JPS58196838A - Catalytic reactor - Google Patents

Catalytic reactor

Info

Publication number
JPS58196838A
JPS58196838A JP57077461A JP7746182A JPS58196838A JP S58196838 A JPS58196838 A JP S58196838A JP 57077461 A JP57077461 A JP 57077461A JP 7746182 A JP7746182 A JP 7746182A JP S58196838 A JPS58196838 A JP S58196838A
Authority
JP
Japan
Prior art keywords
catalyst layer
casing
catalyst
stopper
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57077461A
Other languages
Japanese (ja)
Inventor
Koji Chikada
近田 浩二
Shigeo Watanabe
成夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57077461A priority Critical patent/JPS58196838A/en
Publication of JPS58196838A publication Critical patent/JPS58196838A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To prevent the damage of a warmth preserving material, by a method wherein a catalyst structure provided in a casing is engaged with a framework consisting of a pillar and a beam through a stopper and the warmth preserving material is provided to the inside of the aforementioned casing. CONSTITUTION:A catalyst layer 2 is accommodated in a casing 7 provided to the inside of a framework consisting of a pillar 4 and a receiving beam 5 while fixed to the center of the receiving beam 5 supported by the pillar 4 through a clamp 12 and protected by a warmth preserving material 3 lined to the casing 7. In addition, to a beam 6 attached to the upper side part of the catalyst layer 2 and the pillar 4, stoppers 8, 9 for preventing the rolling of the catalyst layer are provided so as to butt the end parts thereof. By this structure, the framework and the casing are thermally protected from a high temp. gas passing the catalyst layer 2 and troubles due to the generation of heat stress and the deterioration of a material can be avoided.

Description

【発明の詳細な説明】 本発明は触媒反応器に係り、特に排煙脱硝用の触媒反応
器内の触媒構造物をケーシング内に保持する反応器の構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalytic reactor, and more particularly to a reactor structure in which a catalytic structure in a catalytic reactor for exhaust gas denitrification is held within a casing.

従来の#煙脱硝用の触媒反応器は、第1図および第2図
に示すよ5に、触媒構造体(以下、触媒1−と称する)
2を排ガスが流通する反応器lのケーシング内に充填し
たものからなり、触媒層2は柱4間に横架された受梁5
によって支持され、柱4、受梁5の娼りはケルシングア
で覆われ、サラにその外部は保温材3で囲まれ、触媒層
2の横揺れな触媒層2と梁6に取付けられたストッパ8
および9で防止する構成になっている。
A conventional catalytic reactor for smoke denitrification has a catalyst structure (hereinafter referred to as catalyst 1-) at 5, as shown in FIGS. 1 and 2.
2 is filled in the casing of a reactor l through which exhaust gas flows.
The protrusions of the pillars 4 and support beams 5 are covered with kelsingua, the outside of which is surrounded by a heat insulating material 3, and the stopper 8 attached to the catalyst layer 2 and the beam 6 that allows the catalyst layer 2 to sway horizontally is supported.
and 9 are configured to prevent this.

上記構造においては、触媒層2と反応器1が等しく処理
ガスに触れるため、両者間に熱伸び差が生じないので、
上記の構造で特に問題とはならないが、ガスタービンの
排熱回収ボイラ等のように処理ガスのf1度が高く、ま
たディリイースタート、ストップ等の起動方法で排ガス
温度の上昇、下降が急激かつ高頻度である場合には、上
記した外部保温の反応器構造では反応器の柱、梁等の部
材が起動、停止時に発生する熱応力に耐えきれず、また
高温時では、一般鋼材は使用不可能である等の欠点があ
る。
In the above structure, since the catalyst layer 2 and the reactor 1 are equally exposed to the processing gas, there is no difference in thermal expansion between them.
There is no particular problem with the above structure, but the f1 degree of the process gas is high, such as in a gas turbine exhaust heat recovery boiler, and the exhaust gas temperature rises and falls rapidly due to startup methods such as diary start and stop. In the case of high frequency, the reactor structure with external heat insulation described above cannot withstand the thermal stress that occurs when reactor columns, beams, etc. are started and stopped, and general steel materials cannot be used at high temperatures. There are drawbacks such as being possible.

