JPS5819647A - Kotatsu (foot warmer) in frame work - Google Patents

Kotatsu (foot warmer) in frame work

Info

Publication number
JPS5819647A
JPS5819647A JP56119466A JP11946681A JPS5819647A JP S5819647 A JPS5819647 A JP S5819647A JP 56119466 A JP56119466 A JP 56119466A JP 11946681 A JP11946681 A JP 11946681A JP S5819647 A JPS5819647 A JP S5819647A
Authority
JP
Japan
Prior art keywords
spectral
radiation
emissivity
radiant energy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56119466A
Other languages
Japanese (ja)
Other versions
JPH0240939B2 (en
Inventor
Masaichi Omori
大森 政市
Isao Yamamoto
功 山本
Mizuya Hoshikawa
星川 水哉
Katsuharu Matsuo
勝春 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56119466A priority Critical patent/JPS5819647A/en
Publication of JPS5819647A publication Critical patent/JPS5819647A/en
Publication of JPH0240939B2 publication Critical patent/JPH0240939B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/0085Devices for generating hot or cold treatment fluids

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electric Stoves And Ranges (AREA)

Abstract

PURPOSE:To improve the warming-up efficiency of the Kotatu by a method wherein the emitting surface of the underside of a face heater is formed with specified emissive substance so as to have large emissivity. CONSTITUTION:The emitting surface of the underside of the face heater 13 is formed by emissive substance comprising silica or silicate compound as main component added with no less than 10wt% of no less than one kind of substance, such as metal oxide or the like, having high spectral emissivity in the spectral emissive wave length ranges of 2.5-5 micrometers and of 8-12 micrometers so as to ensure no less than about 80% of the emissivity of said emitting surface in said spectral emissive wave length ranges and as well as to obtain the distribution of the spectral emission energy from said emitting surface no less than about 90% within the spectral emissive wave length range of no less than 2.5 micrometers. Consequently, because the emissivity of the emitting surface can be made large within the wave length range of no less than 2.5 micrometers or the range, which is easily absorbed in human body and its clothing, the emission energy from the emitting surface becomes large and yet, because its emission spectrum coincides with the absorption spectrum of human body and its clothing, the improvement of the warming-up efficiency of the Kotatu is resulted.

Description

【発明の詳細な説明】 本発明紘面状と−タを熱源として使用するものにおいて
採暖効率の向上−図ったやぐらこたつに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tower kotatsu which aims to improve heating efficiency in a kotatsu that uses a roof-shaped roof as a heat source.

従来、やぐらこたつの熱源としては、主に赤外線雫71
を使用している。しかしながら赤外線テンプは四方六方
に光(熱)を放射するため、こたつを覆っているふとん
な透過して光(熱)が逃げてしまう、tた赤外線テンプ
の上方には反射板を設けて上方に放出された光を下方に
反射させるようにしているが、y肘板はかなり高温にな
、す、赤外線テンプのガラス面が高温度になることと相
俟って対流が促進されて熱が外に逃げ易いという問題が
あった。
Conventionally, the heat source for Yagura Kotatsu was mainly infrared drops 71
are using. However, since the infrared balance emits light (heat) in all directions, the light (heat) passes through the futon covering the kotatsu and escapes. The emitted light is reflected downward, but the armrest plate becomes quite hot, and this, combined with the high temperature of the glass surface of the infrared balance wheel, promotes convection and dissipates the heat. The problem was that it was easy to escape.

゛ ヤぐらζたつの熱源として面状ヒータを使用す−る
理由は、上−記赤外線ランプの欠点を解消せんがため”
であるが、採暖効率の一層の向上を図るためには発熱体
への入力(電カッがで自るだけ多くの放射熱エネルギー
に変換されると共に、この放射熱エネルギーができるだ
け多く人体或はその着衣に吸収1れる必要がある。そし
て、入力をよ)多くの放射熱エネルギーに変換するには
、放射面の放射率を高くする必要があ)、會九片面放射
形の面状と−タにあっては、K対偶の断熱性を良くして
熱釣りスなできるだけ少なくする必要がある。
゛ The reason why a planar heater is used as the heat source for the pole is to eliminate the drawbacks of the infrared lamp mentioned above.
However, in order to further improve heating efficiency, the input to the heating element (electricity) must be converted into as much radiant heat energy as possible, and as much of this radiant heat energy as possible can be transferred to the human body or its body. In order to convert the input into a large amount of radiant heat energy, it is necessary to increase the emissivity of the radiation surface. In this case, it is necessary to improve the insulation properties of the K pair and minimize the thermal imbalance.

