JPS58197943A - Supervisory signal transmission system for direct relay station of digital wireless circuit - Google Patents

Supervisory signal transmission system for direct relay station of digital wireless circuit

Info

Publication number
JPS58197943A
JPS58197943A JP57080749A JP8074982A JPS58197943A JP S58197943 A JPS58197943 A JP S58197943A JP 57080749 A JP57080749 A JP 57080749A JP 8074982 A JP8074982 A JP 8074982A JP S58197943 A JPS58197943 A JP S58197943A
Authority
JP
Japan
Prior art keywords
relay station
signal
station
supervisory signal
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57080749A
Other languages
Japanese (ja)
Inventor
Kiyoaki Takahashi
高橋 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57080749A priority Critical patent/JPS58197943A/en
Publication of JPS58197943A publication Critical patent/JPS58197943A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/40Monitoring; Testing of relay systems
    • H04B17/401Monitoring; Testing of relay systems with selective localization
    • H04B17/402Monitoring; Testing of relay systems with selective localization using different frequencies
    • H04B17/403Monitoring; Testing of relay systems with selective localization using different frequencies generated by local oscillators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

PURPOSE:To realize the high-quality transmission of a supervisory signal by performing slightly the modulation of a main digital modulation wave of subcarrier modulated by the supervisory signal. CONSTITUTION:A data train outputted from a parallel-serial converter 151 is given band limitation on it by an LPF, supplied to an AM modulator 154 and modulate a subcarrier oscillated by a oscillator 155 to AM. The AM modulated subcarrier is supplied to the AM modulator of a relay station as a modulation signal and slightly modulate the amplitude of main digital modulation wave to be directly relayed. The amplitude modulated digital modulation wave is amplified and outputted from an antenna. A composite modulation wave which become a medium frequency after received by the receiver of a terminal station is supplied to an input terminal 41 of a demodulator, and a supervisory signal is demodulated by a detector 42 and LPF43 for eliminating a medium frequency. By this system, the high-quality transmission of a supervisory signal can be realized because almost no deterioration occurs on main digital modulation waves.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔@明のam分野〕 本発’Illはデジタル無−−−の直接中継局におする
監視信号を端末局に伝送するためのデジタル無−−−の
直接中継局における監視信号伝送方式に関する。 ]発明の技術的背it) デジタル無!iilAgI線の中継局における監視信号
伝送方式としては、生デジタル変祠信号を位相−移変1
m(PSK)する場合を例にと〜て説明すると従来次の
(1)およびC)のようなものがありまた(3)も考え
られる。 (1)主デジタル信号の伝送速度を連くし、その余剰ビ
ットに監視信号を挿入して伝送する。 (2)位相伽移責1111(PSK)技の搬送牧舎監視
16号で浅く周波数置ii1(FM)またFi@波数偏
移変絢(FSK)l、て伝送する。 (3)位相偏移変調(PSK)波を監視信号で浅く振幅
変1に1(AM)して伝送する。浅く変−するのFiP
sKaの伝送特性を劣化はせないためである。 〔背景技術の間組点〕 しかしながら(1)の方式は中継局においてPSK復#
11轢、データ速度変換器、PSK変調器が必要であり
、ま、九〇)の方式は周波数変調またFi筒波数伽移変
調するための局部発振器が必景でめ9、受信信号を周波
数を換せずに増−し1、低消費電力で簡単に中継を行な
うrk接生中継装置は通用できないものである、。 また(3)の方式は、低消費電力の直接中継装皺に(a
) P 8 K信号の伝送速度と監視信号伝送速度の比
が小となるとFSKQ号の振幅成分が監視信号に干渉し
て監視信号の87Nを劣化させこの鳩首監視信号に符号
WA9が生じることがあるので監視信号伝送不能となる
。 伽)監視信号の87N@保の良めには伝送速度を下ける
必豐があるが、監視信号の伝送速度が小さい場合、端末
局の受信中間周波自動利得制御器(IP、ムGC)の応
答速度は電波の7エージ、ングによる減衰速fK追従す
る一All成分(例えば数に1iz)を有するOで受1
111F−AGCKよってムMl[号が抑圧されて技形
森をおこし符号識別不能となる。 ということで、結局、TIIL視信号の伝送Fi極めて
崩御である。 [@k14(I)目的〕 □ 本発明はデジタル無線−縁の直接中継局におけ    
 する監視信号を高品質で伝送することのできるデジタ
ル無線監視信号伝送方式t−提供することを目的とする
。 〔発明の概要〕 そこで本発明で#′i直接中継網の局内41I番の監視
信号をデジタル符号化し、販符号化した監視信号で端末
局の受信AGC応答胸款叡より鵬くかつ王デジタル変調
波の速度よりも充分低い銅搬送at振−変#Sあるいは
網畝数個移変調し、縫変−した副搬送波で主デジタル変
Is波を浅く伽−変−することにより鹸記監視信号を前
記直接中継局から送出し端末局では、前記−接中継局か
らの受信信号を包絡線検波して前記lIl搬送波を傷−
し、訣復駒し良嗣搬送波をさらに包絡線検#Lあるいは
、IM技数弁別することにより前記監視信号を伽−する
ようにしている〜 〔発明の実施例〕 以下、本発明の一実施例を添付図thIt−参照して詳
mK説明する。 纂1図は本f&明に係わるデジタル無縁−線の直接中継
局における監視信号伝送方式を適用し九1接中継局の一
実施例を示し良ものである。この直接中継局Fi双方向
