JPS58198577A - Electrodeposition coating composition which deposits on cathode - Google Patents

Electrodeposition coating composition which deposits on cathode

Info

Publication number
JPS58198577A
JPS58198577A JP8007782A JP8007782A JPS58198577A JP S58198577 A JPS58198577 A JP S58198577A JP 8007782 A JP8007782 A JP 8007782A JP 8007782 A JP8007782 A JP 8007782A JP S58198577 A JPS58198577 A JP S58198577A
Authority
JP
Japan
Prior art keywords
molecular weight
acid
carbon
compd
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8007782A
Other languages
Japanese (ja)
Other versions
JPH027338B2 (en
Inventor
Yutaka Otsuki
大月 裕
Yoshihiko Araki
荒木 芳彦
Hiroyoshi Oomika
大美賀 広芳
Hajime Hara
原 肇
Kazuho Aoyama
青山 和穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP8007782A priority Critical patent/JPS58198577A/en
Priority to US06/493,277 priority patent/US4563501A/en
Priority to DE8383302677T priority patent/DE3366010D1/en
Priority to EP83302677A priority patent/EP0094788B1/en
Publication of JPS58198577A publication Critical patent/JPS58198577A/en
Publication of JPH027338B2 publication Critical patent/JPH027338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To provide the titled compsn. excellent in low-temperature curability, corrosion resistance, etc., prepared by adding clycidyl compd. deriv. and manganese salt of a specified high-molecular weight compd. to a high-molecular weight compd. having C=C bond and amino group. CONSTITUTION:The coating compsn. is prepared by adding 3-100pts.wt. compd. of formula I (where R5 and R6 are H or 1-10C alkyl; n is 0-20; m is 1 or 0; Y is 3-4C alpha,beta-unsatd. monocarboxylic acid; Y' is H or Y) or formula II (where n' is 0-10; R7 is H or 1-10C hydrocarbon) and 0.2-20pts.wt. manganese salt of high-molecular weight compd. having a molecular weight of 300-3,000, an iodine value of 50-500, C=C double bond and sulfonic acid or succinic acid group in 30-300mmol/100g, to 100pts.wt. high-molecular weight compd. having a molecular weight of 500-10,000, an iodine value of 50-500, C=C double bond and amino group in 30-300mmol/100g.

Description

【発明の詳細な説明】 本発明は、低温硬化性の優′i″した陰極析出型電着塗
料組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathodically deposited electrodeposition coating composition having excellent low temperature curability.

成る撞の塩W性基を有する樹脂は、水中で陽イオン樹脂
を生じ、これを用いて電着塗装性能つときは、樹脂が陰
極に析出する、この種の、陰極析出層〇塗料は、酸基を
有する樹脂′!lr塩基で中和し、水溶性とした従来の
、陽極析出型電着塗料の、本質的な欠点、12+1ち、
塗料浴への被塗物金蔵の溶出水・よびそれに起因する各
種の間験点を解消することができる。
A resin having a salt group consisting of a cationic group forms a cationic resin in water, and when this is used for electrodeposition coating performance, the resin is deposited on the cathode.This type of cathode-deposited layer paint is A resin with acid groups! Essential drawbacks of conventional anodic electrodeposition paints that are neutralized with lr base and made water-soluble: 12+1
It is possible to eliminate water leaching from the object to be coated into the paint bath and various problems caused by it.

本発明者等は、かかる陰極析出型塗料について研究し、
前に炭素−炭素二喧結合を有する低歌合度合成歌合体例
えば液状ポリブタジェンのような不飽和基含有高分子量
化合物にアミノ基を導入し酸で中和することにより優れ
た被嘆特性を与える陰極析出型電着塗料用樹脂が得られ
ることを1出し特許を出願した(特開昭51−1197
27、特開昭52−147638、特開昭53−160
48)。
The present inventors researched such cathodic deposition type paints,
A cathode that provides excellent chemical properties by introducing an amino group into a high molecular weight compound containing an unsaturated group, such as liquid polybutadiene, and neutralizing it with acid. A patent application was filed for the ability to obtain a resin for precipitation-type electrodeposition paints (Japanese Patent Application Laid-Open No. 1197-1197).
27, JP-A-52-147638, JP-A-53-160
48).

上記の樹脂を塗膜成分とする陰極析出型電着塗料組成物
は、主として樹脂が含有する不吟基の酸化鍍金により硬
化し、性能の優れた塗膜を与えるが、実用的な硬化時間
で硬化さ亡るためには比較的高い焼付温度を必要とする
。本発明者らは焼付温度を下げる研究をした結果、水溶
性マンガン塩などの金属ドライヤーを添加することによ
り比較的低い焼付温度で塗膜を硬化させることを見い出
し特許を出願した(%開昭53−142444)0この
場合多量のドライヤーを必要とし、つきまわり性などの
電着塗装性能を悪化させた秒、−面力(荒れやすいなど
の問題を生じる。又本発明者らは反応性の高いアクリル
(メタクIJル)性二重結合を樹脂に導入し比較的低い
焼付atで硬化させる方法も見出し特許を出願した(特
開昭56−151777)。この場合水溶性マンガン塩
を添加すると160℃という比較的低い温度で硬化し優
れた性能を有する陰極析出型電着塗料力1られる。
Cathode-deposited electrodeposition coating compositions containing the above-mentioned resins as coating film components are cured mainly by oxidation plating of the amorphous groups contained in the resins, and provide coatings with excellent performance, but they do not take a practical curing time. Requires relatively high baking temperatures to cure. As a result of research on lowering the baking temperature, the present inventors discovered that by adding a metal dryer such as a water-soluble manganese salt, the coating film could be cured at a relatively low baking temperature, and filed a patent application. -142444) 0 In this case, a large amount of dryer is required, which causes problems such as deterioration of electrodeposition coating performance such as throwing power, and -surface force (easiness to roughen). He discovered a method of introducing acrylic double bonds into resin and curing it with a relatively low baking rate (Japanese Patent Laid-Open No. 56-151777). It is a cathodically deposited electrodeposition coating that cures at a relatively low temperature and has excellent performance.

シカシ近年省エネルギーの観点から!!に焼付温度を下
げることが望まれており、本発明者らは種々研究した結
果、炭素−炭素二暖結合と丁ミノ基を有する樹脂に炭素
−炭素二重結合とスルホン陵墓あるいはコノ・り酸基を
有する高分子化合一の油溶性マンガン塩を添加すると更
に焼付atを下げることができることを見い出し本発明
に到達した。
From the perspective of energy saving in recent years! ! It is desired to lower the baking temperature, and as a result of various studies, the present inventors have found that carbon-carbon double bonds and sulfone or cono-phosphoric acid resins have carbon-carbon double bonds and sulfonic acid groups. The inventors have discovered that the seizure rate can be further reduced by adding an oil-soluble manganese salt to a polymer compound having a group-containing polymer compound, and have thus arrived at the present invention.

従って本発明の目的は上記炭素−炭素二喧結合およびア
ミン基含有高分子化合物の硬化性を改良して低温硬化性
と優れた耐食性を何する#に極析出型亀着塗料を提供す
ることにある。
Therefore, the object of the present invention is to provide a polar precipitation type coating material that improves the curability of the above-mentioned carbon-carbon double bond and amine group-containing polymer compound, and provides low-temperature curability and excellent corrosion resistance. be.

本発明の(A)成分の出発原料である500〜10.0
00の分子量で50〜500のヨウ素価の炭素−炭素二
重結合を有する高分子化合物は従来公知の方法で製造さ
れる。
500 to 10.0, which is the starting material for component (A) of the present invention.
A polymer compound having a carbon-carbon double bond with a molecular weight of 0.00 and an iodine value of 50 to 500 is produced by a conventionally known method.

