JPS5819673Y2 - Noise removal device for memory circuit of airborne foreign object detector - Google Patents

Noise removal device for memory circuit of airborne foreign object detector

Info

Publication number
JPS5819673Y2
JPS5819673Y2 JP10593474U JP10593474U JPS5819673Y2 JP S5819673 Y2 JPS5819673 Y2 JP S5819673Y2 JP 10593474 U JP10593474 U JP 10593474U JP 10593474 U JP10593474 U JP 10593474U JP S5819673 Y2 JPS5819673 Y2 JP S5819673Y2
Authority
JP
Japan
Prior art keywords
voltage
noise
memory circuit
capacitor
foreign object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10593474U
Other languages
Japanese (ja)
Other versions
JPS5133341U (en
Inventor
村田直紀
Original Assignee
ノウミボウサイコウギヨウ カブシキガイシヤ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノウミボウサイコウギヨウ カブシキガイシヤ filed Critical ノウミボウサイコウギヨウ カブシキガイシヤ
Priority to JP10593474U priority Critical patent/JPS5819673Y2/en
Publication of JPS5133341U publication Critical patent/JPS5133341U/ja
Application granted granted Critical
Publication of JPS5819673Y2 publication Critical patent/JPS5819673Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

【考案の詳細な説明】 コンデンサに電圧を記憶させる記憶回路は、自動車用ト
ンネル内などに設けられる透過光式煙感知器にも用いら
れ、感知器の煙検出部における発光窓や受光窓の汚れに
拘わらず感知器が常に所定の煙濃度で動作できるように
するために利用されている。
[Detailed description of the invention] A memory circuit that stores voltage in a capacitor is also used in transmitted-light smoke detectors installed in automobile tunnels, etc., and is used to detect dirt on the light-emitting and light-receiving windows in the smoke detection part of the sensor. It is used to ensure that the detector always operates at a predetermined smoke concentration regardless of the smoke concentration.

第1図はそのような感知器の回路図で、Lは受信機Re
中の電源Eに接続される端子atbにつながれた光源ラ
ンプ、SBは煙の通路を距でてランプLの光を受ける光
電変換素子としての太陽電池で、端子a、bにつながれ
た増幅器側を通じて得られたその出力V、は点Pにおい
て互に直列につながられた抵抗R1t P 2にかつて
二分され、この感知器が所定の煙濃度に相当する減光率
δ多で動作するように、抵抗R1,R2の抵抗値の比は
δ/100:(1−δ/ 100)に選定され、抵抗R
2の両端間の電圧V2は抵抗R3とコンデンサC1とで
できているフィルタとダイオードD1とを通じてコンデ
ンサC2に記憶されると共に、端子atb間に負荷抵抗
R4を通じてつながれた電界効果トランジスタFETの
ソース電圧として現かれ、FETのソース電圧と太陽電
池SHの出力電圧とは演算増幅器のOPAの入力側に加
えられており、煙が発生して太陽電池SHの出力電圧v
0が低下しFETのソース電圧と等しくなった時、増幅
器OPAの出力側の抵抗R5の両端間の電圧が零値から
急激に所定値に立ち上り、ツェナダイオードZDを導通
させて端子a、b間にダイオードDiを並列に備えた継
電器Kを通じてつながれたトランジスタTr1を導通さ
せることにより、継電器Kを動作させその接点kを閉じ
受信機Re中の受信継電器Nを動作させるようになって
いる。
Figure 1 is a circuit diagram of such a sensor, where L is the receiver Re.
The light source lamp is connected to the terminal atb connected to the power supply E inside, and SB is a solar cell as a photoelectric conversion element that receives the light from the lamp L through the smoke path, through the amplifier side connected to terminals a and b. The obtained output V, is once divided into two resistors R1tP2 connected in series at a point P, and the resistors R1tP2 are connected in series so that this sensor operates at a dimming rate δ corresponding to a predetermined smoke density. The ratio of the resistance values of R1 and R2 is selected as δ/100:(1-δ/100), and the resistance R
The voltage V2 across 2 is stored in the capacitor C2 through a filter made up of a resistor R3 and a capacitor C1 and a diode D1, and is also used as the source voltage of the field effect transistor FET connected between the terminals atb through a load resistor R4. The source voltage of the FET and the output voltage of the solar cell SH are applied to the input side of the operational amplifier OPA, and smoke is generated and the output voltage of the solar cell SH is
0 decreases and becomes equal to the source voltage of the FET, the voltage across the resistor R5 on the output side of the amplifier OPA suddenly rises from zero to a predetermined value, making the Zener diode ZD conductive and increasing the voltage between terminals a and b. By energizing the transistor Tr1 connected through the relay K having a diode Di in parallel, the relay K is operated, its contact k is closed, and the receiving relay N in the receiver Re is operated.

