JPS58197930A - Optical demultiplexer - Google Patents

Optical demultiplexer

Info

Publication number
JPS58197930A
JPS58197930A JP57080067A JP8006782A JPS58197930A JP S58197930 A JPS58197930 A JP S58197930A JP 57080067 A JP57080067 A JP 57080067A JP 8006782 A JP8006782 A JP 8006782A JP S58197930 A JPS58197930 A JP S58197930A
Authority
JP
Japan
Prior art keywords
semiconductor laser
wavelength
optical
lasers
lambda3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57080067A
Other languages
Japanese (ja)
Inventor
Toshito Hosaka
保坂 敏人
Katsunari Okamoto
勝就 岡本
Juichi Noda
野田 壽一
Takao Edahiro
枝広 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57080067A priority Critical patent/JPS58197930A/en
Publication of JPS58197930A publication Critical patent/JPS58197930A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0305WDM arrangements in end terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To obtain a large quenching rate and remove the necessity of consideration of insertion loss by making a demultiplexer to have a construction so that it separates and amplifies only a fixed wavelength by means of a semiconductor laser. CONSTITUTION:For instance, three wavelengths lambda1, lambda2 and lambda3 are made incident to an incident terminal 1. They are branched respectively by a branch circuit 5 and made incident to semiconductor lasers 6-8. The central wavelengths of gains of the lasers 6-8 are lambda1, lambda2 and lambda3, and three waves of lambda1-lambda3 are seperated by the lasers 6-8. In this case, the inrush current of lasers 6-8 is kept at a value less than threshold current Ith such as 0.99Ith. As a result, a large quenching rate is obtained and there is no need to consider insertion loss because only a specific wavelength can be separated and amplified.

Description

【発明の詳細な説明】 (技術分野) 本発明は波長多重光伝送用の光分波器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an optical demultiplexer for wavelength multiplexed optical transmission.

(背景技術) 波長多重用光伝送には光分波器が不可欠である。(Background technology) Optical demultiplexers are essential for wavelength multiplexed optical transmission.

光分波器の方法には、(1)干渉膜、(2)回折格子、
(3)プリズム分散、(4)光結合を利用する構造が提
案されている。これまで報告されている多(の光分波の
方法は(1)または(2)による方法が多い。これは(
3)の方法は分解能が悪いこと、(4)の方法は製作が
極めて難しいためである。(1)または(2)を用いる
方法は、いずれもガラスを加工研摩し、これに干渉膜ま
たは回折格子を形成し、小形レンズあるいはロンドレン
ズを介してファイバと接続していた。これらの構成はい
ずれもバルク形であり、部品点数が多いため、光軸調整
が極めて困難であり、各部品の研摩に占める価格が高い
などの問題がある。
Optical demultiplexer methods include (1) interference film, (2) diffraction grating,
Structures that utilize (3) prism dispersion and (4) optical coupling have been proposed. Most of the optical separation methods reported so far are based on (1) or (2).
This is because the method 3) has poor resolution, and the method 4) is extremely difficult to manufacture. In both methods using (1) or (2), glass is processed and polished, an interference film or a diffraction grating is formed thereon, and the glass is connected to a fiber via a small lens or Rondo lens. All of these configurations are bulk type and have a large number of parts, making it extremely difficult to adjust the optical axis and causing problems such as the high cost of polishing each part.

特に単一モード系の場合には、光軸調整がIIfrL前
後の精度で行なわなければならないので、バルク形の光
分波器の実現はほとんど不可能に近い。
Particularly in the case of a single mode system, the optical axis adjustment must be performed with an accuracy of around IIfrL, making it almost impossible to realize a bulk type optical demultiplexer.

(発明の課題) 本発明はこれらの欠点を除去するため、半導体レーザを
使用して特定の波長の光を取り出し増幅するもので、そ
の特徴は、多重波長光を分波する光分波器にお(・て、
光入力を分波する出力に応じた分岐数をもつ光分岐回路
と、該光分岐回路の各出射端に配置され各々分波すべき
光の波長に応じた利得曲線を有する半導体レーザと、各
半導体レーザの出射光を波長対応の出射端に導びく手段
とを有し、半導体レーザの注入電流をスレッシュホール
ド電流以下の適当な値として所定の波長のみを通過増幅
するごとく構成したごとき光分波器にある。
(Problems to be solved by the invention) In order to eliminate these drawbacks, the present invention uses a semiconductor laser to extract and amplify light of a specific wavelength. Oh(・te,
an optical branching circuit having a number of branches corresponding to the output for branching the optical input; a semiconductor laser disposed at each output end of the optical branching circuit and each having a gain curve corresponding to the wavelength of the light to be branched; Optical demultiplexing includes a means for guiding the emitted light of a semiconductor laser to an emission end corresponding to the wavelength, and is configured such that only a predetermined wavelength is passed and amplified by setting the injection current of the semiconductor laser to an appropriate value below a threshold current. It's in the container.