通信可能となっており、空中線入出力端子1から空中線
共用器2、受信う波器3、低雑′音場幅器4、AM変調
器5、電力増幅器6、送信う波器7、空中線共用器8を
介して空中線入出力端子9に至る第1の系、空中−入出
力端子9がら空中線共用器8、受信う波器10、低雑音
増幅協11.AM変#1器12、電力増幅器13、送信
う波器14、空中線共用器2を介して、を中線入出力端
子IK至る第2の糸および上配嬉1の系、第2の系のA
M変[fF5.12に置駒イ6号を供給する副搬送波変
調1路15を具えている。副搬送波変調1路15(1,
) N−#l#i第2図および第3図に示妊れる。 ここで、謔2I81は副搬送波変調1路15として振−
変−(AM)を用いた場酋を示しており、第3図は副搬
送波音lll!li路15として、2値周波数偏移変N
(FSK)を用いえ場酋を示している。 まず1lls送仮変11油路15として@2図に示す振
幅5L鯛を用いた鳴音について貌胸す゛る。 給2図において、監視情報入力端子’r、、’r2〜i
nにそれぞれ人力される複数の監視情報は並直列変換器
151に入力される。並直列変換器151はクロックパ
ルス発生器152から発生されるクロックパルスに一期
して監視情報入力端子TI + ’ 鵞〜Tnに入力さ
れた複数の監視情報をシリアルデータ列に変換するとと
もに、このデータタリの朧に四側信号および局絨別信号
會付加し、またこのデータ列の最後にパリティピットを
付加する。なお、第4図11並直タリ変換!151から
出力されるデータ列のフレーム構成を示す奄のでAFi
同期信号、B#i局識別信号、DI −DB IIi監
視情報入力端子TI、丁鵞〜Tnに入力される監視情報
、Pはパリティビットである。 並直列変換器151から出力された第4図に示すような
フレーム構成のデータ列は低域う波器153で帯域側@
を受は九のちAM変調器154に加えられる。副搬送波
発振器155から発振される副搬送波をムM[−する。 ここで副搬送波発振!155は後述する端末局の受信ム
GC応答鵬波数よシ高くかつこのデジタル同一で用いら
れる主デジタル信号の伝達速度より充分低い周波数の信
号を発生するものが用いられる。AM変!146154
でAM変調された副搬送波は@1図に示すAM変調器5
.12に変調信号として加えられ、ik振生中継べき主
デジタル変′g4技
[@Ming.AM Field] The present invention relates to a supervisory signal transmission system in a digital wireless direct relay station for transmitting a supervisory signal sent to the digital wireless direct relay station to a terminal station. 】Technical secret of invention) No digital! The monitoring signal transmission method at the relay station of the iiiAgI line is to convert the raw digital signal to phase shift 1.
Taking the case of m (PSK) as an example, conventionally there are the following (1) and C), and (3) is also possible. (1) The transmission speed of the main digital signal is increased, and a monitoring signal is inserted into the surplus bits for transmission. (2) Phase shift shift 1111 (PSK) technique transport station monitoring No. 16 transmits shallowly in frequency position ii1 (FM) and Fi @ wave number shift shift (FSK) l. (3) Transmit a phase-shift keyed (PSK) wave with a shallow amplitude change of 1 (AM) as a monitoring signal. FiP that changes shallowly
This is to prevent the transmission characteristics of sKa from deteriorating. [Background technology] However, method (1) requires PSK recovery at the relay station.
11, a data rate converter, and a PSK modulator are required, and the method in 90) requires a local oscillator for frequency modulation or Fi frequency shift modulation. 1. An rk connected relay device that easily performs relaying with low power consumption cannot be used. In addition, method (3) is suitable for direct relay equipment with low power consumption (a
) When the ratio between the transmission speed of the P8K signal and the transmission speed of the supervisory signal becomes small, the amplitude component of the FSKQ signal interferes with the supervisory signal, degrading the 87N of the supervisory signal, and causing the code WA9 to appear in this pigeon-neck supervisory signal. Therefore, the supervisory signal cannot be transmitted.佽) To improve the 87N @ protection of the monitoring signal, it is necessary to lower the transmission speed, but if the transmission speed of the monitoring signal is low, the receiving intermediate frequency automatic gain controller (IP, mu GC) of the terminal station should be lowered. The response speed is determined by O having an All component (for example, 1iz) that follows the attenuation speed fK due to the 7 ages of radio waves.
The M1 code is suppressed by 111F-AGCK, causing a problem with the code and making it impossible to identify the code. So, in the end, the transmission Fi of the TIIL visual signal was extremely poor. [@k14(I) Purpose] □ The present invention is a digital radio-edge direct relay station.
