JPS58197784A - Light emitting diode - Google Patents

Light emitting diode

Info

Publication number
JPS58197784A
JPS58197784A JP57079374A JP7937482A JPS58197784A JP S58197784 A JPS58197784 A JP S58197784A JP 57079374 A JP57079374 A JP 57079374A JP 7937482 A JP7937482 A JP 7937482A JP S58197784 A JPS58197784 A JP S58197784A
Authority
JP
Japan
Prior art keywords
active layer
layer
light emitting
emitting diode
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57079374A
Other languages
Japanese (ja)
Inventor
Kenichi Kasahara
健一 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57079374A priority Critical patent/JPS58197784A/en
Publication of JPS58197784A publication Critical patent/JPS58197784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To produce LED made of InGaAsP with high efficiency and output by a method wherein an active layer with narrow forbiden band width is held by P- and N-layers successively changing the concentration of the active layer in the direction of layer thickness. CONSTITUTION:In a LED where N type In1-xGaxAs1-y active layer 32 is held by P-InP layer 33 and N-InP layer 31, the donor density of the active layer 32 is successively changed in the direction of layer thickness. When LED is supplied with forward bias voltage, if an active layer 12 is doped to increase donor density from a layer 11 to another layer 13 in a energy band diagram, the lower end of conduction band of active layer and the upper end of valency electron band are lowered in the direction of layer thickness generating an accelerating electric field for the electrons and hole injected into the active layer. Consequently the thickness of active layer almost equivalent to the conventional hole diffusion length may be increased producing LED made of InGaAsP with high efficiency and output as well as inconspicuous saturation characteristic.

Description

【発明の詳細な説明】 本発明は高効率発光ダイオードに関する。[Detailed description of the invention] The present invention relates to high efficiency light emitting diodes.

構造が単純で経済性、信頼性共に優わ、効率の高い発光
ダイオードは光通信用をは!つめ各種の光源として要望
されるものであろつ光−7丁イノイカ−低分散、低損失
なる特性を示す1μmの波長帯で(ゴ現在、InGaA
sP混晶を材料としたダブル・・入テロ接合型の発光ダ
イオードが開発さrているが、この発光ダイオードは高
い電流注入領域で発光効率が低下して、出力が飽和する
特性を有し、そのことhイ高効率化への大缶な障害とな
っているため、効率の低下しない**を有する発光ダイ
オードの開発が特に望まれている。
Highly efficient light emitting diodes with a simple structure, superior economy and reliability are suitable for optical communications! In the 1 μm wavelength band, which exhibits low dispersion and low loss, the light is required as a variety of light sources (Currently, InGaA
A double telojunction type light emitting diode made of sP mixed crystal material has been developed, but this light emitting diode has the characteristic that the luminous efficiency decreases in the high current injection region and the output saturates. Since this is a major obstacle to increasing efficiency, it is particularly desired to develop a light emitting diode that does not reduce efficiency.