すなわちアルカリ金属または有機アルカリ金属化合物を
触媒として炭素数4〜10の共役ジオレフィン単独、あ
るいはこれらのジオレフィン(…1志、あるいは共役ジ
オレフィンに対して50モル嗟以下の量の芳香族ビニル
モノマー、例工ばスチレン、α−メチルスチレン、ビニ
ルトルエン又はジビニルベンゼン、とをQC−100℃
の温度で丁ニオン争合または共昧合させる方法が代表的
な製造方法である。この場合分子量を制御し、ゲル分な
どの少ない、淡色の低4名体を得るためにはペンジルナ
トリウムのような有機アルカリ金属化合物を触媒トし、
アルキルアリール基を有する化合物例えばトルエンを連
鎖移動剤とする連鎖移動1合法(米国特許第37890
90号)あるいはテトラヒドロフラン溶媒中でナフタリ
ンのような多環芳香族化合物を活性剤とし、ナトリウム
のようなアルカリ金属を触媒とするリビング1合法(特
公昭42−174F15号、同43−27432号)あ
るいはトルエン、キシレンのような芳香族炭化水素を溶
媒とし、ナトリウムのようなアルカリ金属の分散体を触
媒とし、ジオキサンのようなエーテル類11t4加して
分子量を制御する噴合法(特公昭32−7446号、同
38−1245号、同34−10188号)などが好適
な製造方法である。
That is, using an alkali metal or an organic alkali metal compound as a catalyst, a conjugated diolefin having 4 to 10 carbon atoms alone, or an aromatic vinyl monomer in an amount of 50 mol or less per these diolefins, or the conjugated diolefin. For example, styrene, α-methylstyrene, vinyltoluene or divinylbenzene, and QC-100℃
A typical manufacturing method is a method in which carbon atoms are brought into competition or entanglement at a temperature of . In this case, in order to control the molecular weight and obtain a light-colored, low-density compound with little gel content, an organic alkali metal compound such as sodium pendyl is used as a catalyst.
Chain transfer method 1 using a compound having an alkylaryl group, such as toluene as a chain transfer agent (US Pat. No. 37890)
90) or the living 1 method (Japanese Patent Publication No. 42-174F15, No. 43-27432) in which a polycyclic aromatic compound such as naphthalene is used as an activator and an alkali metal such as sodium is used as a catalyst in a tetrahydrofuran solvent; An injection method in which an aromatic hydrocarbon such as toluene or xylene is used as a solvent, an alkali metal dispersion such as sodium is used as a catalyst, and an ether such as dioxane is added to control the molecular weight (Japanese Patent Publication No. 32-7446) , No. 38-1245, No. 34-10188) are suitable manufacturing methods.

また8族金属例えばコバルト又はニッケルのアセチルア
セトナート化合物およびアルキルアルミニウムハロゲニ
ドを触媒とする配位アニ吋ン噴合によって製造される(
特公昭45−507号、−146−80300号)低重
合体も用いることができる。
It is also produced by coordinated anidine injection catalyzed by an acetylacetonate compound of a Group 8 metal such as cobalt or nickel and an alkyl aluminum halide (
(Japanese Patent Publication No. 45-507, 146-80300) Low polymers can also be used.

本発明の(A)成分すなわち500〜10,000の分
子量で50〜500のヨウ素価の炭素−炭素二重結合お
よび100g当り30〜300ミリモルのアミノ基を有
する高分子化合物は従来公知の方法で製造される。
Component (A) of the present invention, that is, a polymer compound having a molecular weight of 500 to 10,000, an iodine number of 50 to 500, a carbon-carbon double bond, and an amino group of 30 to 300 mmol per 100 g can be prepared by a conventionally known method. Manufactured.

たとえば炭素−炭素二重結合を有する高分子化合物に無
水マレイン酸を付加させた後に一般式(ここでR−は炭
素数1〜20の炭化水素基、R1およびR1は水素原子
またはその一部がヒドロキシル基で置換されていても良
い炭素数1〜20の炭化水素基を表わす。)で示される
ジアミン化合物を反応させてアミン基を導入する方法(
特開昭51−119727、特開昭52−147638
、特開昭53−8629、特開昭53−63439)あ
るいは炭素−炭素二重結合を有する高分子化合物をエポ
キシ化した後−級又は二級アミンを付加させる方法(特
開昭53−16048、特開昭53−11703(Nな
どが知られている。
For example, after adding maleic anhydride to a polymer compound having a carbon-carbon double bond, the general formula A method of introducing an amine group by reacting a diamine compound represented by (representing a hydrocarbon group having 1 to 20 carbon atoms which may be substituted with a hydroxyl group) (
JP-A-51-119727, JP-A-52-147638
, JP-A-53-8629, JP-A-53-63439) or a method of adding a secondary or secondary amine after epoxidizing a polymer compound having a carbon-carbon double bond (JP-A-53-16048, JP-A-53-16048, JP-A-53-11703 (N, etc. are known).

本発明の(B)成分すなわち一般式 %式% ( 〔式中R3及びR6は水素原子または炭素数1−10の
アルキル基、nhoないし20の整数、mは1または0
、Yt−J炭素数3か4のα、β不飽和モノカルボン酸
の残基、そしてY′はmが0のときは水素原子であり、
mが1のときけYを表わす〕 で表わされる化合物または下記一般式(b′)−−−−
−−(bワ 〔式中n’ JriOないし10の整数、R1H水素原
子または炭素数1〜10の炭化水素基、そしてYVi炭
素数3か4のα、β不飽和モノカルボン酸の残基全表わ
す〕 化合物を添加すると耐食性が著しく改善される。
Component (B) of the present invention, that is, the general formula % (wherein R3 and R6 are a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, an integer of nho to 20, m is 1 or 0
, Yt-J is a residue of an α, β unsaturated monocarboxylic acid having 3 or 4 carbon atoms, and Y′ is a hydrogen atom when m is 0,
When m is 1, it represents Y] or the following general formula (b') ----
--(bwa [in the formula, n' JriO, an integer from 10 to 10, R1H hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and YVi all residues of α, β unsaturated monocarboxylic acid having 3 or 4 carbon atoms) ] Corrosion resistance is significantly improved by adding the compound.

成分(H)の含有量は、樹脂(A)の100重量部に対
し、3〜IQOii瞼部、好オしく1tlO〜50@量
部の範囲である。
The content of component (H) is in the range of 3 to IQOii parts, preferably 1 to 50 parts by weight, per 100 parts by weight of the resin (A).

成分(B)の含有量がこれより少ないと、耐食性の改善
が充分でなく、これより多いと、水分散性を悪化させる
If the content of component (B) is less than this, the improvement in corrosion resistance will not be sufficient, and if it is more than this, water dispersibility will be deteriorated.