An object of the present invention is to provide a digital wireless supervisory signal transmission system capable of transmitting supervisory signals with high quality. [Summary of the Invention] Therefore, in the present invention, the monitoring signal of No. 41I in the station of the #'i direct relay network is digitally encoded, and the received AGC response of the terminal station is digitally modulated using the encoded monitoring signal. By transposing the copper carrier at a frequency sufficiently lower than the speed of the wave or by several ridges, and by shallowly transmuting the main digital Is wave with the transposed subcarrier, the monitoring signal is generated. The terminal station transmitting from the direct relay station performs envelope detection on the received signal from the direct relay station to detect the lIl carrier wave.
Then, the above-mentioned monitoring signal is improved by further envelope detection #L or IM technique discrimination of the carrier wave. will be explained in detail with reference to the attached drawings. Figure 1 shows an example of a 91-connection relay station to which the supervisory signal transmission system in a digital wireless line direct relay station according to the present invention is applied. This direct relay station Fi is capable of two-way communication, from the antenna input/output terminal 1 to the antenna duplexer 2, receiver subwoofer 3, low noise field width amplifier 4, AM modulator 5, power amplifier 6, and transmitter. A first system leading to the antenna input/output terminal 9 via the wave submersor 7 and the antenna duplexer 8, the antenna duplexer 8 from the air input/output terminal 9, the receiving waver 10, and the low noise amplifier 11. Through the AM converter #1 12, the power amplifier 13, the transmitter 14, and the antenna duplexer 2, the second line is connected to the center line input/output terminal IK, and the upper line 1 system and the second system. A
It has a subcarrier modulation path 15 that supplies a frame A6 to an M variable [fF5.12. Subcarrier modulation 1 path 15 (1,
) N-#l#i can be seen in FIGS. 2 and 3. Here, the number 2I81 is the subcarrier modulation 1 path 15.
Figure 3 shows the situation using the AM (AM) subcarrier sound. As the li path 15, the binary frequency deviation N
(FSK) is used to show the location. First of all, I am impressed by the sound made using the amplitude 5L sea bream shown in Figure @2 as the 1lls feed temporary change 11 oil path 15. In Figure 2, monitoring information input terminals 'r,,'r2~i
A plurality of pieces of monitoring information manually inputted to n are input to the parallel-to-serial converter 151. The parallel-to-serial converter 151 converts a plurality of pieces of monitoring information inputted to the monitoring information input terminals TI+' to Tn into a serial data string in response to a clock pulse generated from the clock pulse generator 152, and also converts this data data into a serial data string. A four-side signal and a station-specific signal are added to the blur, and a parity pit is added to the end of this data string. In addition, Fig. 4 11 Parallel-direct Taly conversion! Amanoso AFi shows the frame structure of the data string output from 151.
Synchronization signal, B#i station identification signal, DI-DB IIi monitoring information input terminal TI, monitoring information input to Ding-Tn, P is a parity bit. A data string having a frame structure as shown in FIG.
The receiver is then applied to AM modulator 154. The subcarrier oscillated from the subcarrier oscillator 155 is M[-. Subcarrier oscillation here! 155 is used which generates a signal having a frequency higher than the reception frequency of the GC response of the terminal station, which will be described later, and sufficiently lower than the transmission speed of the main digital signal used in this digital signal. AM weird! 146154
The AM modulated subcarrier is the AM modulator 5 shown in Figure @1.
.. 12 as a modulation signal and the main digital modulation signal to be broadcast live.