さらに、現場での組み立てや建設(工法)fit簡略化
するために工場内でできる限り装置を組立てることが望
ましく、このため、触媒構造物を予め搬送単位にブロッ
ク化する方法が行われているが、このような触媒構造物
のブロックを搬送する場合にはクレーン等を使用するた
め、外部保温型では強度的に弱(、保温材が損傷すると
いう欠点がある。
Furthermore, in order to simplify on-site assembly and construction (construction method), it is desirable to assemble the device as much as possible in the factory, and for this reason, a method is used in which the catalyst structure is divided into blocks for transportation in advance. Since a crane or the like is used to transport such blocks of catalyst structures, the external insulation type has the disadvantage of being weak in strength (and damaging the insulation material).

本発明の目的は、上記従来技術の欠点を除去し、被処理
ガスの温度が高い場合に反応4の枠体に与える熱の影響
を小さくし、かつ保温材の損傷な生じるおそれのない触
媒反応器を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above, reduce the influence of heat on the frame of reaction 4 when the temperature of the gas to be treated is high, and provide a catalytic reaction that does not cause damage to the heat insulating material. It is about providing the equipment.

本発明は、柱および梁からなる枠体と、該枠体に設けら
れたケーシングと、その内部に設けられた触媒構造物と
を備えた触媒反応器において、前記触媒構造物を前記枠
体にストッパを介して係止すると共に、前記ケーシング
内側に保温材な設けたことを特徴とする。
The present invention provides a catalytic reactor that includes a frame made of columns and beams, a casing provided on the frame, and a catalyst structure provided inside the frame, in which the catalyst structure is attached to the frame. It is characterized in that it is locked via a stopper and that a heat insulating material is provided inside the casing.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第3図は本発明の一実施例を示す脱硝反応器の立面断面
図、第4図はそのストッパ部分の拡大平面断面図である
。図において、触媒層2は、柱4および受梁5からなる
枠体内側のケーシング7内に収容され、該柱4に支持さ
れた受梁5の中心に固定具12を介して固定されるとと
も忙、ケーシング7に内張すされた保温材3によって保
護されている。また触媒Im2の上側部8よび柱4に取
付けられた梁6Vcは触媒層の横播れを防止するための
ストッパ8および9がその端部を突合せて設けられてい
る。
FIG. 3 is an elevational sectional view of a denitration reactor showing an embodiment of the present invention, and FIG. 4 is an enlarged plan sectional view of a stopper portion thereof. In the figure, the catalyst layer 2 is housed in a casing 7 inside a frame consisting of columns 4 and support beams 5, and is fixed via a fixture 12 to the center of the support beam 5 supported by the columns 4. It is protected by a heat insulating material 3 lined with a casing 7. Further, the ends of the beams 6Vc attached to the upper part 8 of the catalyst Im2 and the pillars 4 are provided with stoppers 8 and 9 for preventing the catalyst layer from spreading laterally.

このような構成によれば、触媒1−2を収容する枠体お
よびケーシング7の内−に保温材3を設けたことにより
、触媒層2を通る高温ガスから枠体およびケーシングが
熱的に保護され、熱応力の発生、材質の劣化等によるト
ラブルを回避することができる。
According to such a configuration, by providing the heat insulating material 3 inside the frame body and casing 7 that accommodate the catalyst 1-2, the frame body and the casing are thermally protected from high-temperature gas passing through the catalyst layer 2. This makes it possible to avoid problems caused by thermal stress, material deterioration, etc.