上記成分(H)の化合物を得るKFi、式 %式% 10のアルキル基好ましくはメ子ル某、チル基、nは0
ないし20好ましくiilな11111用い し5の整数、mは0又は11好中しくは1である〕 で示されるグリシジル化合物を原料に用いる。このグリ
シジル化合物は通常アルカリの存在下でビスフェノール
をエピクロルヒドリンでエーテル化することによって作
ることができる。このようなビスフェノール化合物とし
ては2.2−ビス(4′−ヒドロキシフェニル)プロパ
ン、1.1−ビス(4′−ヒドロキシフェニル)1タン
、1.l−ビス(4′−ヒドロキシフェニル)イソブタ
ン、などである。多くの場合上言ピのグリシジルエーテ
ルをビスフェノールなどと史に反応させ、次いでこの生
成物をエピクロルヒドリンと更に反応させると幾分高い
分子量を有するグリシジル化合物が合成され、これらを
使用することができる。
KFi to obtain the compound of the above component (H), formula % formula % 10 alkyl group, preferably methyl group, n is 0
A glycidyl compound represented by the following formula is used as a raw material. This glycidyl compound can be prepared by etherifying bisphenol with epichlorohydrin, usually in the presence of an alkali. Such bisphenol compounds include 2,2-bis(4'-hydroxyphenyl)propane, 1,1-bis(4'-hydroxyphenyl)1tane, 1. l-bis(4'-hydroxyphenyl)isobutane, and the like. In many cases, by reacting the glycidyl ether of the above-mentioned compound with bisphenol or the like, and then further reacting this product with epichlorohydrin, glycidyl compounds having a somewhat higher molecular weight are synthesized, and these can be used.

次に上記グリシジル化合物を温度O〜200℃好ましく
は50〜150℃で炭素数3か4の不飽和カルボン酸と
反応させる。炭素数3か4の不飽和カルボン酸とは、ア
クリル酸、メタクリル酸およびクロトン酸等であり、そ
れらの混合物も使用で舞る。
Next, the glycidyl compound is reacted with an unsaturated carboxylic acid having 3 or 4 carbon atoms at a temperature of 0 to 200°C, preferably 50 to 150°C. Examples of unsaturated carboxylic acids having 3 or 4 carbon atoms include acrylic acid, methacrylic acid and crotonic acid, and mixtures thereof may also be used.

反応には@3級アミン類や第4アンモニウム塩類などの
適当な触媒を用いることがで倉る。また溶媒の存在下、
非存在下で反応を行なうことかできるが、溶媒を使用す
る場合は、樹脂(A)の合成に際[7て、−級または二
級アミン管反応させる段階で使用する溶媒と同種の本の
を使用することができる。
For the reaction, a suitable catalyst such as tertiary amines or quaternary ammonium salts can be used. Also, in the presence of a solvent,
The reaction can be carried out in the absence of a solvent, but if a solvent is used, please refer to the same book as the solvent used in the step of synthesizing resin (A) [7]. can be used.

上記の反応は、不飽和カルボン酸として、例えばアクリ
ル酸を用いる場合には下記反応式に従って直行する。
When acrylic acid, for example, is used as the unsaturated carboxylic acid, the above reaction is carried out directly according to the following reaction formula.

本発明においては、上記のグリシジル化合物分の実質的
に全てが該不飽和カルボン酸と反応してY−CHx−C
HCHt−基(Yは前記と同じ意味をH 有する)に変換されることか要求される。
In the present invention, substantially all of the above glycidyl compound reacts with the unsaturated carboxylic acid to produce Y-CHx-C
It is required to be converted into an HCHt- group (Y has the same meaning as above for H).

は、竹に酸を加えて水溶化する際に樹脂(A)の有する
塩基性基と不都合な反応ケし、ゲル化を起こす結果、粘
度が高くなりすぎて水溶化ができない。たとえば水溶化
ができた場合でも水溶液が軽時変化を起こし、一定のf
s1着特性、あるいは電着塗噂が得られないなどの欠点
を生じる。
When acid is added to bamboo to make it water-soluble, it undergoes an unfavorable reaction with the basic group of the resin (A), causing gelation, resulting in a viscosity that becomes too high and cannot be water-solubilized. For example, even if water solubilization is achieved, the aqueous solution will change over time and will remain at a constant f.
This results in drawbacks such as the inability to obtain s1 adhesion properties or electrodeposition properties.

従来、ビスフェノール型のエポキシ樹脂は、耐食性にす
ぐれた樹脂として知られており、とれに架橋性をもたせ
るためにエポキシ基の一部ヲ残シたり、(特公昭49−
23807、特公昭5l−15860)、ブロックイソ
シアネート化合物を架橋剤に用いるなどの試みがなされ
ている。しかしながら、このような塗料は実用的な硬度
を得るためにFi200℃以上のごとき高温が要求され
、比較的低温で硬化できる場合にも狭い範囲の焼付温度
しか選択できないなどの欠点があった。
Conventionally, bisphenol-type epoxy resins have been known as resins with excellent corrosion resistance, and in order to give them crosslinking properties, some of the epoxy groups were left unused, and
23807, Japanese Patent Publication No. 51-15860), attempts have been made to use blocked isocyanate compounds as crosslinking agents. However, such paints require high temperatures such as Fi200°C or higher to obtain practical hardness, and even when they can be cured at relatively low temperatures, they have the disadvantage that only a narrow range of baking temperatures can be selected.

さらにビスフェノール型エポキシ樹脂は実用的な電1条
件下では成程度の高分子量体を有するもの用いなければ
ならず、必然的Kl!1ullが柔軟性に欠けるきらい
がある。また炭素−炭素二喧結合を有する樹脂にブロッ
クイソシアネートを用いる場合には焼付時の酸化1合が
阻害されて十分な性能を有する塗膜が得られない傾向が
ある。
Furthermore, the bisphenol type epoxy resin must have a certain degree of high molecular weight under practical conditions of electric current, and the inevitable Kl! 1ull tends to lack flexibility. Furthermore, when a blocked isocyanate is used in a resin having a carbon-carbon double bond, oxidation during baking tends to be inhibited, making it difficult to obtain a coating film with sufficient performance.

従って、本発明により、前記グリシジル化合物Y−C1
,−CH−CH,−に変換された化合物(B)H を陰極析出型電着塗料の一成分として、前記樹脂、(A
)と併用することができ、それによって、樹脂(A)の
、優れた硬化性と被嗅特性を伺等損うことなく、その耐
食性を顕著に改善できることが見出されたことは、真に
篤くべきである。
Therefore, according to the present invention, the glycidyl compound Y-C1
, -CH-CH,- as a component of the cathodically deposited electrodeposition paint, the resin, (A
) can be used in combination with resin (A), thereby significantly improving the corrosion resistance of resin (A) without impairing its excellent curability and olfactory properties. It should be serious.

成分(C)の300〜a、oooの分子量で50〜50
0のヨウ素価の炭素−炭素二重結合および1002当り
30〜300ミリモルのスルホン酸基あるいはコハク酸
基を有する高分子化合物の油溶性マンガン塩を0.2〜
20@量部添加することによね著しく硬化性が促進され
低温硬化性の陰極析出型電着塗料が得られる。
Molecular weight of component (C) 300-a, ooo 50-50
An oil-soluble manganese salt of a polymer compound having a carbon-carbon double bond with an iodine value of 0 and 30 to 300 mmol of sulfonic acid group or succinic acid group per 1002
By adding 20 parts by weight, the curability is significantly accelerated and a low temperature curable cathodically deposited electrodeposition coating material can be obtained.

一般に油溶性のマンガン塩としてはナフテン酸マンガン
、オクテン酸マンガン、マンガンアセチルアセトナート
などが知られているが、これらのマンガン塩は弱酸のマ
ンガン塩であり、中和剤の酢酸などと水溶液で交換反応
を生じ徐々に水塩性のマンガン塩になり、電着塗料の安
定性を悪くする。
In general, manganese naphthenate, manganese octenoate, manganese acetylacetonate, etc. are known as oil-soluble manganese salts, but these manganese salts are weak acid manganese salts and can be exchanged with acetic acid as a neutralizing agent in an aqueous solution. A reaction occurs and gradually turns into aqueous manganese salts, which impairs the stability of electrodeposition paints.