【浅<1輪変−する。すなわち空中
線入出力端子1に入力された直接中継すべき王デジタル
変#il波(P8に信号)は、空中線共用器2、受偏り
波器3を介して低雑音増@器4に導かれ、この低雑音場
IkA器4の出力tよAM変真器5で刷搬込波変真回路
15の出力により浅く振幅変調され、電力増幅器6、送
信ろ技澁7、空中線共用器8をブrして空中線入出力端
子9より出力される。また受信機入力端子9に入力され
た王デジタル変調M(PSK信号)は空中線共用器8、
受信ン波器lOを介して低雑音増幅!11に導かれ、低
雑音場一器11の出力tゴ、AM変Ill器12で副搬
送改変胸回路15の出力により浅く振幅KNされ、電力
増幅器13、送4gう0jL器14、空中線共用62を
介して空中線入、・l::l”’ l・、・     
            、1出力端子】より出力され
る。次に側搬送波変調回路15として第3図に示す構成
をとった場合について説明する2、この場合、周波数の
異なる2つの側搬送波発振勧155a 、 155bを
用い、この#&iI搬送該発振器155a 、 155
bの出力を並直列変換器15】の出力に応じて電子スイ
ッチ156で切換えることにより2値FSK変調出力t
−祷る、この2値FSK変調出力tit第1図のAM変
調器5.12に加えられ、上述した場合と同様に主デジ
タル変調atAM変絢する。なお、第3図において並直
列変換6151およびクロックパルス発生器152[4
2−で同一符号で示したものと同一の*&であり、消費
電諏の少ないデジタル集検回路で構成される。 第5図は本発明の方式を適用した端末局受信機の一実施
例會示し良もので、#L接中継局より送出され喪主ps
KPMと監視信号の複″”ts叢調技は受信機入力端子
31に入力し、低雑を増幅器32で増幅され九のち局部
発振器おの出力か加わる周波数変換8134で周波数変
換され、中間JiId技となり中間周波帯域3波器あて
隣接工費rBLを除去し、AGC付中関周披増幅器、あ
て所賛レベルまで増幅される。 このAGC付中間1M波−輪姦あの出力tよ、中関胸波
出力端子37に出力されるとともに[級中継局歓4に1
6号復調器あに入力される。、直接中継局監視信号後I
Ij4IliあはAGC付中間周波増幅器あの出力から
直接中継局のwIL視信号を(31調し、これを端子を
菖〜tnKaj力する。 第6図、第7図はこの直接中継局監視信号復調器あの詳
1lilIll成例を示すもので、第6図FiIl[接
中継局の一搬送波変H回路15(嬉1図)として第2図
の構成をとった場合を示し、第7図は直接中継局の一搬
送波変調回路15として第3図の#gをとった場ttt
−示している。 まず、第6図の構成について説明する。 中間jiill&となった主PSK信号と監視信号の複
tt変鉤鋏は、復調器入力端子41に加わり検波−42
、中間調波除去低域う波−43によって副搬送波の変調
信号に復調され、検tIL器44、−1搬送波除去低域
う妓645によって、監視信号が復調される。そして副
搬送波除去低域り波器45の出力は波形整形器46でパ
ルスに整形された後、クロック再生回路47でクロック
が構成され、識別6絽でパルスの識別を行って[並列変
換器49で時間的に直列なデータ列を並列データに変換
L2て出力端子t1〜tnWc出力する。このようにし
て出力端子t1〜1n からはil直接中継局監視情報
が釜夕IJデータとして得られる。次に第・7図の桝I
!tについて説明する。 wIJ7図の回wI11第611CIQ−路にkいて検
波−44、副搬送波除去低域う波器45、波形餐形器4
6を帝域5a器53 、52 、検波益53 、54、
波形整形和回路55におきかえることによって構成でき
る。ここで帯域う波器51は第3図に示す副搬送敦発儀
器155&の発振周波数に、帯域う#452F′i第3
図に示す副搬送波発11i器155bの発振胸板数にそ
れぞれIWl@シている。丁なわち第7図の回路は帯域
う波器51 、52によって、1li11搬送牧を弁別
し、これを検波益53 、54で検波し友後、波形整形
和U略55に加え直接中継局の監視信号を0!−する。 なお他の部分は第6図の(2)路と同様である一第8図
は直接中継局の副搬送波変胸回路15としてtjpJ2
図に示す構成をとり、端禾局受匍機の龜嵌中11)5監
視匍号@!−参あとじて纂6図の構成をとった揚台の各
部の波形管示したものである。すなわち#!8図(a)
にFi並直列変換器151の出力波形および緑別回路絽
の出力波形、8g8図Φ)には低域う波器153および
縮搬送波除云低域グ波器仙の出力波形、#!8図(C)
にFiAM変調器154の出力波形(1M搬送技変調−
路15の出力波形)および中間周波除去低域う波器43
の出力波形、第8図(d)にはムGC付中閲周畝増幅器
あの出力波形が示されている。 〔発明の効果〕 以上説明し良ように本@鴫の方式によれば、駄視価号で
変態された副搬送波による主デジタル変#lI4波の変
調を浅く行なうので、主デジタル変調波を劣化させるこ
とは#1とんどない。こうあらねばならないことは当然
として、本発明によれば、監視信号のS/Nを確保すべ
くその伝送速度を遅くしても、#&li搬送波によって
飯視伽号成分の周波数シフトが行なわれるので受信(F
段のムGCKよって抑圧されてしま□うことがないから
、波形歪を     1生じることがない。したがって
、監視信号を高品質で伝送することができる。
[Shallow < 1 wheel change-. That is, the digital converter signal input to the antenna input/output terminal 1 and to be directly relayed (signal to P8) is guided to the low-noise amplifier 4 via the antenna duplexer 2 and the receiving polarizer 3. The output t of this low noise field IkA device 4 is shallowly amplitude-modulated by the output of the imprinted wave transformer circuit 15 in the AM transformer 5, and is used to block the power amplifier 6, the transmitter filter 7, and the antenna duplexer 8. The signal is then output from the antenna input/output terminal 9. Furthermore, the digital modulation M (PSK signal) input to the receiver input terminal 9 is transmitted to the antenna duplexer 8,
Low noise amplification via receiver IO! 11, the output of the low noise field unit 11 is changed to a shallow amplitude KN by the output of the subcarrier modified chest circuit 15 in the AM converter 12, and then sent to the power amplifier 13, the transmitter 4g/0jL unit 14, and the antenna shared 62. Antenna input via, ・l::l''' l・,・
, 1 output terminal]. Next, a case will be described in which the side carrier wave modulation circuit 15 has the configuration shown in FIG.
By switching the output of b with an electronic switch 156 according to the output of the parallel-to-serial converter 15, a binary FSK modulation output t is obtained.
