JPS58197207A - Detection of channeling of charge in vertical chute part of charger for blast furnace - Google Patents

Detection of channeling of charge in vertical chute part of charger for blast furnace

Info

Publication number
JPS58197207A
JPS58197207A JP8013982A JP8013982A JPS58197207A JP S58197207 A JPS58197207 A JP S58197207A JP 8013982 A JP8013982 A JP 8013982A JP 8013982 A JP8013982 A JP 8013982A JP S58197207 A JPS58197207 A JP S58197207A
Authority
JP
Japan
Prior art keywords
blast furnace
raw materials
charge
vertical chute
chute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8013982A
Other languages
Japanese (ja)
Inventor
Tadaaki Iwamura
岩村 忠昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8013982A priority Critical patent/JPS58197207A/en
Publication of JPS58197207A publication Critical patent/JPS58197207A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measuring Volume Flow (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To detect the deposition condition of the raw materials in a blast furnace exactly by detecting the falling rate and channeling position of raw materials for a blast furnace with the plural oscillation sensors mounted around the vertical chute of a raw material charger for the blast furnace. CONSTITUTION:Raw materials such as iron ore and coke are scattered and charged from the top bunkers 1, 2 of a blast furnace into the furance by a vertical chute 3 and a swiveling chute 4. Oscillation sensors 6, 7, 8, 9 are mounted at equal intervals around the chute 3 in this case. The falling rate S of the raw materials is calculated by the equation [ I ] from the value PK measured with each sensor in the stage of charging the raw materials, and the channeling position theta of the falling raw materials is calculated by using the equation [II] from the specific largest adjacent measured values Pi and Pi+1 among the values measured with the sensors. The deposition condition of the raw material in the furnace is detected from the values S and theta, and the charging of the raw materials is adequately regulated so as to attain the normal deposition condition, whereby the condition of the blast furnace is stabilized.

Description

【発明の詳細な説明】 この発明は、高炉装入装置の垂直シュート部における装
入物の偏流検出法に関し、とくに垂直シュート内を落下
する高炉原料の落下量ならびに偏流位置を正確に検出す
ることによって、これらを制御要因の一部とする炉内へ
の原料装入に有効1・に寄与させ、装入物の堆積状態の
適切な調整に役立たせようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting drifting of a charge in a vertical chute of a blast furnace charging device, and in particular, to accurately detect the amount of falling blast furnace raw material falling in a vertical chute and the position of drifting. This is intended to make these factors contribute effectively to the charging of raw materials into the furnace, which is part of the control factors, and to help appropriately adjust the deposition state of the charged materials.

一般に、高炉内の熱レベル状態は原料堆積層の鉱石/コ
ークス分布(以下単に04分布という)と密接な関係に
あり、高炉の炉周に沿う各部(以−・・・下炉周方向と
いう)で010分布に偏りがある場合には、該炉周方向
で熱レベルにも較差が生じる。
Generally, the heat level inside the blast furnace is closely related to the ore/coke distribution in the raw material accumulation layer (hereinafter simply referred to as 04 distribution), and each part along the circumference of the blast furnace (hereinafter referred to as the circumferential direction) If there is a bias in the 010 distribution, there will also be a difference in the heat level in the circumferential direction of the furnace.

このように炉周方向で熱レベル状態に較差が生じた場合
には、高炉操業が不安定なものになるほか燃料費の増大
をきたし、さらに炉周に沿って劃[の出銑口をもつ高炉
においては、各出銑口から出湯する溶銑の温度や成分に
差異が生じるため、後続工程での溶銑の円滑な処理が損
なわれる。
If there is a difference in the heat level state in the direction of the furnace circumference, the blast furnace operation becomes unstable and fuel costs increase. In a blast furnace, differences occur in the temperature and composition of the hot metal tapped from each tap hole, which impairs the smooth processing of the hot metal in subsequent steps.