けれどもコンデンサに電圧を記憶させる記憶回路をこの
ような煙感知器などに用いると、電源電圧の変動、電源
線路中に生ずる換気扇などの他の機器の電路からの誘導
サージ電圧、または走行中の自動車のヘッドライトある
いは緊急車輛の回転灯の光が光電変換素子を照射するこ
とによって同素子に生ずる電圧変化などのノイズが記憶
回路中に侵入して記憶され、記憶回路を備えた煙感知器
などの正常な動作を妨げる欠点がある。
However, if a memory circuit that stores voltage in a capacitor is used in smoke detectors, etc., it may be difficult to detect fluctuations in power supply voltage, induced surge voltage from the power supply line of other equipment such as ventilation fans, or a running car. When the light from the headlights of an emergency vehicle or the revolving lights of an emergency vehicle illuminates a photoelectric conversion element, noise such as voltage changes that occur in the element enters the memory circuit and is stored. There are defects that prevent normal operation.

このようなノイズは第1図中の抵抗R3とコンデンサC
1とでできている低域フィルタによって記憶回路に入る
前にある程度除去することができるけれども、フィルタ
のカットオフ周波数以下の周波数を持つノイズはその1
寸ダイオードD1ににより整流されて記憶用コンデンサ
C2に蓄積され、カットオフ周波数以上の周波数を持つ
ものでもカットオフ周波数に近い周波数のものはフィル
タによって十分に減衰させることができないので、長時
間の記憶を必要とする場合には徐々にコンデンサC2に
蓄積されて誤動作の原因となる。
Such noise is caused by resistor R3 and capacitor C in Figure 1.
Although noise with a frequency below the cutoff frequency of the filter can be removed to some extent by a low-pass filter made of 1 and 1 before entering the storage circuit,
It is rectified by diode D1 and stored in storage capacitor C2, and even if the frequency is higher than the cutoff frequency, the frequency close to the cutoff frequency cannot be sufficiently attenuated by the filter, so it cannot be stored for a long time. If this is necessary, it will gradually accumulate in capacitor C2, causing malfunction.

この考案は簡単な構造により、検出素子の性能に経年変
化を生ずる煙感知器のような煙などの空気中の異物を検
出する検出器の記憶用コンデンサを備えた記憶回路に、
記憶すべさ異物検出素子の出力中に含捷れるノイズ分を
ほとんど記憶しないようにすることができる空気中の異
物検出器の記憶回路のノイズ除去装置を得ることを目的
としたもので、以下図面に示す実施例によってこの考案
を説明する。
This idea has a simple structure, and the memory circuit equipped with the memory capacitor of a detector that detects foreign substances in the air such as smoke, such as a smoke detector, which causes a change in the performance of the detection element over time.
The purpose of this invention is to obtain a noise removal device for a memory circuit of an airborne foreign object detector that is capable of storing almost no noise included in the output of a foreign object detection element, and is shown in the drawings below. This invention will be explained with reference to an example shown in FIG.