- This binary FSK modulation output is added to the AM modulator 5.12 in FIG. 1, and the main digital modulation at AM is performed as in the case described above. In addition, in FIG. 3, parallel-to-serial conversion 6151 and clock pulse generator 152 [4
It is the same *& as that indicated by the same symbol in 2-, and is composed of a digital collection circuit with low power consumption. FIG. 5 shows a good example of a terminal station receiver to which the method of the present invention is applied.
The complex KPM and monitoring signals are input to the receiver input terminal 31, the low noise is amplified by the amplifier 32, and then the frequency is converted by the frequency converter 8134, where the output of the local oscillator is applied, and the intermediate JiId signal is input to the receiver input terminal 31. Then, the adjacent construction cost rBL applied to the intermediate frequency band three-wave amplifier is removed, and the signal is amplified to the desired level by the intermediate frequency band three-wave amplifier with AGC. This intermediate 1M wave with AGC - Gangbang output t is output to the Nakaseki chest wave output terminal 37, and is also output to the [class relay station 4 to 1
The signal is input to No. 6 demodulator A. , directly after the relay station monitoring signal I
Ij4IliA is the output of the intermediate frequency amplifier with AGC, which directly modulates the wIL visual signal of the relay station (to 31) and outputs it to the terminal. Figures 6 and 7 show this direct relay station monitoring signal demodulator. Figure 6 shows a case where the configuration of Figure 2 is taken as one carrier wave changing H circuit 15 (Figure 1) of the direct relay station, and Figure 7 shows the configuration of the direct relay station. If #g in FIG. 3 is taken as one carrier modulation circuit 15 of ttt
- Shows. First, the configuration shown in FIG. 6 will be explained. The main PSK signal and the supervisory signal, which have become intermediate jiill&, are added to the demodulator input terminal 41 and are detected by the detection signal 42.
, a subcarrier modulation signal is demodulated by the interharmonic elimination low frequency waveform 43, and the monitoring signal is demodulated by the detector tIL unit 44 and the -1 carrier wave elimination low frequency waveform 645. The output of the subcarrier removal low frequency waveform generator 45 is shaped into a pulse by a waveform shaper 46, and then a clock is configured by a clock regeneration circuit 47, and the pulse is identified by a discrimination circuit 6. At L2, the temporally serial data string is converted into parallel data and output from output terminals t1 to tnWc. In this way, the direct relay station monitoring information is obtained from the output terminals t1 to 1n as the IJ data. Next, box I in Figure 7
! t will be explained. Detection 44, subcarrier removal low frequency waveform generator 45, waveform shaper 4
6 to Imperial region 5a equipment 53, 52, detection profit 53, 54,
It can be constructed by replacing it with the waveform shaping and sum circuit 55. Here, the band waver 51 adjusts the oscillation frequency of the subcarrier wave generator 155 & shown in FIG.
The number of oscillation plates of the subcarrier oscillator 11i 155b shown in the figure is respectively IWl@. In other words, the circuit shown in FIG. 7 discriminates the 1li11 carrier frequency using band wavers 51 and 52, detects this using detection gains 53 and 54, and then adds the waveform shaped sum U approximately 55 and directly outputs the signal from the relay station. Monitoring signal is 0! - to do. Note that the other parts are the same as the path (2) in FIG. 6. In FIG.