また水溶性のマンガン塩が生成すると水溶性のマンガン
塩は電着塗料液の電導度を上昇させるため肌荒れの原因
になるあるいは水溶性のマンガン塩は油溶性のマンガン
塩に比べて硬化を促進する効果が小さいので硬化性が低
下するなどの間験点があり、油溶性でも弱酸のマンガン
塩の使用は好ましくない、tた上記弱酸のマンガン塩は
実質的には不飽和基゛を有していないので成分(A)あ
ると いは成分(B)の樹i硬化しないため、耐溶剤性など焼
付塗膜の性能を低下させる原因にもなる。
In addition, when water-soluble manganese salts are formed, water-soluble manganese salts increase the conductivity of the electrodeposition coating solution, causing rough skin, or water-soluble manganese salts accelerate curing compared to oil-soluble manganese salts. It is not recommended to use manganese salts of weak acids even if they are oil-soluble because their effectiveness is small and curing properties are lowered. Therefore, the resin of component (B) will not harden even if component (A) is present, which may cause a decrease in the performance of the baked coating film, such as solvent resistance.

本発明で用いられる油溶性スルホン酸のマンガン塩ある
いはコハク酸のマンガン塩は強請の壇である丸め中和剤
の酢酸などと交換反応を生じないし、不飽和基を有して
いるので成分(A)あるいは成分(B)と焼付時に共硬
化するので上記問題点を生じることなく使用することが
できる。
The manganese salt of oil-soluble sulfonic acid or the manganese salt of succinic acid used in the present invention does not undergo an exchange reaction with acetic acid, a rounding neutralizing agent, which is a platform for extortion, and has an unsaturated group, so the component (A ) or co-cures with component (B) during baking, so it can be used without causing the above-mentioned problems.

本発明で用いられる(C)成分すなわち300〜a、o
ooの分子量で50〜500のヨウ素価の炭素−炭素二
重結合およびfoot当り30〜30ミリモルのスルホ
ン酸基あるいはコハク酸基を有する高分子量化合物の油
溶性マンガン塩は従来公知の方法で製造される。たとえ
ば本発明の(A)成分の出発原料に用いられる共役ジオ
レフィンの低酸合体あるいは共低歌合体をスルホン化あ
るいはマレイン化した後、これらの酸基のナトリウム塩
と硫酸マンガン、塩化マンガンなどとの塩交換反応によ
るいわゆる複分解法あるいはアセチルアセトンマンガン
、炭酸マンガン、酢酸マンガンなどの弱酸のマンガン塩
との酸交換反応による方法で容易に製造される。
Component (C) used in the present invention, i.e. 300 to a, o
The oil-soluble manganese salt of a high molecular weight compound having a carbon-carbon double bond with a molecular weight of 50 to 500 and an iodine number of 30 to 30 mmol per foot and a sulfonic acid group or a succinic acid group has been produced by a conventionally known method. Ru. For example, after sulfonating or maleating the low-acid or co-low-acid combination of conjugated diolefins used as the starting material for component (A) of the present invention, the sodium salt of these acid groups and manganese sulfate, manganese chloride, etc. It is easily produced by the so-called double decomposition method using a salt exchange reaction, or by an acid exchange reaction with a manganese salt of a weak acid such as manganese acetylacetonate, manganese carbonate, or manganese acetate.

本発明の成分(C)の油溶性マンガン塩の添加量は0.
2酸量部よね少くないと硬化性を促進する効果が小さく
、また20重量部より多すぎると硬化性は良いが、水分
散性、耐食性などを低下させるので好ましくない。好ま
しい範囲は1〜10暖量部であり、マンガン金属量とし
てijO,05〜0.5喧量部が好ましい。
The amount of oil-soluble manganese salt added as component (C) of the present invention is 0.
If the amount is less than 2 parts by weight, the effect of promoting curability will be small, and if it is more than 20 parts by weight, curability will be good, but water dispersibility, corrosion resistance, etc. will be deteriorated, which is not preferable. The preferable range is 1 to 10 parts by weight, and the amount of manganese metal is preferably 05 to 0.5 parts by weight.

本発明において成分(A)、成分(B)および成分(C
)からなる組成物を水溶化または水分散化するためには
成分(A)、成分(B)および成分(C)?あらかじめ
混合した後、成分(A)のアミノ基に対して0.1〜2
.0好ましく Vio、 2〜1.0モル当量の酢酸、
プロピオン酸、乳酸などの水溶性の有機酸で中和し、水
溶化することが好ましい。
In the present invention, component (A), component (B) and component (C
) In order to water-solubilize or water-disperse a composition consisting of component (A), component (B) and component (C)? After pre-mixing, 0.1 to 2
.. 0 preferably Vio, 2 to 1.0 molar equivalents of acetic acid,
It is preferable to neutralize with a water-soluble organic acid such as propionic acid or lactic acid to make it water-soluble.

本発明の樹脂組成物(a)または(c)を中和し水に溶
解または分散させるにあたり、溶解または分散を容易に
し、水溶液の安定性を向上させ、樹脂の流動性を改善し
、塗噂の平滑性を改善するなどの目的で、水溶性であり
しか本書樹脂組成物全溶解しうるエチルセロソルブ、プ
ロピルセロソルブ、ブチルセロソルブ、エチレングリコ
ールジメチルエーテル、ジエチレングリコールジメチル
エーテル、ジアセトンアルコール、4−メトキシ−4−
メチルペンタノン−2、メチルエチルケトンなどの有機
溶剤を各樹脂組成物】00暇量部当り10〜100 (
il一部使用することが好ましい。
When neutralizing the resin composition (a) or (c) of the present invention and dissolving or dispersing it in water, it is possible to facilitate the dissolution or dispersion, improve the stability of the aqueous solution, improve the fluidity of the resin, and improve the coating properties. For purposes such as improving the smoothness of water-soluble resin compositions, ethyl cellosolve, propyl cellosolve, butyl cellosolve, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diacetone alcohol, 4-methoxy-4-
Organic solvents such as methylpentanone-2 and methyl ethyl ketone were added to each resin composition in an amount of 10 to 100 parts per free weight part.
It is preferable to use a portion of il.

本発明の陰極析出型を着塗料組成物にtよさらに適当な
顔料を配合することができる。例えば酸化鉄、酸化鉛、
ストロンチウムクロメート、カーボンブラック、二酸化
チタン、タルク、珪酸アルミニウム、硫酸バリウ□ムの
如き顔料の一種またはそれ以上を配合することができる
A suitable pigment can be added to the cathodically deposited coating composition of the present invention. For example, iron oxide, lead oxide,
One or more pigments such as strontium chromate, carbon black, titanium dioxide, talc, aluminum silicate, and barium sulfate can be incorporated.

これらの顔料はその!ま本発明の組成物に添加できるが
、あらかじめ、成分(Alを中和17水に分散又は水溶
液化したものの一部分に多量の顔料を加えて混合し、ペ
ースト状のマスターバッチとしたものを得、このペース
ト状の顔料全組成−物に添加することができる。
These pigments are that! Although it can be added to the composition of the present invention, in advance, a large amount of pigment is added to a part of the component (Al dispersed or made into an aqueous solution in neutralized water) and mixed to obtain a paste-like masterbatch. This paste-like pigment can be added to the entire composition.

次に実施例および比較例により本発明今更に具体的に説
明する。なお実施例および比較例の塗−の物性テストは
JIS−に−5400に準じて行なった。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. The physical properties of the coatings in the Examples and Comparative Examples were tested in accordance with JIS-5400.

製造例1゜ 日石ボ1,1ブタジェンB−2000(数平均分子量2
,000.1,2結合651)を過酢酸を用いてエポキ
シ化しオキシラン酸素含有量6.34のエポキシ化ポリ
ブタジェン(E、)?製造した。
Production example 1゜Nisseki Bo 1,1 Butadiene B-2000 (number average molecular weight 2
,000.1,2 bond 651) was epoxidized using peracetic acid to produce epoxidized polybutadiene (E, ) with an oxirane oxygen content of 6.34? Manufactured.