しかし、この場合には、触媒1−2は処理ガス圧触れる
が、反応器1の柱4および梁6等は処理ガスに触れない
ため、触媒層2と反応器の柱4および梁6等との部材間
に熱伸び差を生じる。すなわち、柱4、梁6およびケー
シング7の熱伸びは小さく、触媒層2の熱伸びは大きく
なるため、装置停止中にストッパ8と9の隙間をはぼO
K上セツトると、運転開始後にストッパ8からストッパ
9の軸方向に熱伸びによる力を生じ、反L5tsの柱、
梁等関連部品の変形、更には破壊を生じるという問題が
ある。また、これを防止するため、装置運転中にストッ
パ8と9の隙間をほぼ0にセットすると、装置の停止時
など触媒層2に熱伸びが生じない場合には、第5図に示
すように、触媒1−2と梁6にそれぞれ取付けたストッ
パ8および9間で熱伸び分の大きな隙間ができる。その
状態で、万−地震等により水平力が発生すると、触媒+
@ 2 vc水平方向の加速度が加わり、梁に堰付けら
れたストッパ9に衝撃力を加えることになるため、梁6
や柱44の反応器部材およびケーシング7に変形ないし
破壊を生じる恐れがある。
However, in this case, the catalyst 1-2 comes into contact with the process gas pressure, but the columns 4, beams 6, etc. of the reactor 1 do not come into contact with the process gas, so the catalyst layer 2 and the columns 4, beams 6, etc. of the reactor do not come into contact with the process gas. A difference in thermal elongation occurs between the members. In other words, the thermal elongation of the pillars 4, beams 6, and casing 7 is small, and the thermal elongation of the catalyst layer 2 is large.
When K is set on the top, a force due to thermal expansion is generated in the axial direction from stopper 8 to stopper 9 after the start of operation, and the anti-L5ts column,
There is a problem in that related parts such as beams are deformed and even destroyed. In addition, in order to prevent this, the gap between the stoppers 8 and 9 is set to almost 0 during the operation of the apparatus, so that when no thermal expansion occurs in the catalyst layer 2, such as when the apparatus is stopped, as shown in FIG. , a large gap is created between the catalyst 1-2 and the stoppers 8 and 9 attached to the beam 6, respectively, due to thermal expansion. In this state, if a horizontal force occurs due to an earthquake, etc., the catalyst +
@2 vc Horizontal acceleration is added and an impact force is applied to the stopper 9 attached to the beam, so the beam 6
Otherwise, the reactor members of the column 44 and the casing 7 may be deformed or destroyed.

第6図は、上記問題を解決した本発明の好ましい実施態
様を示す反応器の立面断面図であり、第7図は、そのス
トッパ部分の拡大平面断面図を示す。
FIG. 6 is an elevational sectional view of a reactor showing a preferred embodiment of the present invention that solves the above problems, and FIG. 7 is an enlarged plan sectional view of the stopper portion thereof.

@3図および第4図の装置と異なる点は、触媒層を2人
および2Bに二分割し、両触媒層2A。
The difference from the devices in Figures 3 and 4 is that the catalyst layer is divided into two layers, 2B and 2B, and both catalyst layers are 2A.

2Bの側喝部を固定具13,14を介して受梁5上に固
定するとともに、処理ガスによる触媒層の水平方向の熱
伸び(矢印X)分の隙間を両触媒層2Aおよび2Bの間
に設け、ストッパ部の軸方向に対する触媒1−〇熱伸び
をOとしたことである。
2B is fixed on the support beam 5 via fixing devices 13 and 14, and a gap corresponding to the horizontal thermal expansion (arrow X) of the catalyst layer due to the processing gas is created between both catalyst layers 2A and 2B. The thermal elongation of the catalyst 1-0 in the axial direction of the stopper portion was set to O.