第2図はこの考案の一実施例の回路図で、第1図の回路
と相違する処は、記憶コンデンサC2と並列にC2の電
荷を放電させるためのトランジスタTr2を接続し、T
r2の導通を制御するためにそのベースと抵抗R1t
R2相互の接続点Pとの間にダイオードD2と結合コン
デンサC3と抵抗R7とを直列につなぎ、R7とTr2
のベース、エミッタとの直列回路と並列に抵抗R6を接
続した点だけである。
FIG. 2 is a circuit diagram of an embodiment of this invention. The difference from the circuit in FIG. 1 is that a transistor Tr2 is connected in parallel with the storage capacitor C2 to discharge the charge of C2,
To control the conduction of r2 its base and resistor R1t
A diode D2, a coupling capacitor C3, and a resistor R7 are connected in series between R2 and the connection point P, and R7 and Tr2 are connected in series.
The only point is that a resistor R6 is connected in parallel with the series circuit with the base and emitter of the resistor R6.

その動作を説明すれば、電源を投入してからP点の直流
電圧V2が一定値となる1での過渡状態では、ダイオー
ドD3と結合コンデンサC3と抵抗T’L7とトランジ
スタTr2のベース、エミッタとを通って電流が流れ、
Tr2が導通して記憶用コンデンサC2に蓄えられてい
る電荷を放電させる。
To explain its operation, in a transient state at 1, where the DC voltage V2 at point P is constant after the power is turned on, the diode D3, the coupling capacitor C3, the resistor T'L7, the base and emitter of the transistor Tr2 A current flows through the
Tr2 becomes conductive and discharges the charge stored in the storage capacitor C2.

ところがP点の直流電圧v2が一定値になると、結合コ
ンデンサC3には過渡電流が流れなくなるのでトランジ
スタTr2は遮断状態となり、記憶用コンデンサC2に
はほぼ一定値となった直流電圧v2が記憶される。
However, when the DC voltage v2 at point P reaches a constant value, no transient current flows through the coupling capacitor C3, so the transistor Tr2 is cut off, and the DC voltage v2, which has become almost constant, is stored in the storage capacitor C2. .

次にP点の直流電圧v2に電圧と時間との関係を示す特
性線図第5図のaに点線で示すように交流のノイズが乗
った場合には、そのノイズの最初の正の半波による電流
がダイオードD3と結合コンデンサC2と抵抗R7とを
通ってトランジスタTr2のベース、エミッタに流れて
Tr2が導通し、記憶用コンデンサC2からT r 2
のコレクタ、エミッタ、エミッタを通じて、Tr2のベ
ース電流を増幅した電流が流れ、C2に蓄えられている
電荷を放電させ、C2の電圧Vc2は第5bに示すよう
に一時的に低下するが結合コンデンサC3へ流込んだノ
イズの最初の正の半波による電荷は、ダイオードD3の
ために予想されるノイズの接続時間よりも相当長いある
時間以内にはD3と抵抗R25RBとでできている放電
回路を通じて放電し終わらずに、C3に蓄積され、C3
の電圧Vc3は第5図Cに示すように最初の値よりも上
昇した値で記憶されている。
Next, when AC noise is superimposed on the DC voltage v2 at point P as shown by the dotted line in Figure 5 a of the characteristic diagram showing the relationship between voltage and time, the first positive half wave of the noise The current flows through the diode D3, the coupling capacitor C2, and the resistor R7 to the base and emitter of the transistor Tr2, making Tr2 conductive, and the current flows from the storage capacitor C2 to the transistor Tr2.
A current that amplifies the base current of Tr2 flows through the collector, emitter, and emitter of Tr2, discharging the electric charge stored in C2, and the voltage Vc2 of C2 temporarily decreases as shown in section 5b, but the voltage Vc2 of C2 decreases temporarily. The charge due to the first positive half-wave of the noise flowing into the diode D3 is discharged through the discharge circuit made of D3 and the resistor R25RB within a certain time which is considerably longer than the expected connection time of the noise due to the diode D3. It accumulates in C3 without finishing, and C3
The voltage Vc3 is stored at a value higher than the initial value, as shown in FIG. 5C.