一方、放射熱エネルギーをできるだけ多く人体或はその
着衣に吸収させるに杜、放射スペクトμを人体或はその
着衣の吸収スペクトμに合致させる必要がある1本発明
はこのようにするために、放射スベタ)pをどのような
範囲にし、そのスベタトμ範囲で放射率を高めるには従
来からある放射WJ形成物質のどのような欠点を改良し
たら良−かを究明するとζろかも出発した。以下その実
験結果を示す第1図乃至第13図に従って解説する。
On the other hand, in order to absorb as much radiant heat energy as possible into the human body or its clothing, it is necessary to match the radiation spectrum μ with the absorption spectrum μ of the human body or its clothing. After researching what kind of range p should be set and what kind of drawbacks of conventional radiation WJ forming materials should be improved in order to increase the emissivity in the smooth μ range, ζro was started. The following will explain the experimental results according to FIGS. 1 to 13.

まず、!−71の放射スベi)μは放射面の温度Tじk
〕と放射面を構成する放射物質の分光放射率C2によ)
決まる0分光放射率tえは黒体の分光放射エネルギーE
bスと放射物質の分光放射エネルギーEλの比で、次式
で表わされる。
first,! −71 radiation surface i)μ is the temperature of the radiation surface Tjik
] and the spectral emissivity C2 of the emissive material constituting the radiation surface)
The determined 0-spectral emissivity t is the spectral radiant energy E of the blackbody
It is the ratio of the spectral radiant energy Eλ of the b gas and the radiant substance, and is expressed by the following formula.

ελ=Eλ/Ebλ・・・・・・(1)現実の放射物質
の分光放射率Cよは、無体のそれより小さく、1以下の
値モある。また黒体の分光放射エネルギーEbλは、次
式で表わされ、絶体温度Tbじk〕によって決まる。
ελ=Eλ/Ebλ (1) The spectral emissivity C of an actual radioactive substance is smaller than that of an intangible substance, and has a value of 1 or less. Further, the spectral radiant energy Ebλ of a black body is expressed by the following equation and is determined by the absolute temperature Tbjik].

ここで1は波長〔μm)、o1、o2は定数で夫夫c1
=2πhc2=3.742X10(vμm/−)。
Here, 1 is the wavelength [μm], o1 and o2 are constants, and c1
=2πhc2=3.742X10(vμm/-).

c2=ho/k=1.4588X104(μm”k)。c2=ho/k=1.4588×104(μm”k).

(aL、hはブランクの定数、にはボμツマンの定数、
Cは光速である。上記黒体の分光放射エネルギーEbλ
はある波長で最大とす〕、その最大放射エネルギーEb
−を呈害る波長ムmと黒体の絶体温度Tb〔−〕との間
には次の関係がある。
(aL, h are blank constants, Botsuman's constant,
C is the speed of light. Spectral radiant energy Ebλ of the above blackbody
is maximum at a certain wavelength], its maximum radiant energy Eb
There is the following relationship between the wavelength m that harms - and the absolute temperature Tb of the black body [-].

Am @T b = 63 = 2897−8 (J”
a’k ) ・・m町・・(3)また全放射エネルギー
xbは次式で表わされる。
Am @T b = 63 = 2897-8 (J”
a'k)...m town...(3) Also, the total radiant energy xb is expressed by the following formula.