また、第7図に示すごとく、触媒II 2 A (B 
)に取付けられたストッパ8の保合部81をT形の形状
とし、粱6に取付けられたストッパ9の係合部91な前
記係合部81と摺動可能に嵌合する溝形の形状とするこ
とにより、水平方向には両ストッパ係合s81および9
1間で引っ掛は合って触媒層2A(B)をサポートし、
触媒層2A(B)の上下方向の熱伸びに対しては、両ス
トッパ保合部81および91間で上下にスライド可能と
したことである。
In addition, as shown in FIG. 7, catalyst II 2 A (B
) has a T-shaped retaining portion 81 of the stopper 8 attached to the holder 6, and a groove-shaped engaging portion 91 of the stopper 9 attached to the rice cooker 6 that slidably fits into the engaging portion 81. By doing so, both stoppers engage s81 and 9 in the horizontal direction.
The hooks fit between 1 and support the catalyst layer 2A (B),
In response to vertical thermal elongation of the catalyst layer 2A (B), the catalyst layer 2A (B) can be slid vertically between the stopper retaining portions 81 and 91.

上記した触媒層固定方法およびストッパ構造によれば、
処理ガスによる触媒層の熱伸び(X方向)を両触媒層2
人および2Bの間に設けられた隙間に逃すことにより可
能となるのでストッパ部では軸方向に対する熱伸びが発
生しなくなる。また、触媒層2人および2BK増付けら
れたストッパ8と梁6に取付けられたストッパ9間で引
っ掛は合うことにより、触媒層2人および2Bの横揺れ
も防止することができる。そのため、ストッパ部の軸方
向に熱伸びによる力が発生することもなく、また、地震
により水平力が発生した場合でも、梁6に取付けられた
ストッパ9に衝撃力が加わることもなくなる。さらに両
触媒1−2人および2Bの上向きの熱伸びに関しても、
両ストッパ8および9間でスライド可能としたこと゛・
により、上下方向の熱伸びまたは収縮を吸収し、問題な
く触媒I−をサポートすることができる。
According to the catalyst layer fixing method and stopper structure described above,
The thermal elongation (X direction) of the catalyst layer due to the processing gas is
This is possible by allowing the heat to escape into the gap provided between the person and 2B, so no thermal expansion occurs in the axial direction at the stopper portion. In addition, since the stopper 8 added to the catalyst layer 2 and 2B and the stopper 9 attached to the beam 6 are hooked together, it is possible to prevent the catalyst layer 2 and 2B from rolling. Therefore, no force is generated in the axial direction of the stopper portion due to thermal expansion, and even if a horizontal force is generated due to an earthquake, no impact force is applied to the stopper 9 attached to the beam 6. Furthermore, regarding the upward thermal elongation of both catalysts 1-2 and 2B,
It is possible to slide between both stoppers 8 and 9.
This makes it possible to absorb thermal expansion or contraction in the vertical direction and support catalyst I- without any problems.

従って、本実施例によれば、内部保温の反応器構造にお
ける問題、すなわち触媒1−のみが処理ガスに触れるこ
とによって生じる触媒層と反応器の柱4および梁6等と
の部材間の熱伸び差に起因する檀々の問題を全て解決す
ることができる。
Therefore, according to this embodiment, there is a problem in the internal heat retention reactor structure, that is, thermal elongation between the catalyst layer and the columns 4, beams 6, etc. of the reactor, which occurs when only the catalyst 1- contacts the process gas. All problems caused by differences can be solved.

本発明において、触媒1−と梁(枠体)とを係止するス
トッパは、上記実施例のようにT字型部材とこれ罠上下
摺動自在に嵌合するC字型部材に限定されず、その保合
部が触媒層の鉛直方向の熱伸びを吸収するように移動可
能であり、かつ水平方向に係止し得る構造であればよい
In the present invention, the stopper that locks the catalyst 1- and the beam (frame body) is not limited to the T-shaped member and the C-shaped member that fits vertically and slidably into the T-shaped member as in the above embodiment. Any structure is sufficient as long as the retaining portion is movable to absorb thermal elongation of the catalyst layer in the vertical direction and can be locked in the horizontal direction.