その放電時定数γRは充電時定数γFよりも遥かに大き
い値で、C3の容量をC3,D3の逆方向の抵抗値をγ
TとすればrR: C35r Rとなり、図中点線で示
したようにタイオードD3と並列に高抵抗HRを接続し
た場合にはHRの抵抗をHRで表わせば、rRf:c
3(rR/HR)となる。
The discharging time constant γR is much larger than the charging time constant γF, and the capacitance of C3 is C3, and the resistance value of D3 in the opposite direction is γ.
If T, then rR: C35r R, and when high resistance HR is connected in parallel with diode D3 as shown by the dotted line in the figure, if the resistance of HR is expressed by HR, rRf: c
3 (rR/HR).

ただしHRとrRとは抵抗R2t R3に比べて遥かに
大きいものとする。
However, it is assumed that HR and rR are much larger than the resistances R2t and R3.

すなわちこの時定数によって決するある時間が経過する
昔で、コンデンサC3に蓄えられたノイズ分が第5図C
に示すように残っており、その後はC3にまた元の直流
電圧v2だけが残る。
In other words, after a certain period of time determined by this time constant has elapsed, the noise accumulated in capacitor C3 is
After that, only the original DC voltage v2 remains at C3.

したがってノイズの最初の正の半波に続くより低い正の
半波によってはトランジスタTr2は導通せず、より高
い正の半波が続いた場合にだけTr2は導通し、そのよ
り高い正の半波の電圧と最初の正の半波による充電によ
ってコンデンサCに生じた電圧との差によるT r 2
のベ−スミ流をTr2によって増幅した電流により、コ
ンデンサC2の電荷を放電させる。
Therefore, a lower positive half-wave following the first positive half-wave of noise will not cause transistor Tr2 to conduct, and Tr2 will conduct only if followed by a higher positive half-wave, and that higher positive half-wave will cause transistor Tr2 to conduct. T r 2 due to the difference between the voltage at
The electric charge in the capacitor C2 is discharged by the current obtained by amplifying the Basemi current by the Tr2.

すなわちノイズ電圧によって記憶用コンデンサC2に蓄
えられる余分の電荷に対応する電荷を、ノイズ電圧によ
る充電に先立ってC2から放電させている。
That is, the charge corresponding to the extra charge stored in the storage capacitor C2 due to the noise voltage is discharged from C2 prior to being charged by the noise voltage.

そしてノイズの最初の正の半波とそれに続くより高い正
の半波とによって放電せしめられた記憶用コンデンサC
2は、P点の電圧V2とそれに乗るノイズのうち抵抗R
3およびコンデンサC1によるフィルタを通過したもの
とによって、第5図すに示すように同じフィルタの充電
時定数による遅延作用により少し遅れて充電されるが、
トランジスタTr2の増幅率と抵抗R7の抵抗値とを適
当な値に選ぶことによって、ノイズによりTr2を通じ
て放電されるコンデンサC2の電荷の量を適当な量とす
ると共に、上記フィルタの充電時定数を適当な値に選ぶ
ことにより、コンデンサC2の充電に当り、C2が放電
以前の電圧に充電される前に、直流電圧v2に乗るノイ
ズのうち上記フィルタを通過したものによる充電が終る
ようにし、C2が放電以前の電圧以上に充電されること
を避けることができる。
and the storage capacitor C discharged by the first positive half-wave of noise and the subsequent higher positive half-wave.
2 is the resistance R of the voltage V2 at point P and the noise riding on it.
3 and the capacitor C1, as shown in FIG.
By selecting the amplification factor of the transistor Tr2 and the resistance value of the resistor R7 to appropriate values, the amount of charge of the capacitor C2 discharged through Tr2 due to noise can be set to an appropriate amount, and the charging time constant of the filter can be set to an appropriate value. By selecting a value that is suitable for charging capacitor C2, before C2 is charged to the voltage before discharging, the charging due to the noise on DC voltage v2 that has passed the above filter is completed, and C2 is It is possible to avoid charging to a voltage higher than the voltage before discharging.

このようにすればノイズ分によるC2の充電はC2が放
電以前の電圧に充電される1での時間を時間を第5図す
に示すように短縮する(同図中の鎖線は充電に際してノ
イズの影響がなかった場合の特性を示す)だけで、C2
を放電以前の電圧以上に充電することには役立たない。
In this way, the charging of C2 due to noise reduces the time required for C2 to be charged to the voltage before discharging as shown in Figure 5 (the chain line in the figure shows the amount of noise generated during charging). C2
It is not useful to charge the battery above its previous discharge voltage.