このエポキシ化ポリブタジェン(E’)1.0762お
よびエチルセロソルブ108f%−27−1−−トクレ
ーフに仕込んだ後ジメチルアミン40ft770え、1
50℃で5時間反応させた。未厚応アミンを留去した後
、アクリル酸95t1ノ・イドロキノン8 ”!Xfお
ヨヒエチルセロソルブ260tの混合物を添加し、さら
に150℃で45分反応させて本発明の成分(A)の樹
脂溶液(A、)を製造した8このもののアミン価は50
ミリモル/1009a価は5ミリモル/100Fそして
固型分濃度は7s、ot1%であった。
After charging 1.0762 of this epoxidized polybutadiene (E') and ethyl cellosolve 108f%-27-1-toclef, 40ft770 of dimethylamine, 1
The reaction was carried out at 50°C for 5 hours. After distilling off the unreacted amine, a mixture of 95 t of acrylic acid, 8 t of hydroquinone, and 260 t of ethyl cellosolve was added, and the mixture was further reacted at 150°C for 45 minutes to form a resin solution of component (A) of the present invention. The amine value of this product (A,) is 50.
The mmol/1009a value was 5 mmol/100F and the solids concentration was 7s, ot1%.

製造例2゜ 日石ポリブタジェンH−1500(数平均分子量150
0.1.2結合63チ)を過酢酸を用いてエポキシ化し
オキシラン酸素含有量6.5%のエポキシ化ポリブタジ
ェン(E、)を製造した。
Production example 2゜Nisseki polybutadiene H-1500 (number average molecular weight 150
0.1.2 bond 63) was epoxidized using peracetic acid to produce epoxidized polybutadiene (E,) having an oxirane oxygen content of 6.5%.

このエポキシ化ポリブタジェン(FJ、)1000fお
よびエチルセロソルブ368tおよびジェタノールアミ
ン105ft3ノセパラプルフラスコに仕込み150℃
で6時間反応させた。反応後、120Cまで冷却し、ア
クリルm79f、ハイドロキノン7.3fおよびエチル
セロソルブ26fの混合物を加え、120Cで8時間反
応させて本発明の成分Aの樹脂溶液(A、l製造した。
This epoxidized polybutadiene (FJ) 1000f, ethyl cellosolve 368t and jetanolamine were charged into a 105ft3 noseparapure flask and heated to 150°C.
The mixture was allowed to react for 6 hours. After the reaction, the mixture was cooled to 120C, a mixture of acrylic m79f, hydroquinone 7.3f and ethyl cellosolve 26f was added, and the mixture was reacted at 120C for 8 hours to produce a resin solution of component A of the present invention (A, 1).

コノもののアミン価は62 mmol/ I OOf。The amine value of this product is 62 mmol/IOOf.

酸価はl 2mmol/100?、そして固型分濃度は
751■であった。
The acid value is l 2mmol/100? , and the solid content concentration was 751 ■.

製造例3 日石ポリブタジェンB−2000(数平均分子量200
0,1.2結合65%)1000f、無水マレイン酸t
6sf、キシレン10f1アンチゲン3C(住友化学商
品名)29を還流冷却器を膜質した21セパラブルフラ
スコに仕込み窒素気流下にて190℃で5時間反応させ
た。次に未反応無水マレイン酸、キシレンを減圧下に留
去し、障価143ミリモル/100fのマレイン化ポリ
ブタジェン(M、)5(合成した。
Production Example 3 Nisseki Polybutadiene B-2000 (number average molecular weight 200
0,1.2 bonds 65%) 1000f, maleic anhydride t
6sf, xylene 10f1 Antigen 3C (trade name of Sumitomo Chemical) 29 were charged into a 21 separable flask equipped with a reflux condenser and reacted at 190° C. for 5 hours under a nitrogen stream. Next, unreacted maleic anhydride and xylene were distilled off under reduced pressure to synthesize maleated polybutadiene (M,) 5 with a barrier value of 143 mmol/100f.

ブチルセロソルブ1562を還光冷却器ケ備えた21セ
パラブルフラスコに仕込み攪拌下[80℃に加熱した。
Butyl Cellosolve 1562 was charged into a 21 separable flask equipped with a reflux condenser and heated to 80° C. with stirring.

次にジメチルアミンプロピルアミン78Fを滴下し、次
いでモノエタノールアミン23fを滴下し九 滴下終了
後ただちに150℃に昇温し4時間150℃でに応を続
けた。減圧下に生成した水、ブチルセロソルブおよび未
反応アミンを留去し、第三級アミン基および水酸基を有
するイミド化ポリブタジェンを合成した。このイミド化
ポリブタジェンのアミン価は89ミリモル/100Fで
あった。とのイミド化ポリブタジェンを固形分がs o
 itチになるようにエチル−←ロソルブに溶解し本発
明の成分(A)の樹脂溶液(A3)を製造した。
Next, dimethylamine propylamine 78F was added dropwise, and then monoethanolamine 23F was added dropwise. Immediately after the addition was completed, the temperature was raised to 150°C and the reaction was continued at 150°C for 4 hours. The produced water, butyl cellosolve and unreacted amine were distilled off under reduced pressure to synthesize imidized polybutadiene having tertiary amine groups and hydroxyl groups. The amine value of this imidized polybutadiene was 89 mmol/100F. The solid content of imidized polybutadiene is so
A resin solution (A3) of the component (A) of the present invention was prepared by dissolving it in ethyl-←Rosolve so that it was completely dissolved.

製造例4 ビスフェノールAとエピクロルヒドリンをアルカリ触媒
の存在下で反応させて得た下記化合物として、エポキシ
当量500を持つビスフェノールタイプエボキシ樹脂〔
商品名エピコート](101シエル化学(株)製〕1.
000fをエチルセロソルブ227fに溶解し、アクリ
ル91371.ノ・イドロキノン0.2tおよびN、N
ジメチルアミノエタノールを5を添加し、100℃に加
熱して5時間反応させ、本発明の成分(B)であるエポ
キシ411 II−アクリル酸付加物のエチルセロソル
ブ溶′wl(Bl)を合成した。
Production Example 4 The following compound obtained by reacting bisphenol A and epichlorohydrin in the presence of an alkali catalyst was a bisphenol type epoxy resin having an epoxy equivalent of 500 [
Product name Epicote] (manufactured by 101 Ciel Chemical Co., Ltd.) 1.
000f in ethyl cellosolve 227f and acrylic 91371. Hydroquinone 0.2t and N, N
5 of dimethylaminoethanol was added, and the mixture was heated to 100° C. and reacted for 5 hours to synthesize an ethyl cellosolve solution of epoxy 411 II-acrylic acid adduct (B1), which is component (B) of the present invention.

製造例5 エポキシ当量500を持つビスフェノールタイプエボキ
シ樹脂〔商品名エピコート1001、ノニル化学(&)
製] 1.000 t>エチルセロソルブ288tに溶
解し、メタクリル酸t 64 f、ハイドロキノン0.
29およびN、Nジメチルアミノエタノールを5f添加
し、製造例4と同様の反応条件で、本発明の成分(B)
であるエポキシ樹脂−メタクリル酸付加物のエチルセロ
ソルブ溶液(Bりを合成した。
Production Example 5 Bisphenol type epoxy resin with epoxy equivalent of 500 [trade name Epicote 1001, Nonyl Kagaku (&)
] 1.000 t>Dissolved in 288 t of ethyl cellosolve, 64 f of methacrylic acid, 0.0 t of hydroquinone.
Component (B) of the present invention was prepared by adding 5f of 29 and N,N dimethylaminoethanol and under the same reaction conditions as in Production Example 4.
An ethyl cellosolve solution (B) of an epoxy resin-methacrylic acid adduct was synthesized.