ところで最近、ベル方式にかえて旋回シュートを用いて
高炉内に原料を装入する方法が開発され、パ次第に普及
してきた。しかしながらこの旋回シュート方式ではその
構成上、原料を炉周方向に均一に装入することは難しく
、このため炉周方向での010分布が不均一となるとこ
ろに問題を残していた0 第1図に、旋回シュートを用いて高炉内に原料を装入し
た場合における、装入物の積層状態とくに010分布状
態を装入装置と共に断面で示す。図中番号1,2はいず
れも炉頂バンカーで、この例では炉頂バンカー1から鉱
石を同2からコークス−・・(8) を排出する場合について示し、3は垂直シュート、14
は旋回シュート、そして5は高炉の炉壁である。
Recently, a method of charging raw materials into a blast furnace using a rotating chute instead of the bell method has been developed, and has become increasingly popular. However, due to the structure of this rotating chute system, it is difficult to charge the raw material uniformly in the circumferential direction of the furnace, which leaves a problem in that the 010 distribution in the circumferential direction becomes uneven. 2 shows a cross-sectional view of the stacked state of the charge, particularly the 010 distribution state, together with the charging device, when the raw material is charged into the blast furnace using a rotating chute. Numbers 1 and 2 in the figure are both furnace top bunkers, and in this example, ore is discharged from furnace top bunker 1 and coke (8) is discharged from furnace top bunker 2. 3 is a vertical chute, 14
is the rotating chute, and 5 is the wall of the blast furnace.

さて上記の如き装入設備によって原料の装入を行った場
合には次のような問題を生じる。すなわち炉頂バンカー
1,2から排出された原料は、垂・直シュート8内を通
過する際、使用する炉頂バンカーの設置位置に応じて垂
直シュート8内をそれぞれ偏流して落下する。その結果
、原料は旋回シュート4の旋回角度に応じて旋回シュー
ト4上の異なる位置に落下することになるから、該旋回
シト・ニート4上での原料の移動距離はd□からd2ま
での間で変化する。このため原料の旋回シュート4上で
の移動時間ならびに図中にベクトルv 、 v’で示し
たように該シュート4を離れる際の速度、方向に差異が
生じ、最終的には炉内での炉周方向に1・おける装入物
の積層状態に偏り、すなわち第119に示した堆積層プ
ロフィルに見られるよっな炉周方向での010分布の偏
りが生じていたのである。
When raw materials are charged using the above-mentioned charging equipment, the following problems occur. That is, when the raw materials discharged from the furnace top bunkers 1 and 2 pass through the vertical and vertical chutes 8, they drift and fall within the vertical chutes 8, depending on the installation position of the furnace top bunker used. As a result, the raw material will fall at different positions on the rotating chute 4 depending on the rotation angle of the rotating chute 4, so the moving distance of the raw material on the rotating seat/neat 4 will be from d□ to d2. It changes with For this reason, differences occur in the moving time of the raw material on the rotating chute 4, as well as the speed and direction when leaving the chute 4, as shown by vectors v and v' in the figure, and ultimately the There was a bias in the layered state of the charges in the circumferential direction, that is, a bias in the 010 distribution in the furnace circumferential direction as seen in the deposited layer profile shown in No. 119.

このためかような炉内装入物の堆積状態の偏りを是正す
べく、たとえば使用バンカーの切替えや、・・・(4) 旋回シュートの旋回速度、旋回方向の調整などに1よっ
て装入法ご改善して装入物の炉内堆積状態の均質化をね
らった試みが数多くなされている。
Therefore, in order to correct the imbalance in the accumulation state of the contents in the reactor, changes should be made to the charging method by, for example, changing the bunkers used, and (4) adjusting the rotating speed and direction of the rotating chute. Many attempts have been made to improve and homogenize the state of the charge piled up in the furnace.

ところでこれらの改善策においては、いずれも垂直シュ
ート内を通過する際の装入物の偏流状態・すなわち落下
量と偏流位置とを正確に把握することがとりわけ重要と
されるが、これまでその正確な検知方法は開発されてい
ないのが現状である。
By the way, in all of these improvement measures, it is especially important to accurately grasp the drift state of the charge as it passes through the vertical chute, that is, the falling amount and drift position, but so far it has not been possible to accurately Currently, no detection method has been developed.

この発明は、上記の要請に有利に応えるもので、高炉原
料の垂直シュート落下時における偏流状態1・・の正確
な検出を可能ならしめた装入物の偏流検出法を提案する
ものであや。 。
The present invention advantageously meets the above-mentioned needs by proposing a method for detecting drifting of a charge material, which makes it possible to accurately detect the drifting state 1 when a blast furnace raw material falls into a vertical chute. .