(発明の構成および作用) 第1図は本発明の実施例を示したものであって、1は入
射端子、2,3.4は出射端子、5は分岐回路、6,7
.8は半導体レーザである。入射端子には、たとえば3
波長の光波長λ、=0.8μm。
(Structure and operation of the invention) FIG. 1 shows an embodiment of the invention, in which 1 is an input terminal, 2, 3.4 are output terminals, 5 is a branch circuit, 6, 7
.. 8 is a semiconductor laser. For example, the input terminal has 3
Light wavelength λ, = 0.8 μm.

λ、 = 0.85μm、λ3= 0.9μmが入射す
る。そして分岐回路5によりそれぞれ分岐され半導体レ
ーザ6゜7.8に入射する。このとき6にはλ8.λ2
.λ3の3波の光が入射する。7,8についても同様で
ある。
λ, = 0.85 μm, λ3 = 0.9 μm are incident. Then, they are branched by a branch circuit 5 and incident on a semiconductor laser 6°7.8. At this time, 6 has λ8. λ2
.. Three waves of light of λ3 are incident. The same applies to 7 and 8.

半導体レーザ6.7.8の利得曲線は第2図に示すよう
な波長特性′″(9,10,11)があり、6は中心波
長0.8p−s  7は0.85μm 、  8は0.
9 μmである。帯域幅はそれぞれ約300^であり、
60半導体レーザでは0.785μm〜0.815μm
の光がほぼ通過増幅される。
The gain curve of the semiconductor laser 6.7.8 has wavelength characteristics (9, 10, 11) as shown in Figure 2, where 6 is the center wavelength of 0.8 p-s, 7 is 0.85 μm, and 8 is 0. ..
It is 9 μm. The bandwidth is about 300^ each,
0.785μm to 0.815μm for 60 semiconductor laser
Almost all of the light passes through and is amplified.

従って半導体レーザ6からの出射光は3波の内の0.8
μmのみとなる。半導体レーザ7.8についても同様で
あり、λ1.λ2.λ、の3波が分波される。
Therefore, the light emitted from the semiconductor laser 6 is 0.8 of the three waves.
Only μm. The same applies to the semiconductor laser 7.8, and λ1. λ2. Three waves of λ are separated.

ここで半導体レーザとしては、たとえばGaAlAs 
/Q3As系のものを用い、スレッシュホールド電流I
thの0.99倍の値に保持すると、利得曲線内の波長
の光では約20dBの増幅度が取れる。それ以外の波長
の光は、半導体レーザ媒質が損失媒体となるので増幅度
にして一50dB以下となる。従って50dB以上の消
光比が取れる。利得曲線の波長依存性は半導体レーザ媒
質の組成化を変えることにより決定され、任意に選択で
きる。なお本実施例では、”3波分割の例を示したが、
分波数は要求に応じて変えることができる。また単一モ
ード、多モード共に可能である。さらに逆に各出射端子
より各波長の光を入射し、半導体レーザで増幅して入射
端子より取り出すことにより合波器としての使用も可能
である。
Here, as the semiconductor laser, for example, GaAlAs
/Q3As type is used, and the threshold current I
If the value is held at 0.99 times th, an amplification degree of about 20 dB can be obtained for light having a wavelength within the gain curve. For light of other wavelengths, the semiconductor laser medium becomes a loss medium, so the amplification degree is less than 150 dB. Therefore, an extinction ratio of 50 dB or more can be obtained. The wavelength dependence of the gain curve is determined by changing the composition of the semiconductor laser medium, and can be arbitrarily selected. In this example, an example of 3-wave division was shown, but
The demultiplexing number can be changed as required. Also, both single mode and multi-mode are possible. Furthermore, conversely, it is also possible to use it as a multiplexer by inputting light of each wavelength from each output terminal, amplifying it with a semiconductor laser, and extracting it from the input terminal.

(発明の効果) 以上説明したように本発明による光分波器は、半導体レ
ーザな用いて特定波長のみを分離増幅しているため消光
比が大きく、かつ挿入損失を考慮する必要がな℃・とい
う利点がある。また集積化が可能であり、将来の光集積
回路として組み込める利点もある。
(Effects of the Invention) As explained above, the optical demultiplexer according to the present invention uses a semiconductor laser to separate and amplify only a specific wavelength, so it has a large extinction ratio and does not require consideration of insertion loss. There is an advantage. It also has the advantage that it can be integrated and can be incorporated into future optical integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光分波器の一実施例、第2図は本
光分波器に使用する半導体レーザの利得曲線である。 1・・・入射端子 2〜4・・・出射端子 5・・・分岐回路 6〜B・・・半導体レーザ 9〜11・・・半導体レーザの利得曲線特許出願人 り本電信電話公社 特許出願代理人 弁理士  山  本  恵  − 承l 図
FIG. 1 shows an embodiment of an optical demultiplexer according to the present invention, and FIG. 2 shows a gain curve of a semiconductor laser used in the optical demultiplexer. 1... Input terminals 2 to 4... Output terminals 5... Branch circuits 6 to B... Semiconductor lasers 9 to 11... Semiconductor laser gain curve Patent applicant Rimoto Telegraph and Telephone Corporation Patent application agent Private patent attorney Megumi Yamamoto - Seiichi Figure