The configuration shown in the figure is adopted, and the terminal station receiving machine is installed in the 11) 5 monitoring station @! - For reference, this is a diagram showing the corrugated pipes of each part of the lifting platform constructed as shown in Figure 6. i.e. #! Figure 8(a)
The output waveform of the Fi parallel-to-serial converter 151 and the output waveform of the green circuit, the output waveforms of the low-frequency wave generator 153 and the low-frequency wave generator 153 and the reduced carrier wave generator, #! Figure 8 (C)
The output waveform of the FiAM modulator 154 (1M carrier technique modulation -
15 output waveform) and intermediate frequency removal low frequency waveform filter 43
FIG. 8(d) shows the output waveform of the mid-range amplifier with GC. [Effects of the Invention] As explained above, according to the method of this @Sushi, the main digital modulation #lI 4 wave is shallowly modulated by the subcarrier transformed by the demagnetization code, so the main digital modulation wave is not degraded. #1: There are very few things I can do. It goes without saying that this should be the case, but according to the present invention, even if the transmission speed is slowed down to ensure the S/N ratio of the monitoring signal, the frequency of the Iimigo signal component is shifted by the #&li carrier wave. Reception (F
Since it is not suppressed by the GCK of the stage, no waveform distortion occurs. Therefore, the monitoring signal can be transmitted with high quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方式を過用lまたm徴中継局の一実施
例を示すプロ・ツク図、襖2図は第1図の費部′に説明
する詳細ブロック図、第3図は絽2図の他の構成例を示
すブロック図第4図ム第2図、第3図に示した並直列変
換器から出力される信号のフレーム構成を示す図、45
図は本党明の方式を適用した端末局受(g4!にの一実
施例を示すブロック図、第6FIJFi絽5図の歎部を
示す詳細ブロック図、第7図は、!6図の他の構成例を
示すブロック図。 第8図は第1図、第2図、第5図、第6図に示1回路の
動作を説明する波形図である。 1.9・・・空中−入出力端子、2,8・・・空中鱒共
用器、3.lO・・・受信う波器、4,11 低雑曽増
一器、5 、12・A M変al!!!器、6 、13
= 11E力jll1幅器、7.14・・送匍う波器、
ib・・・細厳送波変鉤回路、31・−・受信機入力端
子、;32・・・低雑f増幅器、33・局部発振器、3
4・・・周IBL数変換器、35・・中閲胸反帯域う波
器、あ・・・AGC付中間周波増#&器、37・・中関
劉波出力端子、凄・・直接中継局(視信号復真−1T、
−Tn・・・監視情報入力端子、11〜t0・・監視情
報出力端子 第1図 第2図     第3図 TIT2   Tn               T
IT2   Tn第4[ 一晒 第5図 第・7・図
Fig. 1 is a program diagram showing an embodiment of a relay station using the method of the present invention, Fig. 2 is a detailed block diagram explained in the section 'of Fig. 1, and Fig. 3 is a Figure 4 is a block diagram showing another example of the configuration of Figure 2;
The figure is a block diagram showing an embodiment of a terminal station receiver (g4!) to which the method proposed by Meiji Honto is applied, a detailed block diagram showing the closing part of Fig. A block diagram showing an example of the configuration of the circuit. Fig. 8 is a waveform diagram illustrating the operation of one circuit shown in Figs. 1, 2, 5, and 6. 1.9... Air-in Output terminal, 2, 8...Aerial trout duplexer, 3.lO...Receiving waver, 4,11 Low noise amplifier, 5, 12・AM converter, 6, 13
= 11E power jll1 width device, 7.14...Creeping wave device,
ib...Strict transmission wave conversion circuit, 31...Receiver input terminal; 32...Low noise f amplifier, 33.Local oscillator, 3
4... Frequency IBL number converter, 35... Intermediate frequency intensifier # & device with AGC, 37... Intermediate frequency booster with AGC, 37... Nakanoseki Liu wave output terminal, Awesome... Direct relay station (Visual signal recovery-1T,
-Tn...Monitoring information input terminal, 11~t0...Monitoring information output terminal Fig. 1 Fig. 2 Fig. 3 TIT2 Tn T
IT2 Tn No. 4