第8図は、本発明に用いるストツノ(部分の他の実施例
を示す部分斜視図、第9図は、そのII−[X方向の部
分平面図である。第7図の実施例との相違点は、触°媒
r@ 2 A (B )と梁6にそれぞれ取付けられた
ストッパ8および9を十字形のビン10を用いた自在継
手タイプで連結したことである。
Fig. 8 is a partial perspective view showing another embodiment of the strut horn (part) used in the present invention, and Fig. 9 is a partial plan view thereof in the II-[X direction. Differences from the embodiment shown in Fig. 7. The point is that the catalyst r@2A (B) and the stoppers 8 and 9 respectively attached to the beam 6 are connected by a universal joint type using a cross-shaped bottle 10.

このような構造とし・ても、被処理ガスによる触媒層2
A(B)の水平方向(X方向)並びに上下方向(Y方向
)の熱伸縮に対して適応することができ、かつ両ストッ
パ8および9部の軸方向の水平力を好適にサポートする
ことができる。
Even with such a structure, the catalyst layer 2 formed by the gas to be treated
It can adapt to thermal expansion and contraction in the horizontal direction (X direction) and the vertical direction (Y direction) of A (B), and can suitably support the horizontal force in the axial direction of both stoppers 8 and 9. can.

本発明の反応器は、脱硝反応器に限定されず、高温ガス
を処理する他の反応器にも同様に適用することができる
The reactor of the present invention is not limited to a denitrification reactor, but can be similarly applied to other reactors that process high-temperature gas.

以上、本発明によれば、触媒層と反応器部材間の水平力
制限用ストッパ軸方向の熱伸びをOとすることができ、
かつ、該ストッパ軸方向に対し直角方向についてもスト
ッパ保合部をスライド可能としたことにより触媒層と反
応器部材間の熱伸び差による水平方向の力および地震時
の水平力を吸収し、これにより反応器の柱や梁等関連部
品に発生することのある変形および破壊等を防止するこ
とが可能となる。
As described above, according to the present invention, the thermal elongation in the axial direction of the horizontal force limiting stopper between the catalyst layer and the reactor member can be set to O,
In addition, by making the stopper retaining part slidable in the direction perpendicular to the stopper axis, it absorbs the horizontal force due to the difference in thermal expansion between the catalyst layer and the reactor members and the horizontal force during an earthquake. This makes it possible to prevent deformation and destruction that may occur in related parts such as columns and beams of the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の外部保温型脱硝反応器例t!r:丁す
縦断面図、第2図は、第1図のストッパ部を示す部分拡
大平面断面図、第3図は本発明の内部保温型脱硝反応器
の実施例を示す縦断面図、第4図および第5図は、それ
ぞれ第3図の装置に用いC)れるストッパ部の拡大平面
断面図、第6図は、本発明の実施例に係る内部保温型脱
硝反応器を示す縦断面図、第7図は、第6図のストツノ
く部を示す部分拡大平面断面図、第8図&1、本発明実
施例に係る内部保温型脱硝反応器を示す部分斜視1傾、
第9図は、第8図の[X−[方向断面図である。 1・・・脱硝反応器、2A、2B・・・触媒+@、3・
・・保温材、4・・・柱、6・・・梁、7・・・ケー/
ング、8.9・・・ストッパ、lO・・・ピン、X・・
・触媒層の水平方向の熱伸び、Y・・・触媒層の鉛直方
向の熱イ申てメ、81.91・・・ストツノくの係合部
。 代理人 弁理士  川 北 武 長
Figure 1 shows an example of a conventional external heat retention type denitrification reactor. 2 is a partially enlarged plan sectional view showing the stopper portion of FIG. 1; FIG. 3 is a vertical sectional view showing an embodiment of the internal heat retention type denitration reactor of the present invention; 4 and 5 are enlarged plan sectional views of the stopper portion C) used in the apparatus shown in FIG. 3, respectively, and FIG. 6 is a vertical sectional view showing an internal heat retention type denitrification reactor according to an embodiment of the present invention. , FIG. 7 is a partially enlarged plan sectional view showing the bottom part of FIG. 6, FIG.
FIG. 9 is a sectional view in the [X-[ direction] of FIG. 1...Denitrification reactor, 2A, 2B...catalyst +@, 3.
...Heat insulation material, 4...Column, 6...Beam, 7...K/
8.9... Stopper, lO... Pin, X...
・Horizontal thermal elongation of the catalyst layer, Y... vertical thermal elongation of the catalyst layer, 81.91... engagement part of the strut. Agent Patent Attorney Takeshi Kawakita