Claims (1)

【特許請求の範囲】[Claims] 多重波長光を分波する光分波器において、光入力を分波
する出力に応じた分岐数をもつ光分岐回路と、該光分岐
回路の各出射端に配置され各々分波すべき光の波長に応
じた利得曲線を有する半導体レーザと、各半導体レーザ
の出射光を波長対応の出射端に導びく手段とを有し、半
導体レーザの注入電流をスレッシュホールド電流以下の
適当な値として所定の波長のみを通過増幅するとと(構
成したことを特徴とする光分波器。
In an optical demultiplexer that demultiplexes multi-wavelength light, there is an optical branching circuit having the number of branches corresponding to the output of demultiplexing the optical input, and an optical demultiplexer arranged at each output end of the optical branching circuit to separate the light to be demultiplexed. It has a semiconductor laser having a gain curve corresponding to the wavelength and a means for guiding the emitted light of each semiconductor laser to an emission end corresponding to the wavelength, and the injection current of the semiconductor laser is set to a predetermined value below the threshold current. An optical demultiplexer characterized in that it passes through and amplifies only wavelengths.
JP57080067A 1982-05-14 1982-05-14 Optical demultiplexer Pending JPS58197930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080067A JPS58197930A (en) 1982-05-14 1982-05-14 Optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080067A JPS58197930A (en) 1982-05-14 1982-05-14 Optical demultiplexer

Publications (1)

Publication Number Publication Date
JPS58197930A true JPS58197930A (en) 1983-11-17

Family

ID=13707878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080067A Pending JPS58197930A (en) 1982-05-14 1982-05-14 Optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS58197930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232319A1 (en) * 1985-08-01 1987-08-19 John Wilbur Hicks, Jr. Optical communications systems
EP0261876A2 (en) * 1986-09-26 1988-03-30 AT&T Corp. Narrowband tunable optical receiver
EP0319242A2 (en) * 1987-11-30 1989-06-07 Gte Laboratories Incorporated Subcarrier-multiplexed optical transmission systems using optical channel selection
JPH0460523A (en) * 1990-06-29 1992-02-26 Hamamatsu Photonics Kk Polarizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0232319A1 (en) * 1985-08-01 1987-08-19 John Wilbur Hicks, Jr. Optical communications systems
EP0261876A2 (en) * 1986-09-26 1988-03-30 AT&T Corp. Narrowband tunable optical receiver
EP0261876A3 (en) * 1986-09-26 1990-03-07 AT&T Corp. Narrowband tunable optical receiver
EP0319242A2 (en) * 1987-11-30 1989-06-07 Gte Laboratories Incorporated Subcarrier-multiplexed optical transmission systems using optical channel selection
US5537634A (en) * 1987-11-30 1996-07-16 Gte Laboratories Incorporated Subcarrier-multiplexed optical transmission systems using optical channel selection
JPH0460523A (en) * 1990-06-29 1992-02-26 Hamamatsu Photonics Kk Polarizer

Similar Documents

Publication Publication Date Title
US7130499B2 (en) Optical communication module utilizing plural semiconductor transmitter photonic integrated circuit (TxPIC) chips
JPS62245740A (en) Wavelength multiplex optical transmission system
KR100334432B1 (en) Bidirectional add/drop optical amplifier module using one arrayed-waveguide grating multiplexer
US6091538A (en) Gain equalizing apparatus
JP2000286492A (en) Light source
RU2172073C2 (en) Communication system with spectral multiplex and method of controlled division of output channels
JPH04217233A (en) Multiwavelength light amplifier
US11177900B2 (en) Integrated WDM optical transceiver
Doerr et al. An automatic 40-wavelength channelized equalizer
JPH1013357A (en) Optical amplifier
US7003195B1 (en) Dynamic power equalizer
JPS58197930A (en) Optical demultiplexer
JPH04101124A (en) Light signal amplifier
JPH10303815A (en) Wavelength division circuit with monitor port using awg
JP2001156364A (en) Wide band optical amplifier
JPH11174389A (en) Optical processing circuit
JP4520700B2 (en) Signal addition for wavelength division multiplexing systems.
JPH10322313A (en) Wavelength multiplexing transmitter
JP3275855B2 (en) Wavelength multiplexing optical transmission device and wavelength multiplexing optical transmission device provided with this device
JP2001144353A (en) Optical amplifier
JPH04204719A (en) Method for stabilizing output of optical amplifier and optical amplifier using this method
JP2000241638A (en) Array waveguide diffraction grating part
JPH1154842A (en) Light source for optical integrated type optical communication
US6980355B2 (en) Wavelength-tunable amplified optical splitter
JP3277970B2 (en) Array waveguide diffraction grating type optical multiplexer / demultiplexer with loopback optical path