ここでlはステ7アンボ〜ツマンの定数で5.67X 
10 ”(W/ms ¥)である。上記(4)式から明
らかなように波長λ1からλ1′までの放射エネルギー
ihは、て表わされる。而して、前記最大放射エネルギ
ーEb11haに対する百分率て分光放射エネμギーI
bλ九値、即ち放射エネルギー比’VXhとを、493
”k(220℃)、77!!”k(500”0)及び2
673@k(2400’0)f)E者に関し第1図に示
した。尚、絡1図は横軸に波長を対敵目盛にて取り、縦
軸に分光放射エネルギー比及び放射エネルギー比を取っ
て示し%、’ # bI・が夫々220℃、500℃、
2400℃の分光放射エネルギー比を表わし、a、b、
sが夫J22G”0.500”0.2400℃の放射エ
ネルギー比を表わす。220″Cの場合、(a) * 
(4)式より 1mm 51.9 (4m) * Ib
 ”5549 (”5’−)であ〕、嬉1図a′線から
明らかなように、λWM= 5.5 (μm〕以下及び
λ冨25〔μm〕以上の帯域の放射エネルギーは夫々5
%にすぎず、ム−L5〜25〔μm〕の帯域の放射エネ
ルギーが全放射エネルギーの90%であることが理解さ
れる。tた同様に500℃の場合にHb’線から明らか
なように1=2.8〜15〔μm〕の帯域において、2
400”01i’)場合には1W(17〜4(μm)の
帯域において、夫々放射エネルギーが全放射エネルギー
の90%であることが理解される。そして上Ii3 m
’ * b’ e o’ (F) ! 51k 放射工
* N キー比’ b/Ibを各温度について表わし、
これから各温度について放射エネルギー比が10%及び
90%となる波長を求めてこれを!1!2図に示す、尚
、第2図は横軸に温度〔°C〕を取〕、縦軸に波長〔μ
m〕を対数目盛にて取って示し良。さて、前述のように
現実の放射物質の分光放射率ελは、黒体のそれよ)も
小さi、−例として従来よ)放射物質とじて用いられて
いる石綿の分光放射率(百分率)を結5図にd線によ)
示す、を良路3図に紘220℃における黒体の分光放射
エネルギー比8bム/”blm を・線にて示し良。前記(1)式によ)各波畏毎に石綿
の分光放射率ελと黒体の分光放射エネルギー1bムと
の積を求めると、石綿の分光放射エネルギーEλが得ら
れる。このようにして220℃における石綿の分光放射
エネルギーEλを求め、11ムと黒体の220℃におけ
る最大分光放射エネルギ盛にて取)、縦軸に分光放射率
及び分光放射エネルギーを取って示しえ、一方、石綿の
放射率εは卸ち、放射率gが大暑い程放射エネμギーが
多くなるので、と−タの放射効率に対し放射率eは大1
11に影響を与える。しかるに分光放射率は波長によっ
て変化し温度によっては変化しないが、放射エネルギー
分布の大暑な波長帯域が温度によp変化すゐため、放射
率εは温度によって変化する。
Here, l is the constant of Step 7 Ambo~Tsman and is 5.67X
10'' (W/ms ¥).As is clear from the above equation (4), the radiant energy ih from wavelength λ1 to λ1' is expressed as: The percentage of the maximum radiant energy Eb11ha is Radiant energy μgy I
The bλ 9 value, that is, the radiant energy ratio 'VXh, is 493
"k(220℃), 77!!"k(500"0) and 2
673@k(2400'0)f) Person E is shown in Figure 1. In Figure 1, the horizontal axis represents the wavelength, and the vertical axis represents the spectral radiant energy ratio and the radiant energy ratio.
Represents the spectral radiant energy ratio at 2400°C, a, b,
s represents the radiant energy ratio of J22G "0.500" 0.2400°C. For 220″C, (a) *
From formula (4) 1mm 51.9 (4m) *Ib
"5549 ("5'-)], and as is clear from line a' in Figure 1, the radiant energy in the bands below λWM = 5.5 (μm) and above 25 [μm] is 5.
It is understood that the radiant energy in the band from 5 to 25 μm is 90% of the total radiant energy. Similarly, at 500°C, as is clear from the Hb' line, in the band of 1 = 2.8 to 15 [μm], 2
It is understood that in the case of 400"01i'), the radiant energy is 90% of the total radiant energy in the band of 1 W (17 to 4 (μm), respectively. And the upper Ii3 m
' * b' e o' (F)! 51k Radiation* N Key ratio' b/Ib is expressed for each temperature,
From this, find the wavelength at which the radiant energy ratio is 10% and 90% for each temperature. 1!2. In Figure 2, the horizontal axis shows temperature [°C] and the vertical axis shows wavelength [μ
m] on a logarithmic scale. Now, as mentioned above, the spectral emissivity ελ of an actual radioactive material (compared to that of a black body) is also small i. (D line shown in Figure 5)
In Figure 3, the spectral radiant energy ratio of a blackbody at 220°C, 8 bm/"blm, is shown by the line. According to equation (1) above), the spectral emissivity of asbestos for each wave is By calculating the product of ελ and the spectral radiant energy 1bm of the black body, the spectral radiant energy Eλ of asbestos is obtained.In this way, the spectral radiant energy Eλ of asbestos at 220°C is calculated, and the spectral radiant energy Eλ of asbestos at 220°C is calculated, The vertical axis shows the spectral emissivity and spectral radiant energy (taken as the maximum spectral radiant energy at ℃), and the spectral emissivity and spectral radiant energy are plotted on the vertical axis.On the other hand, the emissivity ε of asbestos is taken as a whole, and the hotter the emissivity g, the more the radiant energy μ. increases, so the emissivity e is large compared to the radiation efficiency of the heater.
11. However, although the spectral emissivity changes depending on the wavelength and does not change depending on the temperature, the emissivity ε changes depending on the temperature because the wavelength band in which the radiant energy distribution is very hot changes p depending on the temperature.