Claims (1)

【特許請求の範囲】 (1)  ml接中継局の局内機器の監視信号をプシタ
ル符号化し馴符号化した監視4M号で所定周波数の嗣搬
送波をMlのh徐で度胸し、級変鉤した一搬込波で主デ
ジタル変p4技を浅く伽暢変脚することにより前記監視
信号を@11記鉦振中継局から送出し、端末局では前記
直接中継局からの受信信号を包結線検波して前記#&I
l!MI送mを後鉤し該伽−した細麺送波をさらに前記
Mlの1様に対応するag2の態様で復鉤して前記監視
値号t−*p出すデジタル無線回線の直接中継局におり
る監視信号伝送方式。 Q) 前記所定周波数は前記端末局における受信AGC
応答周技数より高くかつ削配王デジタル涙調波の伝送速
度より充分低い特許請求の範囲第(])項記載のデジタ
ル無線1ial&lの直接中継局における監視信号伝送
方式。 (3)  前記@lの態様は振幅変−であり、前記第2
の塾様は、包結線検波である%奸鯖氷の範囲第(1)項
記載のデジタル無lliliIgl線の直接中継局にお
ける監1M信号伝送方式。 (4)  前記第1の態様は縄披数個移変調であり前記
第2のIIIA様は周波数弁別でめる特許請求の範囲第
0)項記載のデジタル無l/M回線のllL接中継局に
おける監視信号伝送方式。
[Scope of Claims] (1) The monitoring signal of the in-station equipment of the ML relay station is encoded by psital coding and the monitoring signal is encoded by the 4M signal. By shallowly converting the main digital P4 technique using the incoming wave, the monitoring signal is sent from the @11 relay station, and the terminal station performs envelope detection on the received signal from the direct relay station. Said #&I
l! After the MI transmission m is hooked, the thin noodle transmission is further unhooked in the mode ag2 corresponding to the mode 1 of the Ml and sent to the direct relay station of the digital wireless line to output the monitoring value number t-*p. Monitoring signal transmission method. Q) The predetermined frequency is the reception AGC at the terminal station.
A supervisory signal transmission system in a direct relay station of digital radio 1ial&l as claimed in claim 1, which is higher than the response frequency and sufficiently lower than the transmission rate of digital tear harmonics. (3) The aspect of @l is amplitude variation, and the second
Mr. Juku is a 1M signal transmission method at the direct relay station of the digital wireless IGL line described in paragraph (1), which is enveloped line detection. (4) The LL connection relay station for digital wireless I/M line according to claim 0), wherein the first mode is frequency shift modulation, and the second mode IIIA is frequency discrimination. supervisory signal transmission method.
JP57080749A 1982-05-13 1982-05-13 Supervisory signal transmission system for direct relay station of digital wireless circuit Pending JPS58197943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080749A JPS58197943A (en) 1982-05-13 1982-05-13 Supervisory signal transmission system for direct relay station of digital wireless circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080749A JPS58197943A (en) 1982-05-13 1982-05-13 Supervisory signal transmission system for direct relay station of digital wireless circuit