第1図は従来のダブル・・\テロ接合型の発光ダイオー
ドに於いて順方向にバイアス電圧を印力口した時のバン
ド図である。InGaAsP/InP発光ダイオードを
例1こ乏ると同図に於いて、11はN型InPから成る
第1の半導体1.12はIn1−xGax入5yPl−
y、13はP型InPから成る第2の半導体1’lテあ
り、Int −xGaxAsyPt −y 1.2が活
性層となる。但しxtlは0<4≦1.0<χ≦1であ
る。N型InP 11より注入さnた電子14とP型I
nP 13より注入さレタ正孔15 it Ins −
xGaxAsyPt、y 12の内部fこ於いて再綾合
するがこのうち発光再結合する成分が光エネルギーの変
換に寄与し、些りの非発光再結合成分は発光ダイオード
の内部量子効率を低下させる。この非発光再結合成分は
発光再結合成分に対して、注入キャリア密度の増大に伴
ない急増する。そのために発光出力は注入電流の増加の
割合と共には増大せずに飽和特性を示すこ乏になり1高
注入電流領幀では内部量子効率が著しく低下する。この
効率の低下を防ぎ高効率、高出力の発光ダイオードを得
んがためには、大電流を注入しても活性層内の+ヤリ7
密間があまり高くならない構造が望ましく、その−ドで
は活性層でのQll厚方向への電界C1小さくいため注
入されたキャリアは拡散によって活性層内部lこ拡がり
蓄積さn、てゆきキャリアの蓄積さn、る領域は拡散長
で決まることになる。通常正孔の拡散長は電子の拡散長
、に比べて小さく、活性e庫>正孔の拡散長より厚くし
ても正孔は拡散長程度の領域にしか蓄積さTuftい。
FIG. 1 is a band diagram when a forward bias voltage is applied to a conventional double-terojunction type light emitting diode. In the same figure, 11 is a first semiconductor 1 made of N-type InP. 12 is a 5yPl- containing In1-xGax.
y, 13 is a second semiconductor 1'lte made of P-type InP, and Int-xGaxAsyPt-y1.2 serves as an active layer. However, xtl satisfies 0<4≦1.0<χ≦1. Electrons 14 injected from N-type InP 11 and P-type I
Letter hole 15 it Ins − injected from nP 13
xGaxAsyPt, y Recombine in the internal f of 12, of which the radiatively recombined component contributes to the conversion of optical energy, and a small amount of non-radiatively recombined component reduces the internal quantum efficiency of the light emitting diode. This non-radiative recombination component increases rapidly as the injected carrier density increases, compared to the radiative recombination component. For this reason, the light emitting output does not increase with the rate of increase in the injection current and does not exhibit saturation characteristics, and the internal quantum efficiency decreases significantly in the high injection current region. In order to prevent this decrease in efficiency and obtain a high-efficiency, high-output light emitting diode, even if a large current is injected, the
It is desirable to have a structure in which the density is not too high, and in that case, the electric field C1 in the Qll thickness direction in the active layer is small, so the injected carriers spread and accumulate inside the active layer by diffusion. The region n is determined by the diffusion length. Normally, the diffusion length of holes is smaller than the diffusion length of electrons, and even if the active e storage is greater than the diffusion length of holes, holes will only be accumulated in a region about the diffusion length.

従って内部量子効率の欧111を同らん力?ために活性
層厚5:暉くしょう乏しても、正孔の拡散長程度の厚さ
までしか効果が無い。発光波長が1.3smの組成のI
n 1−xGaxAsyPt −yの例では正孔の拡i
長はlXl0”〆イの正孔密電で約2μmとなり、電子
の拡散長の1/1o程電である。したhlって従来の構
造では活性1厚を厚くして内部量子効率の改善を図らん
としても活性1厚に限界がちり高効率、高出方の発光ダ
イオードは得らnなかった。
Therefore, is the internal quantum efficiency equal to 111? Therefore, the active layer thickness is 5: Even if the active layer is depleted, it is only effective up to a thickness approximately equal to the hole diffusion length. I with a composition whose emission wavelength is 1.3 sm
In the example of n 1-xGaxAsyPt -y, the hole expansion i
The length is about 2 μm in the hole density of lXl0'', which is about 1/10 of the electron diffusion length.In the conventional structure, the active layer thickness was increased to improve the internal quantum efficiency. Even if we did not try to do so, we could not obtain a light-emitting diode with high efficiency and high output due to the limit of active thickness.

本発明は上述の如き欠点を除去し、発光ダイオードの高
効率、高出力化を図ることを目的としている。この目的
達成のため本発明の発光ダイオードは導電型が互いに異
なる呵1の半導体1と第2の半導体層とで、こわ、ら半
導体層よりも素側帯幅の狭い活性1を挾んだ構造を具備
し、さらに!81N記活性賽の本補物?11度が前記第
1の半導体層に接する側から層厚方向に前記@2の半導
体−に向かうにつむ、て順次増大または減少している構
成と4「っている。
The present invention aims to eliminate the above-mentioned drawbacks and to improve the efficiency and output of a light emitting diode. In order to achieve this objective, the light emitting diode of the present invention has a structure in which a semiconductor 1 and a second semiconductor layer having different conductivity types sandwich an active layer 1 having a narrower sideband width than the semiconductor layer. Equipped and more! 81N Ki Activation Dice Book Supplement? 11 degrees gradually increases or decreases from the side in contact with the first semiconductor layer toward the semiconductor @2 in the layer thickness direction.

第2図は本発明に於ける°発光ダイオードに順方向にバ
イアス電圧を印加した時のバンド図である。
FIG. 2 is a band diagram when a forward bias voltage is applied to the light emitting diode according to the present invention.

同図に於いて◆嗜li!活性肩であるうこの活性層は。In the same figure, ◆Choli! The active layer of the cubs is the active shoulder.