すなわちこの発明は、炉頂バンカーから排出した高炉原
料全垂直シュートを通し旋回シュートを用いて炉内に装
入する高炉装入において、該垂直トシ、ニートの外周に
沿?て均等間隔に配置した少くとも3個の振動センサー
により、高炉原料装入時における垂直シュー、ドの振動
を計測し、得られた各計測値から下記(1) 、 (2
)式に基いて装入物の落下MSならびに偏流位置θをそ
れぞれ算定して装入1、物の偏流を検出することを特徴
とする高炉装入装装置の垂直シュート部における装入物
の偏流検出法である。
That is, in the blast furnace charging in which the blast furnace raw material discharged from the furnace top bunker is passed through the entire vertical chute and charged into the furnace using the rotating chute, the vertical chute, along the outer periphery of the neat? At least three vibration sensors arranged at equal intervals are used to measure the vibrations of the vertical shoe and do when charging raw material into the blast furnace, and the following (1) and (2) are calculated from each measurement value obtained.
) The drifting flow of the charge in the vertical chute part of the blast furnace charging equipment is characterized in that the falling MS of the charge and the drifting position θ are calculated respectively to detect the charging 1 and the drift of the material. It is a detection method.

記 ここで、α:高炉原料銘扁によって異なる定数7:イカ
47 t −47) fm &  □    ゛□Pk
:計測値 Pi、Pi+t :計測値のうち出力の大きいもの2つ n、m:定数     □ θ:P1を出力するセ□ンサーと装入物J重心とのなす
角度 以下この発明を具体的に説明する。
Here, α: Constant that varies depending on the name of the blast furnace raw material 7: Squid 47 t -47) fm & □ ゛□Pk
: Measured values Pi, Pi+t : Two of the measured values with the largest outputs n, m: Constants □ θ: Angle between the sensor that outputs P1 and the center of gravity of the charge J This invention will be explained in detail below. do.

第2図に、垂直シュートの外周に沿って4fiIの振動
センサーを設置した場合の垂直シュートの断面を、計測
値の演算系統と共にボし、また第8図1にその要部の詳
細を示す。図中6.7.8および9が振動センサーであ
る。
FIG. 2 shows a cross section of the vertical chute when a 4fiI vibration sensor is installed along the outer periphery of the vertical chute, along with a calculation system for the measured values, and FIG. 8 shows the details of the main parts. In the figure, 6.7.8 and 9 are vibration sensors.

さていま装入物が第8図に示したような垂直シュートの
内壁に沿う偏流として該シュート内を落□下していると
する。このとき垂直シュートの振動の大きさは落下量に
比例する。従って下記(15式に示したように各振動セ
ンサーで計測される計測値の総和を求めれば、装入物の
偏流位置の如何にかかわらず常に正確な落下量Sを知る
ことができる。l・・α:高炉原料銘柄によって異なる
定数 n:定数 また第8図に示したところにおいで、装入物の1偏流位
置を挾む2つの振動センサーの計測値をPi。
Assume now that the charge is falling through the vertical chute as a drifted flow along the inner wall of the chute as shown in FIG. At this time, the magnitude of the vibration of the vertical chute is proportional to the amount of fall. Therefore, by calculating the sum of the measured values measured by each vibration sensor as shown in Equation 15 below, it is possible to always know the accurate falling amount S regardless of the drift position of the charge.・α: Constant that varies depending on the brand of blast furnace raw material n: Constant Also, at the place shown in Fig. 8, Pi is the measured value of two vibration sensors that sandwich one drifting position of the charge.

P1+1とすると、pi、 、 Pi+xは第4図に示
したよう、に4つの振動センサーのうち計測値の大きい
もの2つに当る。
Assuming P1+1, pi, , Pi+x correspond to the two with the largest measured values among the four vibration sensors, as shown in FIG.