従って放射面の温度と同温度における黒体の放射エネル
ギー分布の大きな波長帯域で分光放射率の大きな放射物
質を用いれば放射率が大きくなり、放射効率を向上させ
ることができる。前述のように220”0における黒体
の放射エネルギーは波長が3.5〜25μmの帯域で9
0%であるから、220℃で使用すると−タの放射面は
波長3.5〜25μmでの分光放射率tムが大11な物
質により形成すべきであり、その他の波長帯域における
分光放射率の大小は放射効率にほとんど影響を与えない
Therefore, if a radiant material with a large spectral emissivity is used in a wavelength band in which the radiant energy distribution of a black body is large at the same temperature as that of the radiating surface, the emissivity will increase and the radiation efficiency can be improved. As mentioned above, the radiant energy of a black body at 220"0 is
0%, therefore, when used at 220°C, the radiation surface of the -ta should be formed of a material with a large spectral emissivity in the wavelength range of 3.5 to 25 μm, and the spectral emissivity in other wavelength bands is The size of has little effect on radiation efficiency.

石綿は珪酸を約50%程度含む珪酸塩鉱物で第3図よシ
明らかなように波長5〜!3μm及び12〜18μmの
帯域において高い分光放射率を示す。
Asbestos is a silicate mineral containing approximately 50% silicic acid, and as shown in Figure 3, the wavelength is 5 ~! It exhibits high spectral emissivity in the 3 μm and 12-18 μm bands.

tた石英の分光放射率Cムを第4図に示すが、石英は珪
酸はぼ100%の物質で、石綿と同様に波長5〜8μm
及び8〜20μmの帯域において高か分光放射率を示す
、従って、珪酸、珪酸環化合物は1011−3Do℃(
第2wJかも予想できるよりにム寓5〜20μmの帯域
で全放射エネルギーの90%程度のエネルギーを放射す
る。)の放射物質として比較的優れた物質であると買う
ことかで龜、しかも比較的高温にも耐えるのでこの点で
も有利であると言える。しかしながら、波長5μm以下
及び8〜12μmの帯域で分光放射率allが低iとい
う欠点があp1放射物質としては十分とは言%A11い
Figure 4 shows the spectral emissivity C of quartz.Quartz is a substance that is almost 100% silicic acid, and like asbestos, it has a wavelength of 5 to 8 μm.
Therefore, silicic acid and silicic acid ring compounds exhibit high spectral emissivity in the 8-20 μm band.
As expected, the second wJ emits about 90% of the total radiated energy in a band of 5 to 20 μm. ) It can be said that it is a relatively excellent material as a radiation material, and it can also be said to be advantageous in this respect as it can withstand relatively high temperatures. However, it has the disadvantage that the spectral emissivity all is low i in the wavelength range of 5 μm or less and in the band from 8 to 12 μm, and it is not sufficient as a p1 emitting material.

