterized by circulating between a heat storage tank and a solar heat collector and appropriately controlling a heater provided near the battery to maintain the temperature at an appropriate temperature.
体管循環すること1−q#徴とした特許請求の範囲第1
項記載のバッテリの保温および冷却方法0(2) Claim 1 wherein a cooling pump is provided and the heat medium pipe circulates around the battery.
Battery insulation and cooling method described in Section 0
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56117829A JPS5819879A (en) | 1981-07-29 | 1981-07-29 | Heat insulation and cooling of battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56117829A JPS5819879A (en) | 1981-07-29 | 1981-07-29 | Heat insulation and cooling of battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5819879A true JPS5819879A (en) | 1983-02-05 |
Family
ID=14721270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56117829A Pending JPS5819879A (en) | 1981-07-29 | 1981-07-29 | Heat insulation and cooling of battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5819879A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61123471U (en) * | 1985-01-21 | 1986-08-04 | ||
US6455186B1 (en) | 1998-03-05 | 2002-09-24 | Black & Decker Inc. | Battery cooling system |
WO2016113101A1 (en) * | 2015-01-13 | 2016-07-21 | Robert Bosch Gmbh | Solar thermal element for temperature control of a battery pack with simultaneous reduction of the vehicle air-conditioning demand |
CN110137619A (en) * | 2019-04-15 | 2019-08-16 | 华为技术有限公司 | Energy storage device temprature control method and device |
-
1981
- 1981-07-29 JP JP56117829A patent/JPS5819879A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61123471U (en) * | 1985-01-21 | 1986-08-04 | ||
US6455186B1 (en) | 1998-03-05 | 2002-09-24 | Black & Decker Inc. | Battery cooling system |
US7056616B2 (en) | 1998-03-05 | 2006-06-06 | Black & Decker Inc. | Battery cooling system |
US7252904B2 (en) | 1998-03-05 | 2007-08-07 | Black & Decker Inc. | Battery cooling system |
US7326490B2 (en) | 1998-03-05 | 2008-02-05 | Black & Decker Inc. | Battery cooling system |
US7939193B2 (en) | 1998-03-05 | 2011-05-10 | Black & Decker Inc. | Battery cooling system |
WO2016113101A1 (en) * | 2015-01-13 | 2016-07-21 | Robert Bosch Gmbh | Solar thermal element for temperature control of a battery pack with simultaneous reduction of the vehicle air-conditioning demand |
CN110137619A (en) * | 2019-04-15 | 2019-08-16 | 华为技术有限公司 | Energy storage device temprature control method and device |
CN110137619B (en) * | 2019-04-15 | 2021-12-24 | 华为数字能源技术有限公司 | Energy storage device temperature control method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5871859A (en) | Quick charge battery with thermal management | |
CN106532190A (en) | Rapid heating battery | |
NO148051B (en) | ELECTROLYTE COOLING DEVICE FOR BATTERY BATTERIES | |
CN111211337A (en) | Direct methanol fuel cell system | |
CN204991904U (en) | Battery thermal management system | |
CN211182307U (en) | Power battery cooling system, device and electric automobile | |
CN102865685B (en) | Preheating, heat-insulating and anti-freezing device for fused salt heat absorber | |
CN210092296U (en) | New energy automobile battery thermal management system | |
CN213989095U (en) | Power battery low temperature control system and vehicle | |
JPS5819879A (en) | Heat insulation and cooling of battery | |
CN207021363U (en) | A kind of electrokinetic cell heating system applied to hybrid vehicle | |
CN109119725A (en) | The power battery thermal management system of ultrathin aluminum strip heat pipe combination composite phase-change material | |
CN207558831U (en) | A kind of thermoelectric cooling heat storage and cold accumulation battery | |
CN207587931U (en) | A kind of heat-resisting lithium cell | |
CN206490153U (en) | A kind of electrokinetic cell thermal balance management system based on Vehicular charger | |
JPH08138761A (en) | Power storage type heat pump system | |
CN109742487A (en) | A kind of electric vehicle battery heat preservation case and heat preserving method | |
CN109866656A (en) | A kind of new energy car battery system | |
CN205264833U (en) | Battery system with preheating device | |
CN212861094U (en) | Car as a house power supply system | |
CN1332490C (en) | Semiconductor refrigerating type equalizing charging method and device | |
CN108501745B (en) | Batteries of electric automobile is grouped heat management system | |
CN108428957B (en) | variable power heating method and system for liquid metal battery pack | |
CN207388800U (en) | The electric car of charged pool temperature treatment increases journey system | |
JP2569824B2 (en) | Cooling method of battery group for electrolyte circulation type zinc monobromide laminated secondary battery |