Claims (1)

【特許請求の範囲】 (1)柱および梁からなる枠体と、該枠体に設けられた
ケーシングと、その内部に設けられた触媒構造物とを備
えた触媒反応器において、前記触媒構造物を前記枠体に
ストッパを介して係止すると共に、前記ケーシングの内
側に保温材を設けたことを特徴とする触媒反応器。 (2、特許請求の範囲第1項において、前記ストッパは
、触媒構造物と枠体とを互いに鉛直方向に摺動または回
動可能に係止するものであることを特徴とする触媒反応
器。 (3)特許請求の範囲第1項または第2項において、上
記触媒構造物は、熱伸び吸収空間を保って慎数個に分割
されたものであることを特徴とする触媒反応器。
[Scope of Claims] (1) A catalytic reactor comprising a frame made of columns and beams, a casing provided on the frame, and a catalyst structure provided inside the frame, wherein the catalyst structure is locked to the frame via a stopper, and a heat insulating material is provided inside the casing. (2. The catalytic reactor according to claim 1, wherein the stopper locks the catalyst structure and the frame so that they can slide or rotate in the vertical direction. (3) The catalytic reactor according to claim 1 or 2, wherein the catalyst structure is divided into a reasonable number of pieces while maintaining a thermal expansion absorption space.
JP57077461A 1982-05-11 1982-05-11 Catalytic reactor Pending JPS58196838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077461A JPS58196838A (en) 1982-05-11 1982-05-11 Catalytic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077461A JPS58196838A (en) 1982-05-11 1982-05-11 Catalytic reactor

Publications (1)

Publication Number Publication Date
JPS58196838A true JPS58196838A (en) 1983-11-16

Family

ID=13634643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077461A Pending JPS58196838A (en) 1982-05-11 1982-05-11 Catalytic reactor

Country Status (1)

Country Link
JP (1) JPS58196838A (en)

Similar Documents

Publication Publication Date Title
US5827485A (en) Reactor
JPH0653210B2 (en) Denitration reactor
JPH0639910B2 (en) Exhaust silencer for gas turbine
JPS58196838A (en) Catalytic reactor
US3827136A (en) Method of constructing a low temperature liquefied gas tank of a membrane type
RU2777423C1 (en) Method for manufacturing a truss-console of a melt localization device
KR20140102179A (en) Apparatus for minimizing bypass in ammonia oxidation burners
JPH01176989A (en) Containment vessel
CA3066161C (en) Reactor molten core localization device
JPS624316B2 (en)
JPH0396796A (en) Heat insulating device for surface along which hot gas current is guided
KR102510475B1 (en) Core catcher assembly and manufacturing method thereof
JPS5910340A (en) Support device for internally mounted object
JP2600047Y2 (en) Reactor containment diaphragm floor
JPS62213827A (en) Equipment for supporting catalytic layer
JPS6242396Y2 (en)
JPH0426078B2 (en)
JPS59151093A (en) Reactor
JPS63278531A (en) Internally heat-insulated vertical flow denitration reactor
JPS634880Y2 (en)
JPH0253317B2 (en)
JPH0413505Y2 (en)
JP2002349096A (en) Structure with self-supported casing
JPH0717330U (en) Denitration reactor
Krajczyk et al. Comparison of Failure Mechanisms Under Thermal Cycling and Creep at Steady Equivalent Temperature