製造例6 日石ポリブタジェンB−700(数平均分子量700.
1.2結合52%)] O(10t、無水マレイン酸1
17.3f、アンチゲン3C] ?およびキシレン10
9を還流冷却器を設置した2!セパラブルフラスコに仕
込み窒素気流下にて195℃で5時間反応させた。次に
未反応無水マレ・イン酸およびキシレンを減圧下に留去
し酸価107ミリモル/100Fのマレイン化ポリブタ
ジェン(M、)を合成した。
Production Example 6 Nisseki Polybutadiene B-700 (number average molecular weight 700.
1.2 bonds 52%)] O (10t, maleic anhydride 1
17.3f, Antigen 3C]? and xylene 10
9 with a reflux condenser installed 2! The mixture was placed in a separable flask and reacted at 195° C. for 5 hours under a nitrogen stream. Next, unreacted maleic anhydride and xylene were distilled off under reduced pressure to synthesize maleated polybutadiene (M,) having an acid value of 107 mmol/100F.

マレイン化ポリブタジェン(M、)500F およびエ
チルセロソルブ148tを120’Cで2時間反応させ
無水コハク酸基を開環させた後室温まで冷却し、力性ソ
ーダの22.59量嘔水溶液100tを除々に加え中和
した後固形分濃度が259量嗟になるように脱イオン水
を加えマレイン化ポリブタジェンの水溶液を調製した。
Maleated polybutadiene (M) 500F and ethyl cellosolve 148t were reacted at 120'C for 2 hours to open the succinic anhydride group, and then cooled to room temperature, and gradually added with 100t of an aqueous solution of 22.59 volumes of hydric soda. After addition and neutralization, deionized water was added so that the solid content concentration was 259 volumes to prepare an aqueous solution of maleated polybutadiene.

次に硫酸マンガフ (MnSO4−H,04,、) 7
4.5f’tr水6001に溶解した後イソプロピルア
ルコール600tおよびベンゼン1000fを加え攪拌
下に室温で上記マレイン化ポリブタジェンの水溶液21
92gを除々に滴下し、滴下終了後6o[[30分加熱
した後1時間静置したところ二層に分離したので下Il
lを切り、脱イオン水1000f加え60℃に30分加
熱した後1時間静電し下層を除去した。
Next, manganf sulfate (MnSO4-H,04,,) 7
After dissolving in 4.5 f'tr water 6001, 600 t of isopropyl alcohol and 1000 f of benzene were added and the maleated polybutadiene aqueous solution 21 was stirred at room temperature.
92g was gradually added dropwise, and after the completion of the dropping, 60g was heated for 30 minutes and then left to stand for 1 hour.
After adding 1,000 f of deionized water and heating at 60° C. for 30 minutes, electrostatic discharge was performed for 1 hour to remove the lower layer.

上層を取り出しベンゼンなどを減圧下で留去しマレイン
化ポリブタジェンのマンガン塩を複分解法で製造した。
The upper layer was taken out and benzene etc. were distilled off under reduced pressure to produce manganese salt of maleated polybutadiene by double decomposition method.

このマレイン化ポリブタジェンのマンガン塩を固形分が
75重量%になるようにエチルセロソルブに溶解し本発
明の成分(C)の油溶性マンガン塩の溶液(C3)を製
造した。(C1)のマンガン含有電Fi2@量−であっ
た。
This manganese salt of maleated polybutadiene was dissolved in ethyl cellosolve so that the solid content was 75% by weight to produce a solution (C3) of oil-soluble manganese salt as component (C) of the present invention. The amount of manganese-containing electricity Fi2 in (C1) was -.

製造例7 日石ポリブタジェンB−1500100of。Manufacturing example 7 Nisseki Polybutadiene B-1500100of.

無水マレイン11117.3fアンチゲン3C2fおよ
びキシレン10fを還流冷却器を設置した21セパラブ
ルフラスコに仕込み窒素気流下にて195℃で5時間故
応させた。次に未反応無水マレイン酸およびキシレンを
減圧下で留去し酸価107ミリモル/ 10.Oyのマ
レイン化ポリブタジェン(M、)を合成した。
Anhydrous maleic acid 11117.3f antigen 3C2f and xylene 10f were charged into a 21 separable flask equipped with a reflux condenser and allowed to react at 195° C. for 5 hours under a nitrogen stream. Next, unreacted maleic anhydride and xylene were distilled off under reduced pressure to give an acid value of 107 mmol/10. Maleated polybutadiene (M,) of Oy was synthesized.

マレイン化ポリブタジェン(M、)2sOr、エチルセ
ロソルブ220fを還流冷却器およびリービッヒコンデ
ンサーを設着した11セパラブルフラスコに仕込み12
0℃で2時間反応させ無水コハク酸基を開環させた後、
酢酸マンガンを46.4F溶解した水溶液175.7 
Fを加え120℃に加熱し水、酢酸、エチルセロソルブ
を常圧で留出させた後更に減圧にして酢酸、エチルセロ
ソルブヲ留去シ酸交換法でマレイン化ポリブタジェンの
マンガン塩を製造した。
Maleated polybutadiene (M,) 2sOr and ethyl cellosolve 220f were charged into a 11 separable flask equipped with a reflux condenser and a Liebig condenser.
After reacting at 0°C for 2 hours to open the succinic anhydride group,
Aqueous solution of manganese acetate dissolved at 46.4F 175.7
After adding F and heating to 120° C. to distill off water, acetic acid and ethyl cellosolve at normal pressure, the pressure was further reduced and acetic acid and ethyl cellosolve were distilled off to produce a manganese salt of maleated polybutadiene using the silicic acid exchange method.

このマレイン化ポリブタジェンのマンガン塩を固形分が
75暇量チになるようにエチルセロソルブに溶解し本発
明の成分(C)の油溶性マンガン塩の溶液(C,)を製
造した。(C2)のマンガン含有量Fi3.6111で
あった。
This manganese salt of maleated polybutadiene was dissolved in ethyl cellosolve so that the solid content was 75% to prepare a solution (C,) of an oil-soluble manganese salt as component (C) of the present invention. The manganese content Fi of (C2) was 3.6111.

製造例8 還流冷却器と滴下ロートを設置した2tのセパラブルフ
ラスコに日石ボリフ゛タジエンB−700を10Of採
取し、これに脱水ジクロルエタン1200117を加え
て溶解し5℃に冷却した。温度を5℃に保ちながら、S
O3] 1.4 tと脱水ジクロルエタン100−に溶
解した脱水1.4 ジオキサン12.6fとから合成し
たSO8・ジオキサン(1:1)コンプレックスを9素
気流下で60分間かけて滴下した。滴下終了後同一温度
で30分間熟成しスルホン化ポリブタジェン(S、)の
溶液を合成シタ。次に2tのセパラブルフラスコにMn
C0゜9.1fと水18゜2fk激しく攪拌する中に熟
成後の(Sl)の溶液を窒素気流下で5分間で滴下した
Production Example 8 In a 2 t separable flask equipped with a reflux condenser and a dropping funnel, 10 of Nippon Seki Borichtadiene B-700 was collected, and dehydrated dichloroethane 1200117 was added thereto to dissolve it and cooled to 5°C. While keeping the temperature at 5℃,
An SO8/dioxane (1:1) complex synthesized from 1.4 t of dehydrated dioxane and 12.6 f of dehydrated dioxane dissolved in 100 g of dehydrated dichloroethane was added dropwise over 60 minutes under a stream of 9 atom gas. After completion of the dropwise addition, the solution was aged at the same temperature for 30 minutes to synthesize a solution of sulfonated polybutadiene (S). Next, Mn was added to a 2t separable flask.
A solution of (Sl) after ripening was added dropwise over 5 minutes under a nitrogen stream while vigorously stirring CO 0°9.1f and water 18°2fk.