ここでPiを計測する振動センサーの設置位置か・ら原
料の重心0寸での角度をθ、垂直シュート81の半径を
Rとするとき、振動の減衰は距離のm乗に反比例するか
ら、 pi、 、 pi+xはそれぞれ、ここで、m:
定数 で表わされ、従ってpiとpi+1の比”i/Pi+1
は I・・となる。
Here, when the angle between the installation position of the vibration sensor that measures Pi and the center of gravity of the raw material at 0 dimensions is θ, and the radius of the vertical chute 81 is R, the attenuation of vibration is inversely proportional to the distance m-th power, so pi , , pi+x are each where m:
It is expressed as a constant, so the ratio of pi and pi+1 "i/Pi+1
becomes I...

すなわち4個の振動センサーによる垂直シュートの振動
計測において、各計測値のうち大きい方から2つをPi
 、 Pi+1として上記(2)7式に代入することに
より装入物の垂直シュート内偏流位置が正・・。
In other words, when measuring the vibration of a vertical chute using four vibration sensors, two of the largest measured values are used as Pi.
, by substituting Pi+1 into equation (2) 7 above, the drift position of the charge in the vertical chute is positive...

確に把握できるのであり、かような演算は前掲第12図
に示した演算系統によって簡単に算定でき、表示される
Such calculations can be easily calculated and displayed using the calculation system shown in FIG. 12 above.

以上、振動センサーを4個使用する場合を代表例として
主に説明したが、この発明は上記の場合だけに限るもの
ではなく、振動センサーの個数は8個以上であればいず
れの場合も同様にしてこの発明を適用できる。このとき
使用する振動センサーの個数をlとすれば、前[(1)
’ 、 (2)’式はそれぞれ一般式として次式(1)
 、 (2)のとおりに表わされる。パかくしてこの発
明によれは、旋回シュート方式の高炉装入において、装
入物が垂直シュートを通過する際の該装入物の落下量な
らびに偏流位置を正確に把握することができ、従ってこ
れらを制御要因の一部として高炉内での装入物堆積状態
を調・・整する場合に有効である。
Although the above explanation has mainly been based on the case where four vibration sensors are used as a typical example, the present invention is not limited to the above case, and can be similarly applied to any case where the number of vibration sensors is eight or more. This invention can be applied as a lever. If the number of vibration sensors used at this time is l, then [(1)
Equations ' and (2)' are each expressed as the following equation (1) as a general equation:
, expressed as (2). Thus, according to the present invention, when charging a blast furnace using a rotating chute, it is possible to accurately grasp the falling amount and drift position of the charge when it passes through the vertical chute, and therefore It is effective when adjusting the charge deposition state in the blast furnace as part of the control factor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は常法に従い炉内に装入した高炉原料の積層状態
を装入装置と共に示した断面図、第2図は振動センサー
の計測値の処理系統を示した演算系統図、 第3図は垂直シュートの断面図、 第4図は振動センサーのV置位置の違いによる計測値の
差異を示したグラフである。 特許出願人  川崎製鉄株式会社 第3図 第4図
Figure 1 is a sectional view showing the stacked state of blast furnace raw materials charged into the furnace according to the conventional method, together with the charging equipment, Figure 2 is a calculation system diagram showing the processing system for the measured values of the vibration sensor, Figure 3 is a cross-sectional view of the vertical chute, and Figure 4 is a graph showing the difference in measured values due to the difference in the V position of the vibration sensor. Patent applicant Kawasaki Steel Corporation Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 L 炉頂バンカーから排出した高炉原料を垂直゛シュー
トを通し旋回シュートを用いて炉内に装入する高炉装入
において、該垂直シュートの外周に沿って均等間隔に設
置した少くとも8個の振動センサーにより、高炉原料装
入時における垂直シュートの振動を計測し、得らト□れ
た各計測値から下記(1) 、 (2)式に基いて装入
物の落下量Sならびに偏流位置θ2それぞれ算定して装
入物の偏流を検出することを特徴とする高炉装入装置の
垂直シュート部における装入物の偏流検出法。 記 ここで、α:高炉原料銘柄によって異なる定数 l:振動センサーの個数 Pk:計測値 pi、p土+1:計測値のうち出力の大゛きいもの2つ n、m:定数 θ:Piを出力するセンサーと装入 物の重心とのなす角度
[Scope of Claims] L In blast furnace charging in which the blast furnace raw material discharged from the furnace top bunker passes through a vertical chute and is charged into the furnace using a rotating chute, the blast furnace material is placed at equal intervals along the outer periphery of the vertical chute. At least 8 vibration sensors measure the vibration of the vertical chute during charging of raw material into the blast furnace, and from each measured value the following formulas (1) and (2) are used to determine the fall of the charge. A method for detecting drifting of the charge in a vertical chute of a blast furnace charging device, characterized in that drifting of the charge is detected by calculating the amount S and the drifting position θ2. Here, α: Constant that varies depending on the brand of blast furnace raw material l: Number of vibration sensors Pk: Measured value pi, p soil + 1: Two of the largest outputs among the measured values n, m: Constant θ: Output Pi The angle between the sensor and the center of gravity of the charge
JP8013982A 1982-05-14 1982-05-14 Detection of channeling of charge in vertical chute part of charger for blast furnace Pending JPS58197207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8013982A JPS58197207A (en) 1982-05-14 1982-05-14 Detection of channeling of charge in vertical chute part of charger for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8013982A JPS58197207A (en) 1982-05-14 1982-05-14 Detection of channeling of charge in vertical chute part of charger for blast furnace