@1の半導体1に接する側からwE2の半導体に層厚方
向に進むにしたがってドナー帯間を増す機番こ不純物が
ドーピングされている。その結果活性の伝導帯の下端、
価電子帯の上端は@2図1こ示す如く1厚方向に@2の
半導体層の方向に進むにしたがって下がっており、活性
層の内部に注入された電子と正孔に対して加速電界を生
ずることになる。
The semiconductor wE2 is doped with impurities that increase the donor zone spacing in the layer thickness direction from the side in contact with the semiconductor 1 of @1. As a result, the lower end of the active conduction band,
As shown in @2 Figure 1, the upper end of the valence band decreases as it advances toward the semiconductor layer of @2 in the thickness direction, and an accelerating electric field is applied to the electrons and holes injected into the active layer. will occur.

このため活性層に注入されたキャリアはすみやかに活性
層内部に移動できる。したがって、従来の発光ダイオー
ドの活性層厚が正孔の拡散長程度までしか厚くすること
が出来なかったのに比べ、本発明においては発光ダイオ
ードの活性層厚をそゎ以上に広くすることが出来、発光
ダイオードQ)高効率、高出力化に対して有利な構造と
なっている。
Therefore, carriers injected into the active layer can quickly move into the active layer. Therefore, while the active layer thickness of a conventional light emitting diode could only be increased to the extent of the hole diffusion length, in the present invention, the active layer thickness of a light emitting diode can be made much thicker. , light emitting diode Q) It has a structure that is advantageous for high efficiency and high output.

第3図は本発明に於ける一実施例で、30はNWInP
基板、31 GJ Nu InPから成る@lの半導体
層、32はドナー書間を層厚方向に漸次変化させて作製
したN!ll Ir*−*GaxAsyP1−y活性層
、33はP型1nP、34はP型Int−xGaxAs
yPt −w。
FIG. 3 shows an embodiment of the present invention, and 30 is an NWInP
The substrate, 31 GJ @l semiconductor layer made of Nu InP, 32 was made by gradually changing the donor interstitial space in the layer thickness direction. ll Ir*-*GaxAsyP1-y active layer, 33 is P-type 1nP, 34 is P-type Int-xGaxAs
yPt-w.

35は81伽、36はA1GeNi /Au電極、37
はTi、y′Pt/Au電極である。但し0≦Z≦1,
0≦W≦lである。結晶成長は分子線エピタキシャル成
長法を用い、活性層となるN型InxGar −xAs
yPl−y 32は8n%ドープしドナー密1はN型I
nP31に接する側で約xxlo/dでP型InP33
の方向に1厚方向に進むに従って連続的に増加させP型
IflP 33に接する部分では約1×10 〆メにし
である。又N11InP@板31及びN11InP32
のドナー書間は約txxo/d、P型InP33のアク
セプター密闇は約xxlo  /cIIであるON型r
at−xGaxAsyPl−y 32の層厚は全体で約
6μmである0本実總例によれば活性1厚は従来の3倍
8度に厚いのでキャリア密度は同−注入電確値でも1/
3になり光出力は従来の2倍近くになり飽和特性の緩い
、高効率、高出力のInGaAsP発光ダイオードが得
られる。
35 is 81, 36 is A1GeNi/Au electrode, 37
is a Ti, y′Pt/Au electrode. However, 0≦Z≦1,
0≦W≦l. The crystal growth uses the molecular beam epitaxial growth method, and the active layer is N-type InxGar-xAs.
yPl-y 32 is doped by 8n% and donor density 1 is N-type I
P-type InP33 at about xxlo/d on the side in contact with nP31
It increases continuously in the direction of 1 thickness and reaches about 1×10 2 in the part in contact with the P-type IflP 33. Also N11InP@board 31 and N11InP32
The donor spacing of P-type InP33 is about xxlo/cII, and the acceptor spacing of P-type InP33 is about xxlo/cII.
The total layer thickness of at-xGaxAsyPl-y 32 is about 6 μm.According to the actual example, the active layer thickness is 3 times thicker than the conventional one, so the carrier density is 1/1 even with the same injection electric value.
3, the optical output is nearly twice that of the conventional one, and a high-efficiency, high-output InGaAsP light-emitting diode with mild saturation characteristics can be obtained.