滴下終了後60℃に30分間加熱し加水分解を児結させ
た。反応液から溶媒を留去することによって茶かつ色の
半筒体状のスルホン化ポリブタジェンのマンガン塩を酸
交換反応で製造した。
After the dropwise addition was completed, the mixture was heated to 60° C. for 30 minutes to induce hydrolysis. By distilling off the solvent from the reaction solution, a brown semicylindrical manganese salt of sulfonated polybutadiene was produced by acid exchange reaction.

このスルホン化ポリブタジェンのマンガン塩を固形分が
75鍍量優になるようにエチルセロソルブに溶解し本発
明の成分(C)の油溶性マンガン塩の溶液(C1)を製
造した。(C5)のマンガン含有量は2.811優であ
った。
This manganese salt of sulfonated polybutadiene was dissolved in ethyl cellosolve so that the solid content was approximately 75, to produce a solution (C1) of an oil-soluble manganese salt as component (C) of the present invention. The manganese content of (C5) was 2.811.

実施例1 製造例1で製造したA+400f、製造例4で製造した
B、  10.8.4 fおよび製造例6で製造し九C
,45fを均一なるまで混合した後、酢酸6Vを加え十
分にかきまぜ中和した。次に脱(n−ン水を徐々に加え
固形分濃度が20暇量チの水溶液、を調製した。
Example 1 A+400f manufactured in Manufacturing Example 1, B manufactured in Manufacturing Example 4, 10.8.4 f, and 9C manufactured in Manufacturing Example 6
, 45f were mixed until homogeneous, then 6V of acetic acid was added and thoroughly stirred to neutralize. Next, dehydrated water was gradually added to prepare an aqueous solution having a solid content concentration of 20%.

この20暇量チ水溶液2000 f、カーボンブラック
49.塩基性硅酸鉛20fおよびガラスピーズ2000
fを51ステンレスビーカーに入れ高速回転ミキサーで
2時間激しくかきまぜた後、ガラスピーズを濾過した後
、固形分濃度が151量慢になるように脱イオン水を加
え、電着塗料液を調製した。
This 20% aqueous solution 2000f, carbon black 49. Basic lead silicate 20f and glass beads 2000
f was placed in a 51 stainless steel beaker and stirred vigorously for 2 hours using a high-speed rotating mixer, and after filtering the glass beads, deionized water was added to give a solid concentration of 151 to prepare an electrodeposition coating solution.

上記電着塗料液を用いてカーボン電極を陽極とし、リン
酸亜鉛処理板(日本テストパネル社、Bt3004.0
.FIX70X150m)を陰極とし陰極析出型電着塗
装を行なった。テスト結果を表−1に示した。
Using the above electrodeposition coating liquid, a carbon electrode was used as an anode, and a zinc phosphate treated plate (Japan Test Panel Co., Ltd., Bt3004.0
.. FIX70x150m) was used as a cathode for cathode deposition type electrodeposition coating. The test results are shown in Table-1.

比較例1 製造例6で製造したC+ ’f−添加しない以外は全て
実施例1と全く同じ条件で陰極析出型電着塗料液を!i
ll製し、実施例1と一1様の条件でテストを行ない結
果を表−1に示した。
Comparative Example 1 C+ 'f- produced in Production Example 6 - A cathode-deposited electrodeposition coating liquid was prepared under the same conditions as in Example 1 except that 'f- was not added! i
Tests were conducted under the same conditions as Examples 1 and 1, and the results are shown in Table 1.

比較例2 製造例6で製造したC1の代りに酢酸マンガンをマンガ
ンとして0.9f添加する以外は全て実施例1と全く同
じ条件で陰極析出型電着塗料液を調製し、実施例1と同
様の条件でテス)1行ない結果1r表−1に示した。
Comparative Example 2 A cathode-deposition electrodeposition coating solution was prepared in the same manner as in Example 1, except that 0.9f of manganese acetate was added in place of C1 produced in Production Example 6, under the same conditions as in Example 1. The results are shown in Table 1.

実施例2 製造例2で製造したA、400f%11!I造例5で製
造し九B、759および製造例7で製造したC216.
7fを均一なるまで混合した後、酢m7.4fを加え十
分にかきまぜ中和した。次に脱イオン水を徐々に加え固
形分濃度が25@量チの水溶液を調製した。この25醸
量−水溶液1000f、カーボンブラック2.5t、塩
基性硅階鉛259およびガラビーズ1000fを31ス
テンレスビーカーに入れ高速回転ミキサーで2時間# 
L <かy!まぜた後、ガラスピーズを炉遇した後、固
形分濃度が18%になるように脱イオン水を加え、電着
塗料液を調製した。
Example 2 A produced in Production Example 2, 400f%11! 9B, 759 produced in Production Example 5, and C216 produced in Production Example 7.
After mixing 7f until homogeneous, 7.4f of vinegar was added and thoroughly stirred to neutralize. Next, deionized water was gradually added to prepare an aqueous solution having a solid content concentration of 25%. This 25-brewing volume - 1000f of aqueous solution, 2.5t of carbon black, 259 basic silica lead and 1000f of gala beads were placed in a 31 stainless steel beaker and heated in a high-speed rotating mixer for 2 hours.
L<kay! After mixing, the glass beads were heated in a furnace, and then deionized water was added so that the solid content concentration was 18% to prepare an electrodeposition coating liquid.

上記電着塗料液を用いてカーボン電極を陽極と【7、リ
ン酸亜鉛処理板(日本テストパネル社、813004、
o、sx’yox150mm)?陰極と17#極析出型
電着塗装を行なった。テスト結果を比較例3 製造例7で製造したC2を添加(7ない以外eゴ全て実
施例2と全く同じ条件で陰極析出型電着塗料液全調製し
、実施例2と同様の条件でテストを行ない結果を表−2
に示[7た。
Using the above electrodeposition coating liquid, a carbon electrode was attached as an anode [7. Zinc phosphate treated plate (Japan Test Panel Co., Ltd., 813004,
o, sx'yox150mm)? The cathode and 17# electrode deposition type electrodeposition coating were performed. The test results are shown in Comparative Example 3. C2 produced in Production Example 7 was added (except for 7). All cathodic deposition type electrodeposition coating liquids were prepared under exactly the same conditions as Example 2, and tested under the same conditions as Example 2. Table 2 shows the results.
As shown in [7].

比較例4 製造例7で製造したC1の代妙に酢酸マンガンをマンガ
ンとして0.6を添加する以外は全て実施例2と全く同
じ条件で陰極析出型電着塗料液を調製し、実施例2と同
様の条件でテストを行ない結果を表−2に示した。
Comparative Example 4 A cathode-deposited electrodeposition coating solution was prepared under the same conditions as in Example 2 except that 0.6% manganese acetate was added to C1 produced in Production Example 7. The test was conducted under the same conditions as above and the results are shown in Table 2.