以上と−タの放射物質、その温度及び放射率の関連性に
ついて述べたが、ヒーIの放射エネルギーが人体或はそ
の着衣に良く吸収されて暖房熱として有効化されるため
には放射エネルギーのスペクトル分布と人体或祉その着
衣の吸収エネルギーのスペクトル分布とが一致しなけれ
ばなら1kVk *人体の皮膚の水分量d70%程度で
あシ、また着衣も汗停の若干の水分を含んでいる。第5
図線水の分光透過率f工をその透過層厚さ42μm、1
゜25jlll、10jEIの三種について実験した結
果を示す、尚、第5図線横軸及び縦軸に波長及び透過率
を取って示し、線go3、h、1が夫々透過層厚さ4−
゛へ、 2μml@1.2511g1.10鱈のものを表わして
いる。
As mentioned above, the relationship between the radiant substances, their temperature, and their emissivity has been described, but in order for the radiant energy of Heat I to be well absorbed by the human body or its clothing and effectively used as heating heat, the radiant energy must be If the spectral distribution and the spectral distribution of the absorption energy of the human body or clothing should match, then 1 kVk *The moisture content of the human body's skin should be about 70%, and clothing also contains some moisture from sweat. Fifth
The diagram shows the spectral transmittance f of water with a transmission layer thickness of 42 μm and 1
Figure 5 shows the results of experiments on three types of ゜25jll and 10jEI.The horizontal and vertical axes of the line indicate the wavelength and transmittance, and the lines go3, h, and 1 indicate the thickness of the transparent layer 4-
2μml @ 1.2511g 1.10 cod.

ここで分光透過率τスが低い程、分光吸収率σλが高i
と考えて良<、*5図から明らかなように水線赤外線の
吸収がきわめて良く、波長2.8〜5゜5μm及び5.
8μm以上め帯域では、透過層厚さd−42μmという
きわめて薄い層であって−はとんど透過しない(τλ≦
10%)、また透過層厚さ1,25■の場合に線波長2
.5μm以上て全く透過しない。また第6図は食肉の分
光透過率τλをその厚@Q、5111M、 1m、 !
SW、 5fi、 10mlの三種につめて実験した結
果を示す。尚、186図は横軸及び縦軸に夫々波長及び
透過率を取って示し、線j 、 k 、 l 、 m 
、 nが夫々厚さα5a、1lllffi。
Here, the lower the spectral transmittance τ, the higher the spectral absorption σλ
As is clear from Figure 5, absorption of water line infrared rays is extremely good, with wavelengths of 2.8 to 5° 5 μm and 5.
In the band of 8 μm or more, the transmission layer thickness d is an extremely thin layer of 42 μm, and - is hardly transmitted (τλ≦
10%), and when the transmission layer thickness is 1.25 cm, the line wavelength is 2.
.. It does not transmit at all beyond 5 μm. Also, Figure 6 shows the spectral transmittance τλ of meat as its thickness @Q, 5111M, 1m, !
The results of an experiment using three types: SW, 5fi, and 10ml are shown. In addition, Figure 186 shows the wavelength and transmittance on the horizontal and vertical axes, respectively, and the lines j, k, l, m
, n are thickness α5a and 1llllffi, respectively.

3鱈、5■、10鱈のものを表わしている。第6図から
明らかなように食肉の場合も波長2.5μm以上で紘全
く透過せず、水と良く似九特性を示す。
It represents 3 cod, 5 ■, and 10 cod. As is clear from FIG. 6, meat does not transmit at all at wavelengths of 2.5 μm or more, exhibiting characteristics similar to those of water.

尚、食肉は波長α4〜2.5μm&−5PVhで厚さが
大11−場合、分光透過率τλが小さくなってiるが、
吸収率が大きくなっているので社なく、表面てのズ射が
多くなって−る影響の方が強い、ちなみに、透過層厚−
Iiaにょ)透過率τムは変化するが、吸収の良い物質
の場合は、表面にごく近いとζろで吸収されてし會う良
め、d≦1鱈程度の層で吸収され熱に変わると考えてよ
−、これらの関係は次式で示される。
In addition, when meat has a wavelength of α4~2.5μm & -5PVh and a thickness of large 11-, the spectral transmittance τλ becomes small.
Since the absorption rate is large, the effect is stronger due to the increase in shear radiation on the surface.By the way, the transmission layer thickness -
Iia) The transmittance τ changes, but in the case of a material with good absorption, if it is very close to the surface, it will be absorbed in the ζ layer, and it will be absorbed in a layer with d≦1 and converted into heat. Considering this, these relationships are shown by the following equation.