第4図は本発明に於ける他の実施例で8nドープによる
ドナー密度がそれぞれ約1x1n/dのN yI!In
 I−xGaxAsyPt −y 321 、約5X1
0/?71fのN @ In t −xGaxAsyP
t −y 322及び約lXl0/CldのN型In1
−vGaxAsyPx −y 3230) 311 ヨ
り活性層が成うている場合で、それぞれの1厚は約2μ
mである。活性llI以外の部分はと述の実施例と同じ
である。同図の如く活性層のドナー密度を役階的に変え
る構造となっており、ドナー密度を連続的に変えて活性
111を作製することが難かしい材料に有効である。
FIG. 4 shows another embodiment of the present invention, in which the donor density due to 8n doping is approximately 1x1n/d. In
I-xGaxAsyPt -y 321 , approximately 5X1
0/? 71f N @ In t -xGaxAsyP
N-type In1 with t −y 322 and about lXl0/Cld
-vGaxAsyPx -y 3230) 311 When active layers are formed, each thickness is approximately 2μ
It is m. The parts other than the active llI are the same as in the previous example. As shown in the figure, the structure is such that the donor density of the active layer is changed functionally, and it is effective for materials in which it is difficult to create the active layer 111 by continuously changing the donor density.

以上具体的実施例と共に説明した様に本発明によれば内
部電子効率が高く、特にInGaAsP混晶を用いた発
光ダイオードの高効率、高出力化に対して特に有効な発
光ダイオードが実現出来ろ。
As described above with the specific examples, according to the present invention, it is possible to realize a light emitting diode which has high internal electron efficiency and is particularly effective for increasing the efficiency and output of a light emitting diode using InGaAsP mixed crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従、来の、又@2図は本発明に於ける発光ダイ
オードに順方向に電圧を印加した時のバンド図である。 又第3図は本発明に於ける一実施例、第4図は他の実施
例を示す発光ダイオードの断面図である。 11及び31はN型InP、12はInt−xGaxA
syPI−7,13及び33はpHTnP%會?、32
,321゜322及び323はNWInl−xGaxA
syPx −y 、 30はN11InP基板、34は
P WInt−zGazAswPt −w。 35は8i0寓、36はAuGeNi /Au電椿1a
7はT i /P t /Au Ill 砺、14は電
子、15け正孔、である。 卑 1 口 A 亭 3 図 7
FIG. 1 is a band diagram when a voltage is applied in the forward direction to a light emitting diode according to the conventional, conventional, and FIG. 2 is a light emitting diode according to the present invention. Further, FIG. 3 is a sectional view of a light emitting diode showing one embodiment of the present invention, and FIG. 4 is a sectional view of a light emitting diode showing another embodiment. 11 and 31 are N-type InP, 12 is Int-xGaxA
syPI-7, 13 and 33 are pHTnP%? , 32
, 321° 322 and 323 are NWInl-xGaxA
syPx-y, 30 is N11InP substrate, 34 is PWInt-zGazAswPt-w. 35 is 8i0 fable, 36 is AuGeNi /Au Dentsubaki 1a
7 is T i /P t /Au Ill 纺, 14 is an electron, and 15 holes. Base 1 Mouth A Tei 3 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)導電型が互いに異なる@1の半導体層と第2の半
導体層とで、これら第1、第2の半導体層よりも禁制帯
幅の狭い半導体で成る活性#を挟み込んだ構造を有し、
さらに前記活性層中の不純物濃度が、前記第1の半導f
$1に接する側から1厚方向に前記第2の半導体層に向
うにつわ、て順次増加又は減少していることを特徴とす
る発光ダイオード。 の
(1) It has a structure in which an active # made of a semiconductor having a narrower forbidden band width than the first and second semiconductor layers is sandwiched between a semiconductor layer of @1 and a second semiconductor layer having different conductivity types. ,
Furthermore, the impurity concentration in the active layer is such that the impurity concentration in the first semiconductor f
1. A light emitting diode characterized in that the number increases or decreases sequentially from the side in contact with $1 toward the second semiconductor layer in the one thickness direction. of
(2)前記活性層〆、不純物濃度が互いlこ少しづつ喝
なっている複数の半導体11Nを積重した構;責とt【
っていることを特徴とする特許請求の範囲第11@記載
の発光ダイオード。
(2) The active layer has a structure in which a plurality of semiconductors 11N whose impurity concentrations are slightly different from each other are stacked;
The light emitting diode according to claim 11@, characterized in that:
JP57079374A 1982-05-12 1982-05-12 Light emitting diode Pending JPS58197784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57079374A JPS58197784A (en) 1982-05-12 1982-05-12 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57079374A JPS58197784A (en) 1982-05-12 1982-05-12 Light emitting diode