この実施例ではP点の直流電圧■2に乗るノイズ電圧が
ダイオードD3の立上り電圧(順方向電圧降下)とトラ
ンジスタTr2のベース、エミッタ間の立上り電圧(順
方向電圧降下)との和以上にならないとTr2は導通し
ないが、第2図中点線で示したダイオードrj3の位置
にダイオードD3を移すことにより、ノイズに対する感
度をより敏感にすることができる。
In this embodiment, the noise voltage riding on the DC voltage ■2 at point P does not exceed the sum of the rising voltage (forward voltage drop) of diode D3 and the rising voltage (forward voltage drop) between the base and emitter of transistor Tr2. Although Tr2 and Tr2 are not conductive, the sensitivity to noise can be made more sensitive by moving the diode D3 to the position of the diode rj3 shown by the dotted line in FIG.

上記の実施例は自動車用トンネル内などに設けられる透
過光式煙感知器についての実施例であるが、この考案に
よる記憶回路のノイズ除去装置は、一般の建物内に設置
される散乱光式煙感知器やイオン化式煙感知器などに、
塵埃による感度の変化をなくすために記憶回路を設ける
場合に、その記憶回路のノイズ除去装置としても用いる
ことかできる。
The above embodiment is an example of a transmitted light type smoke detector installed in a car tunnel, etc., but the memory circuit noise removal device according to this invention is a scattered light type smoke detector installed in a general building. For detectors, ionization smoke detectors, etc.
When a memory circuit is provided to eliminate changes in sensitivity due to dust, it can also be used as a noise removal device for the memory circuit.

第3図は散乱光式煙感知器についての実施例で、第2図
に示す実施例に比べて、ランプLの光を受ける太陽電池
SBとその増幅器Amとの代りに、ランプLの光の煙室
内に釦ける煙による散乱光を受ける光電変換素子として
の光導電素子CdSを抵抗R8を通じて端子a、b間に
接続し、CdSとR8との相互の接続点にベースがつな
がれたトランジスタTr を抵抗R1,R2と直列に
端子a、b間に接続するようにした点のほかは第2図の
実施例と同じである。
FIG. 3 shows an embodiment of a scattered light type smoke detector, in which, compared to the embodiment shown in FIG. A photoconductive element CdS, which serves as a photoelectric conversion element that receives scattered light from smoke that is pressed inside the smoke chamber, is connected between terminals a and b through a resistor R8, and a transistor Tr whose base is connected to the mutual connection point of CdS and R8 is connected. The embodiment is the same as the embodiment shown in FIG. 2 except that the resistors R1 and R2 are connected in series between terminals a and b.

一般に散乱光式煙感知器においでは、煙室内へ空気中に
浮遊する塵埃が進入すると、それによって散乱光を生じ
る。
Generally, in a scattered light type smoke sensor, when dust floating in the air enters the smoke chamber, it causes scattered light.

したがって診療所の待合室のように常に人が出入する部
屋、あるいは工場などのような、塵埃の量が多くかつそ
の量が時間によって変動する場所に散乱光式煙感知器を
設置すると、塵埃による散乱光が常時光電変換素子に入
るので感知器の感度が変化し、感知器は常に所定の煙濃
度で動作することができなくなるけれども、第2図の実
施例におけると同様な記憶回路とそのノイズ除去装置と
を、この実施例のように設けることによって、散乱光式
煙感知器が上記のように塵埃によってその動作を妨げら
れることなく、第2図の場合と同様に常に所定の煙濃度
で動作することができると共に、電源電圧の変動や同じ
建物内に設けられた他の機器の電路からの誘導サージ電
圧などのノイズによって、記憶回路が悪影響を受けるこ
とのないようにすることができる。
Therefore, if a diffused light smoke detector is installed in a room where people are constantly coming in and out, such as a waiting room at a clinic, or in a place where there is a large amount of dust and the amount fluctuates over time, such as a factory, it will cause light scattering due to dust. Since light constantly enters the photoelectric conversion element, the sensitivity of the sensor changes, and the sensor cannot always operate at a predetermined smoke density. By providing the device as in this embodiment, the scattered light type smoke detector is not hindered by dust as described above, and can always operate at a predetermined smoke density as in the case of Fig. 2. At the same time, it is possible to prevent the memory circuit from being adversely affected by noise such as fluctuations in power supply voltage or induced surge voltage from electrical circuits of other devices installed in the same building.