■ム冨l・λ・・″μλd・・・呻・−・−・−・・−
・(7)こζてII d透過エネμギー、l・λは入射
エネμギー、μλは分光吸収係数で物質特有の値である
■Mutomi・λ・・″μλd...groan・−・−・−・・−
・(7) Here, ζ II d transmitted energy μ, l·λ is incident energy μ, and μλ is a spectral absorption coefficient, which is a value specific to the material.

人体(皮膚)の場合も食肉と同様に水と良く似九分光吸
収特性を示すと考えられ、従って2.5μ鳳以上の波長
においてその吸収はきわめて良いと考えられる。
In the case of the human body (skin), it is thought that like meat, it exhibits light absorption characteristics similar to those of water, and therefore, its absorption is considered to be extremely good at wavelengths of 2.5 μm or more.

次に第7図及び嬉8図は衣服の材料となる代表的な天然
繊細即ち綿、羊毛の分光吸収特性を示す。
Next, FIGS. 7 and 8 show the spectral absorption characteristics of typical natural fine materials used for clothing, such as cotton and wool.

尚、l!7図及びlll8図拡横軸に波長を、縦軸に吸
収率を対数目盛にて取って示すejgy図よ〕綿紘波員
9〜10pm付近で高V%吸収率を示すが、との傾向は
麻等他の植物性繊維及びV−曹ン等セμロースを含む繊
維に共通して見られる。第8図よ〕羊毛は波長6〜10
μ論付近で高い吸収率を示すが、これはアミノ基による
ものと考えられ、他の動物性lI!雑にも同様の傾向が
ある。また第9図及び第10図は代表的な化学繊維即ち
ポリエステμ、ア七テートにつiての分光透過率を示す
。尚、第9図及び第10図は横軸及び縦軸に夫々波長及
び透過率を取って示す。1g9図のポリエステル及び第
10図のアセテート共に波長5μm以下において透過率
は比較的高い、尚、化学繊維の場合はその原料となる高
分子材料特有の分光透過率を示すが、一般に波長5μm
以下において透過率は比較的高い(換言すれば波長5μ
m以上では吸収率は高い)。従って第7図乃至第10図
より衣服は波長5μm以上において高i吸収率を有して
いると買える。
Furthermore, l! Figures 7 and 8 are enlarged ejgy diagrams showing the wavelength on the horizontal axis and the absorption rate on the vertical axis on a logarithmic scale] Watahiro shows a high V% absorption rate around 9 to 10 pm, but there is a tendency to is commonly found in other vegetable fibers such as hemp and fibers containing semulose such as V-sodium. Figure 8] Wool has wavelengths of 6 to 10.
It shows a high absorption rate near μ theory, but this is thought to be due to the amino group, and other animal lI! There is a similar tendency in miso. Further, FIGS. 9 and 10 show the spectral transmittance of typical chemical fibers, ie, polyester μ, a7tate i. Note that in FIGS. 9 and 10, wavelength and transmittance are plotted on the horizontal and vertical axes, respectively. Both the polyester shown in Figure 1g9 and the acetate shown in Figure 10 have relatively high transmittance at wavelengths of 5 μm or less.In the case of chemical fibers, the spectral transmittance is unique to the polymer material that is the raw material, but generally at wavelengths of 5 μm.
The transmittance is relatively high below (in other words, the wavelength is 5μ)
m or more, the absorption rate is high). Accordingly, from FIGS. 7 to 10, clothing can be purchased if it has a high i absorption rate at wavelengths of 5 μm or more.