Publications (1)

Publication Number Publication Date
JPS58197207A true JPS58197207A (en) 1983-11-16

Family

ID=13709919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8013982A Pending JPS58197207A (en) 1982-05-14 1982-05-14 Detection of channeling of charge in vertical chute part of charger for blast furnace

Country Status (1)

Country Link
JP (1) JPS58197207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032882A1 (en) * 1997-01-29 1998-07-30 Paul Wurth S.A. Device for directly monitoring the charging process on the inside of a shaft furnace
CN109225590A (en) * 2018-10-17 2019-01-18 中冶北方(大连)工程技术有限公司 A kind of pelletizing high-pressure roller mill chute material-level detecting device and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032882A1 (en) * 1997-01-29 1998-07-30 Paul Wurth S.A. Device for directly monitoring the charging process on the inside of a shaft furnace
US6261513B1 (en) 1997-01-29 2001-07-17 Paul Wurth, S.A. Device for directly monitoring the charging process on the inside of a shaft furnace
CN109225590A (en) * 2018-10-17 2019-01-18 中冶北方(大连)工程技术有限公司 A kind of pelletizing high-pressure roller mill chute material-level detecting device and method
CN109225590B (en) * 2018-10-17 2023-10-20 中冶北方(大连)工程技术有限公司 Device and method for detecting chute material level of pellet high-pressure roller mill

Similar Documents

Publication Publication Date Title
JPS58197207A (en) Detection of channeling of charge in vertical chute part of charger for blast furnace
US4400206A (en) Process for estimating particle size segregation of burden layer in blast furnace top
US6865495B2 (en) Flow metering
JP2727563B2 (en) Blast furnace operation method
JPH0623407B2 (en) Bellless Blast Furnace Raw Material Input Position Measurement Method
JP2783006B2 (en) Method of measuring raw material charging time in bellless blast furnace charging equipment
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace
JPH0913110A (en) Method for evaluating ventilation of charged material layer in vertical type furnace
JPH05222416A (en) Control method for distribution of charged material in blast furnace
JPH09287008A (en) Method for estimating distribution of layer thickness of charged material, in blast furnace
Shvachych et al. Load control operational correction of a blast furnace based on the correlation models
JPS6096706A (en) Charging method of raw material to blast furnace
JPS5825406A (en) Operating method for blast furnace
JPS6360801B2 (en)
JPH0428806A (en) Method for calculating raw material load and method for charging raw material in bell-less furnace top charging apparatus
JPS6136564B2 (en)
CA2383538A1 (en) Method for determining the trajectory of materials when charging a shaft kiln
JPS5852411A (en) Measuring method for distribution of charging materials in blast furnace
JPS58181809A (en) Method of charging raw material in blast furnace
JPH01247511A (en) Method for operating blast furnace
JPS61139612A (en) Method for measuring layer thickness and descending speed of packing material in blast furnace
JPS63243215A (en) Method for operating blast furnace
JPS5967303A (en) Detection of circumferential deviation of charge at blast furnace top
JPH02138407A (en) Method for charging raw material in bellless blast furnace
JPH0598328A (en) Arithmetically extracting method for torque in raw material behavior on distributing chute in bell-less blast furnace