実施例3 製造例3で製造したA、400F、製造例4で製造した
B+  108.4 fおよび製造例8で製造したCs
30fを均一なるまで混合[7た後、酢酸lOfを加え
十分にかきまぜ中和した。次に脱イオン水を徐々に加え
固形分濃窄が30[′1Ii1の水溶液を調製した。
Example 3 A, 400F produced in Production Example 3, B+ 108.4 f produced in Production Example 4, and Cs produced in Production Example 8
After mixing 30f until homogeneous [7], acetic acid lOf was added and thoroughly stirred to neutralize. Next, deionized water was gradually added to prepare an aqueous solution having a solid content concentration of 30 ['1Ii1.

この30 @@%水溶液1000F、カーボンブラック
3F、塩基性硅酸鉛20Fおよびガラスヒーズ1000
ft31ステンレスビーカーに入れ高速回転ミキサーで
2時間激【7〈かきまぜた後、ガラスピーズを濾過した
後、固形分S度が161になるように脱イオン水を加え
、電着塗料液ケ調製した。
This 30 @@% aqueous solution 1000F, carbon black 3F, basic lead silicate 20F and glass heats 1000
After stirring vigorously for 2 hours with a high-speed rotating mixer in a FT31 stainless steel beaker, the glass beads were filtered, and deionized water was added to make the solid content S degree 161 to prepare an electrodeposition paint liquid.

上記電着塗料液を用いてカーボン電極を陽奪と17、リ
ン酸亜鉛処理版(日本テストパネル、flt3004.
0.RX70X1501111)を1111極とじ陰極
析出型電着塗@を行なった。テスト結果を表=3に示し
た。
17. A zinc phosphate treated plate (Japan Test Panel, flt3004.
0. RX 70 The test results are shown in Table 3.

比較例5 製造例8で製造し、たCs f添加しない以外は全て実
施例2と全く同じ条件で118極析出’M N7i1 
#料液t−調製し、実施例3と同様の条件でテストを行
ない結果を表−3に示した1、 比較例6 製造例8で製造したC3の代りに酢酸マンガンをマンガ
ンとして0.849添加する以外は全て実施例3と全く
同じ条件で陰極析出型電着塗料液を調製し、実施例3と
同様の条件でテストを行ない結果を表−3に示した。
Comparative Example 5 118 electrodes were precipitated under the same conditions as in Example 2 except that Csf was not added.
#Preparation solution t- was prepared and tested under the same conditions as in Example 3, and the results are shown in Table 3. 1. Comparative Example 6 Manganese acetate was used instead of C3 produced in Production Example 8, and 0.849 A cathode-deposited electrodeposition coating solution was prepared under the same conditions as in Example 3 except for the addition of the following ingredients, and a test was conducted under the same conditions as in Example 3. The results are shown in Table 3.

Claims (1)

【特許請求の範囲】 (A)  500〜10,000(7)分子量で50〜
500のヨウ素価の炭素−炭素二1結合および100f
当り30〜300ミリモルのアミノ基を有する高分子化
合物1001量部 (Bl  一般式 %式% 〔式中R,及びR6は水素原子または炭素数1〜10の
アルキル基、n#−jOないし2゜の整数、mは1′ま
たは0、Yは炭素数3か4のα、β不鰺和モノカルボン
酸の残基、そしてY’ijmが0のときは水素原子であ
り、mが1のときはY全表わす] で表わされる化合物、または一般式 〔式中、n′は0ないし10の整数、R1は水素原子ま
たは炭素数1〜10の炭化水素基そしてYは炭素数3か
4のα、β不飽和モノカルボン酸の残基を表わす〕 で表わされる化合物3〜1oo11部 c+  3ob−a、oooの分子量で50〜500の
ヨウ素価の炭素−炭素二喧結合および100t当り30
〜300ミリモルのスルホン酸基あるいはコハク酸基を
有する高分子化合物のマンガン塩0.2〜20争量部 よりなる低rIAe化性の優れた1IIIWA析出型1
1着塗料組成物。
[Claims] (A) 500 to 10,000 (7) 50 to 10,000 in molecular weight
Carbon-carbon21 bond with an iodine value of 500 and 100f
1001 parts by weight of a polymer compound having 30 to 300 mmol of amino groups per unit (Bl) General formula % Formula % [In the formula, R and R6 are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, n#-jO to 2゜m is an integer of 1' or 0, Y is a residue of α, β unsaturated monocarboxylic acid having 3 or 4 carbon atoms, and when Y'ijm is 0, it is a hydrogen atom, and when m is 1, it is a hydrogen atom. represents all Y] or a compound represented by the general formula [wherein n' is an integer of 0 to 10, R1 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and Y is α having 3 or 4 carbon atoms] , represents a residue of a β-unsaturated monocarboxylic acid] A compound represented by 3-1oo 11 parts c+ 3ob-a, ooo molecular weight and an iodine value of 50-500 carbon-carbon binary bond and 30 per 100t
1IIIWA precipitation type 1 with excellent low rIAe properties, consisting of 0.2 to 20 parts of a manganese salt of a polymer compound having ~300 mmol of sulfonic acid groups or succinic acid groups
First coating composition.
JP8007782A 1982-05-14 1982-05-14 Electrodeposition coating composition which deposits on cathode Granted JPS58198577A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8007782A JPS58198577A (en) 1982-05-14 1982-05-14 Electrodeposition coating composition which deposits on cathode
US06/493,277 US4563501A (en) 1982-05-14 1983-05-10 Cathode-precipitating electrodeposition coating composition
DE8383302677T DE3366010D1 (en) 1982-05-14 1983-05-11 Cathode-precipitating electrodeposition coating composition
EP83302677A EP0094788B1 (en) 1982-05-14 1983-05-11 Cathode-precipitating electrodeposition coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8007782A JPS58198577A (en) 1982-05-14 1982-05-14 Electrodeposition coating composition which deposits on cathode

Publications (2)

Publication Number Publication Date
JPS58198577A true JPS58198577A (en) 1983-11-18
JPH027338B2 JPH027338B2 (en) 1990-02-16

Family

ID=13708144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8007782A Granted JPS58198577A (en) 1982-05-14 1982-05-14 Electrodeposition coating composition which deposits on cathode

Country Status (1)

Country Link
JP (1) JPS58198577A (en)

Also Published As

Publication number Publication date
JPH027338B2 (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US4370453A (en) Process for preparing cathodic electrodepositable coating composition
US4283313A (en) Cathode-precipitating electrodeposition coating composition
JPS6020423B2 (en) Method for manufacturing coating composition
JPH0238141B2 (en)
US4139396A (en) Water-soluble coating composition for cathode-precipitating electrodeposition and process for its preparation
US4543406A (en) Cathode-depositing electrodeposition coating composition
US4265793A (en) Cathode-precipitating electrodeposition coating composition
JPS61228068A (en) Quaternary ammonium group-containing resin for cathodic electrodeposition coating
JPS58198577A (en) Electrodeposition coating composition which deposits on cathode
US4563501A (en) Cathode-precipitating electrodeposition coating composition
JPS6114190B2 (en)
JPS6025466B2 (en) Method for producing cathodically deposited electrodeposition coating composition
JP2552748B2 (en) Cathode deposition type electrodeposition coating composition
JPH027339B2 (en)
JPH0246069B2 (en) INKYOKUSEKISHUTSUGATADENCHAKUTORYOSOSEIBUTSU
JPS62263269A (en) Electrodeposition coating compound composition of cathode precipitation type
JPS62223278A (en) Cathodic deposition type electrodeposition coating composition
JPH0238140B2 (en)
JPS6090274A (en) Cathode-deposition type electrodeposition coating composition
JPS6138220B2 (en)
JPS62263268A (en) Electrodeposition coating compound composition of cathode precipitation type
JPH09208865A (en) Cationic electrodeposition coating composition
JPH0238142B2 (en)
JPS62223279A (en) Improved cathodic deposition type electrodeposition coating composition
JPH0238139B2 (en)