以上のように人体及びその着衣は波長2.5μm以上の
帯域において高い吸収率を育しておシ、従って、ヒータ
の放射エネμギーは25μm以上の波長とすることが望
ましい、しかるに従来、ヒータとして用いられている赤
外線ランプの場合、そf)フイ?/ンFの温度紘約24
00”Oで、その分光放射エネfi/イー紘第1図の線
0 、 @’から明らかなように波長1μ鳳付近で最大
値を示し、波長2゜5μm以下のエネμギーは全エネル
ギーの8o%程度にも達する。従って、赤外線ランプは
暖房用に適してiると杜冒い離i、暖房用ヒータとして
は、人体及びその着衣に吸収されにくい波長2.5f−
以下の帯域での放射エネルギー比を10%程度以下換言
すれば人体及び着衣に吸収され易い波長2.!sμm以
上の帯域での放射エネルギー比が90%程度以上となる
ように放射面の温度を設定すると共に、放射面の温度に
おける黒体の放射エキ5at−分布な前記(5)式から
算出し、その放射エネルギー比−IIX90%程度にな
る帯域での分光放射率1ムの大きな放射物質により放射
面を形成するようにすることが1ituい、波長2.5
μm以上の帯域での放射エネルギー比を90%程度以上
とするためには、#!2図から明らかなように、放射面
の温度をs00〜600℃以下に設定すればよい。
As mentioned above, the human body and its clothing have a high absorption rate in the wavelength band of 2.5 μm or more. Therefore, it is desirable that the radiant energy μ of the heater be at a wavelength of 25 μm or more. In the case of infrared lamps used as Temperature of approximately 24 degrees Fahrenheit
As is clear from the lines 0 and @' in Figure 1, the spectral radiant energy fi/Ehiro shows the maximum value near the wavelength 1 μm, and the energy μ below the wavelength 2°5 μm accounts for the total energy. Therefore, infrared lamps are suitable for heating purposes, while infrared lamps are suitable for heating purposes at wavelengths of 2.5 f-, which are difficult to absorb by the human body and its clothing.
In other words, the radiation energy ratio in the following bands is about 10% or less. In other words, wavelengths that are easily absorbed by the human body and clothing are 2. ! The temperature of the radiation surface is set so that the radiant energy ratio in the band of s μm or more is about 90% or more, and the radiation exhaust 5at distribution of the black body at the temperature of the radiation surface is calculated from the above equation (5), It is necessary to form a radiation surface using a radiation material with a large spectral emissivity of 1 μm in a band where the radiation energy ratio - IIX is about 90%, and the wavelength is 2.5.
In order to make the radiant energy ratio in the band greater than μm approximately 90% or more, #! As is clear from FIG. 2, the temperature of the radiation surface may be set to s00 to 600°C or less.

しかしながら、従来放射面形成物質として使用されてi
る石綿或は石英は前述のように波長5μm以下及び8〜
12μmの帯域におiて分光放射率1ムが低いという欠
点があシ、放射物質としては十分なものではなかった。
However, i
As mentioned above, asbestos or quartz has a wavelength of 5 μm or less and a wavelength of 8 μm or less.
It had the disadvantage of having a low spectral emissivity of 1 μm in the 12 μm band, and was not sufficient as a radioactive material.

従って本発明の第一の目的は、珪酸或は珪酸塩化金物を
主成分とする放射物質の上記欠点を解消し、波長2.5
μm以上での放射率を向上させるところにある。
Therefore, the first object of the present invention is to eliminate the above-mentioned drawbacks of radioactive materials mainly composed of silicic acid or metal silicates, and to
The purpose is to improve the emissivity at micrometers or higher.

一方、やぐらこたつ等に使用される片面放射形の面状と
一タに・あっては反対側の断熱性を良くして熱的−スを
少なくシ、発熱体への入力(電力)をできるだけ多くの
放射エネルギーに変換する必要がある。
On the other hand, the single-sided radial surface shape used in tower kotatsu etc. also improves the insulation properties on the opposite side to reduce thermal space and reduce the input (power) to the heating element as much as possible. It needs to be converted into a lot of radiant energy.