第4図はイオン化式煙感知器についての実施例で、第3
図に示す実施例に比べて、ランプLと光導電素子CdS
、との代りに煙が進入する開放形の外部イオン室CHo
を抵抗Roの位置に密閉形の内部イオン室CHiをCd
Sの位置に用い、トランジスタT r Oの代りに電界
効果トランジスタF E T−oを用いた点のほかは第
3図の実施例と同じである。
Figure 4 shows an example of an ionization type smoke detector.
Compared to the embodiment shown in the figure, the lamp L and the photoconductive element CdS
, an open external ion chamber CHo where smoke enters instead of
A sealed internal ion chamber CHi is placed at the position of the resistor Ro.
The embodiment is the same as the embodiment shown in FIG. 3, except that a field effect transistor FET-o is used in place of the transistor TrO.

一般にイオン化式煙感知器においては、外部イオン室内
の放射線源に空気中の浮遊塵埃が付着堆積すると、α線
の放射量を徐々に減少させるので、煙が外部イオン室へ
進入したのと同じととになって感知器の感度が変化し、
常に所定の煙濃度で動作することができなくなるけれど
も、第2図の実施例におけると同様な記憶回路とそのノ
イズ除去装置とをこの実施例のように設けることによっ
て、イオン化式煙感知器が外部イオン室内における放射
線源への塵埃の付着堆積によってその動作を妨げられる
ことなく、第2図の場合と同様に常に所定の煙濃度で動
作することができると共に、電源電圧の変動や他の機器
の電路からの誘導サージ電圧などのノイズによって記憶
回路が影響されることのないようにすることができる。
In general, in ionization type smoke detectors, when airborne dust adheres to and accumulates on the radiation source in the external ionization chamber, the amount of α-ray radiation gradually decreases, so it is treated as if smoke had entered the external ionization chamber. As a result, the sensitivity of the sensor changes,
Although it is not possible to always operate at a predetermined smoke density, by providing a memory circuit and its noise removal device similar to those in the embodiment of FIG. 2 as in this embodiment, the ionization type smoke detector can be The radiation source in the ion chamber is not hindered by the accumulation of dust on the radiation source, and can always operate at a predetermined smoke concentration, as in the case of Figure 2, and is also free from fluctuations in power supply voltage and interference from other equipment. The memory circuit can be prevented from being affected by noise such as induced surge voltage from the electric circuit.