Publications (1)

Publication Number Publication Date
JPS58197784A true JPS58197784A (en) 1983-11-17

Family

ID=13688091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57079374A Pending JPS58197784A (en) 1982-05-12 1982-05-12 Light emitting diode

Country Status (1)

Country Link
JP (1) JPS58197784A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370580A (en) * 1986-09-12 1988-03-30 Nec Corp Light-emitting diode
US5045896A (en) * 1987-11-13 1991-09-03 Siemens Plessey Controls Limited Solid state light source for emitting light over a broad spectral band
JP2005057308A (en) * 2004-11-12 2005-03-03 Nichia Chem Ind Ltd Nitride semiconductor element
JP2007281257A (en) * 2006-04-07 2007-10-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element
JP2008263196A (en) * 2007-04-09 2008-10-30 Shogen Koden Kofun Yugenkoshi Light-emitting element
USRE42008E1 (en) 1999-06-07 2010-12-28 Nichia Corporation Nitride semiconductor device
US11588072B2 (en) 2019-11-06 2023-02-21 Epistar Corporation Semiconductor device and semiconductor component including ihe same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370580A (en) * 1986-09-12 1988-03-30 Nec Corp Light-emitting diode
US5045896A (en) * 1987-11-13 1991-09-03 Siemens Plessey Controls Limited Solid state light source for emitting light over a broad spectral band
USRE42008E1 (en) 1999-06-07 2010-12-28 Nichia Corporation Nitride semiconductor device
USRE45672E1 (en) 1999-06-07 2015-09-22 Nichia Corporation Nitride semiconductor device
JP2005057308A (en) * 2004-11-12 2005-03-03 Nichia Chem Ind Ltd Nitride semiconductor element
JP4622466B2 (en) * 2004-11-12 2011-02-02 日亜化学工業株式会社 Nitride semiconductor device
JP2007281257A (en) * 2006-04-07 2007-10-25 Toyoda Gosei Co Ltd Group iii nitride semiconductor light-emitting element
US8076684B2 (en) 2006-04-07 2011-12-13 Toyoda Gosei Co., Ltd. Group III intride semiconductor light emitting element
JP2008263196A (en) * 2007-04-09 2008-10-30 Shogen Koden Kofun Yugenkoshi Light-emitting element
US11588072B2 (en) 2019-11-06 2023-02-21 Epistar Corporation Semiconductor device and semiconductor component including ihe same

Similar Documents

Publication Publication Date Title
US6504171B1 (en) Chirped multi-well active region LED
US4987468A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
US5164797A (en) Lateral heterojunction bipolar transistor (LHBT) and suitability thereof as a hetero transverse junction (HTJ) laser
US4365260A (en) Semiconductor light emitting device with quantum well active region of indirect bandgap semiconductor material
US20030183837A1 (en) Laminated semiconductor substrate and optical semiconductor element
JPS58197784A (en) Light emitting diode
JP4894398B2 (en) Semiconductor laser device
JPS61218192A (en) Semiconductor light emitting element
US6222205B1 (en) Layered semiconductor structure for lateral current spreading, and light emitting diode including such a current spreading structure
JP3486193B2 (en) Photoelectric semiconductor device
US5250814A (en) Semiconductor light-emitting devices
US5917196A (en) Group III-V type nitride compound semiconductor light-emitting device
US5452316A (en) Semiconductor laser having stacked active layers with reduced drive voltage
JPH01241192A (en) Semiconductor device
JP2931678B2 (en) Semiconductor light emitting device
JPH02144983A (en) Semiconductor laser device with a plurality of active layers
JPH05267715A (en) Semiconductor light-emitting device
JP2748570B2 (en) Semiconductor laser device
Jain et al. Electron blocking layer free full-color InGaN/GaN white light-emitting diodes
JPH1027925A (en) Light emitting element
JP2815165B2 (en) Two-way injection type semiconductor laser device
JPS63136591A (en) Seniconductor laser
JP3119513B2 (en) Avalanche light emitting device
JPH0371797B2 (en)
JPH07169992A (en) Semiconductor light emitter