Publications (1)

Publication Number Publication Date
JPS58197943A true JPS58197943A (en) 1983-11-17

Family

ID=13727047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080749A Pending JPS58197943A (en) 1982-05-13 1982-05-13 Supervisory signal transmission system for direct relay station of digital wireless circuit

Country Status (1)

Country Link
JP (1) JPS58197943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105240U (en) * 1988-01-07 1989-07-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105240U (en) * 1988-01-07 1989-07-14

Similar Documents

Publication Publication Date Title
US4570265A (en) Random frequency offsetting apparatus for multi-transmitter simulcast radio communications systems
US5109535A (en) Apparatus for transmission-reception simulation test for microwave communication
JPS6242537B2 (en)
US1641431A (en) Communication system
US7212787B2 (en) Wireless audio transmission system
CA1202085A (en) Random frequency offsetting apparatus for multi- transmitter simulcast radio communications systems
JPS58197943A (en) Supervisory signal transmission system for direct relay station of digital wireless circuit
JPH05501794A (en) Dual mode automatic gain control
US20030129945A1 (en) Wireless audio transmission system
US2378013A (en) Synthetic modulator system
CN221010128U (en) Handheld intercom equipment for train inspection operation of railway freight car
US1807510A (en) Silent wave radio transmission system
US2866088A (en) Radio communication within shielded enclosures
JPS6340925Y2 (en)
US1737671A (en) Multichannel radio printing-telegraph system
US1452957A (en) High-frequency signaling
JPH0278347A (en) Transmitter between equipment on ground and on vehicle
JPH04137837A (en) Railway information transmitter
JPH042515Y2 (en)
JPS604388A (en) Picture signal transmitting device
JPS5843636A (en) Non-linear distortion compensating system of satellite communication
JPH09181781A (en) Radio equipment
JPH0523652B2 (en)
JPH06224803A (en) Higher harmonic diversity transceiver
JPH05260013A (en) Composite modulating system