以上のようにこの考案による空気中の異物検出器の記憶
回路のノイズ除去装置は簡単な構造により、煙感知器の
ような検出素子の性能に経年変化を生ずる空気中の異物
検出器の記憶用コンデンサを備えた記憶回路に記憶すべ
き異物検出素子の出力中に含オれるノイズ分をほとんど
記憶しないようにすることができる効果がある。
As described above, the noise removal device for the memory circuit of an airborne foreign object detector according to this invention has a simple structure, and can be used to eliminate noise in the memory circuit of an airborne foreign object detector, which causes aging deterioration in the performance of the detection element such as a smoke detector. This has the effect that almost no noise contained in the output of the foreign object detection element to be stored in the storage circuit including the capacitor can be stored.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の透過光式煙感知器の回路図、第2〜4図
はこの考案の三つの実施例の回路図、第5図a、b、c
、は第2図に示す実施例の特性線回である。 SB、CdS、CH・・・・・・煙検出素子、C2・・
・・・・煙検出素子などの出力を記憶するコンデンサ、
Tr ・・・・・・C2の電荷を放電させるためのト
ランジジスタ、C3・・・・・・Tr2の入力回路中の
結合コンデンサ、D3・・・・・・C3の放電時定数を
その充電時定数よりも遥かに大きくするためのダイオー
ド。
Figure 1 is a circuit diagram of a conventional transmitted light type smoke detector, Figures 2 to 4 are circuit diagrams of three embodiments of this invention, and Figures 5 a, b, and c.
, are characteristic line circuits of the embodiment shown in FIG. SB, CdS, CH...Smoke detection element, C2...
...Capacitor that stores the output of smoke detection elements, etc.
Tr: Transistor for discharging the charge of C2, C3: Coupling capacitor in the input circuit of Tr2, D3: Discharging time constant of C3 during charging. A diode to make it much larger than the constant.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 空気中の異物検出素子の出力を記憶するコンデンサを備
えた記憶回路において、上記のコンデンサと並列にトラ
ンジスタを接続し、上記の出力中のノイズを結合コンデ
ンサを通じて上記のトランジスタの入力側に加えるよう
にすると共に、その結合コンデンサの放電時定数をその
充電時定数よりも遥かに大きくした空気中の異物検出器
の記憶回路のノイズ除去装置。
In a memory circuit equipped with a capacitor that stores the output of an airborne foreign object detection element, a transistor is connected in parallel with the above capacitor, and the noise in the above output is added to the input side of the above transistor through the coupling capacitor. At the same time, this is a noise removal device for a memory circuit of an airborne foreign object detector in which the discharging time constant of the coupling capacitor is much larger than the charging time constant.
JP10593474U 1974-09-03 1974-09-03 Noise removal device for memory circuit of airborne foreign object detector Expired JPS5819673Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10593474U JPS5819673Y2 (en) 1974-09-03 1974-09-03 Noise removal device for memory circuit of airborne foreign object detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10593474U JPS5819673Y2 (en) 1974-09-03 1974-09-03 Noise removal device for memory circuit of airborne foreign object detector

Publications (2)

Publication Number Publication Date
JPS5133341U JPS5133341U (en) 1976-03-11
JPS5819673Y2 true JPS5819673Y2 (en) 1983-04-22

Family

ID=28321028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10593474U Expired JPS5819673Y2 (en) 1974-09-03 1974-09-03 Noise removal device for memory circuit of airborne foreign object detector

Country Status (1)

Country Link
JP (1) JPS5819673Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710469Y2 (en) * 1977-01-28 1982-03-01
JPS5710470Y2 (en) * 1977-04-25 1982-03-01
JPS54161994U (en) * 1978-05-02 1979-11-13
JPS61119286U (en) * 1985-01-11 1986-07-28
JPS61124975U (en) * 1985-01-23 1986-08-06

Also Published As

Publication number Publication date
JPS5133341U (en) 1976-03-11

Similar Documents

Publication Publication Date Title
US4640628A (en) Composite fire sensor
US4524351A (en) Smoke detector
JPS5819673Y2 (en) Noise removal device for memory circuit of airborne foreign object detector
US4456907A (en) Ionization type smoke detector with test circuit
JPS598876B2 (en) Transmitted light smoke detector
US3987319A (en) Radiation-activated sensor
JPS5894797A (en) Device for automatically firing illumination lamp
JPS609914Y2 (en) photoelectric smoke detector
GB1248283A (en) Inspection apparatus
GB2190191A (en) Extinction type detector
JPH063512Y2 (en) Fire detector test equipment
JPS598874B2 (en) Ionic smoke detector
JPS5841474Y2 (en) Photoconductive humidity detection device
JP3062831B2 (en) Ionized smoke detector
JPS605431Y2 (en) storage type sensor
KR200216113Y1 (en) Apparatus of Automatic On/Off Control of Light by Infrared Ray Detection
JPS6019840B2 (en) fire detector
JPS5850282Y2 (en) flame detection circuit
KR910008171Y1 (en) First and end checking circuit of video tape
JPH0336941Y2 (en)
JPS626755Y2 (en)
JPS604139Y2 (en) Detection device
JPH09301051A (en) Automatic switching on and off device for light of vehicle
JPS6012236Y2 (en) Smoke detector with indicator light
JPS6057527B2 (en) Reflective photoelectric detector