第11図は面状と一夕の基本構造を示す断面図で、図中
線pは温度分布を示す、尚、第11図中、1は発熱体、
2及び3は電気絶縁物、4は放射面、s#i断熱層、6
は裏板である。今、発熱体1の単位面積当シの発熱量を
q・とすると、q・は放射Ii4及び裏板6からの放熱
量qlとqlとの和になる。また放射面4かもの放熱量
91は輻射熱量(brと対流による放熱量魁。との和に
なる。平板の自然対流による熱伝達率島。拡次式で表わ
される。
FIG. 11 is a cross-sectional view showing the basic structure of the plane and the surface, and the line p in the figure shows the temperature distribution. In FIG. 11, 1 is a heating element,
2 and 3 are electrical insulators, 4 is a radiation surface, s#i insulation layer, 6
is the back plate. Now, if the amount of heat generated per unit area of the heating element 1 is q., q. is the sum of the amount of heat ql and ql from the radiation Ii4 and the back plate 6. Also, the heat radiation amount 91 of the radiation surface 4 is the sum of the radiation heat amount (br) and the heat radiation amount due to convection.Heat transfer coefficient island due to natural convection of a flat plate.It is expressed by an expansion formula.

・。=C(1・−1″)°°″“αIJ”0)−・・・
・・−・(8)また平板の輻射による熱伝達率aya次
式で表わされる。
・. =C(1・−1″)°°″“αIJ”0)−・・・
(8) Also, the heat transfer coefficient due to radiation of a flat plate is expressed by the following equation.

(s) * (9)式において、Cは定数で垂直平板の
と111゜s b (W/、?”0 ) 、水平平板下
面のと亀α58 〔”’/m” ”0 )である、tた
、214*@@a平板の温度、”aes8は室温で夫々
大文字が給体温度〔@k〕、小文学がセ氏温度(’0)
を表わす、Xは垂直平板のと亀の高さ幅、水平平板のと
きの水平幅を表わす、平板表面と家内空気との間の熱抵
抗r、は次式で表わされる。
(s) * In equation (9), C is a constant, which is 111°s b (W/, ?"0) for the vertical flat plate, and α58 ["'/m'' ``0] for the lower surface of the horizontal flat plate. t, 214*@@a The temperature of the flat plate, ``aes8'' is room temperature, the capital letters are the supply temperature [@k], and the small letters are the temperature in degrees Celsius ('0).
where X represents the height and width of a vertical flat plate and the horizontal width of a horizontal flat plate.The thermal resistance r between the flat plate surface and the indoor air is expressed by the following equation.

、 、。+ay  (i”%〕・・・−・・・・−・・
・・・・・帥次に絶縁物2.3及び断熱層5等の熱伝導
にぶる熱抵抗r自社次式で表わされる。
, ,. +ay (i”%)・・・−・・・・−・・
...Secondly, the thermal resistance r due to the heat conduction of the insulator 2.3 and the heat insulating layer 5 is expressed by the following formula.

rs、′土 〔i″%〕・・・−・・・・・・・・・・
・・・・・・・・・・・・Qυここでdは絶縁物2 、
5.断熱層5等の厚さ、bはその熱伝導率を示す。
rs, 'Sat [i″%]・・・-・・・・・・・・・・・・・
・・・・・・・・・・・・QυHere d is insulator 2,
5. The thickness of the heat insulating layer 5, etc., and b indicate its thermal conductivity.

上記(8)〜(ロ)式を用いて、発熱体1と放射面4及
び裏板6との間の熱抵抗 ’1*’lls並びに放射面
4及び裏板6と室内空気との間の熱抵抗’alt’□を
算出することができる# ’t ” rBl 十1g□
、rR−rMg”#!とすると、前記Qt−9gは次の
式で表わされる。
Using equations (8) to (b) above, calculate the thermal resistance '1*'lls between the heating element 1, the radiation surface 4 and the back plate 6, and the thermal resistance between the radiation surface 4 and the back plate 6 and the indoor air. Thermal resistance 'alt'□ can be calculated#'t'' rBl 11g□
, rR-rMg''#!, the Qt-9g is expressed by the following formula.

rl ql”r十r!Qe 、 q、 wx W q、 °°
−*+1++OJiた面状8−夕0熱伝達効率η−? 
 とすると・ηはrlを小さく、rlを大過くすれば良
い。
rl ql”rtenr!Qe, q, wx W q, °°
-*+1++ OJi surface condition 8-0 heat transfer efficiency η-?
Then, η can be set by making rl small and rl large.

’atは(至)式から明らかなように’(l e ”r
によp決ま)、1゜は表面温度と幅寸法により決定され
るのて、一定値となる。またarU放射率Cにより決ま
るが、これ社最大1であるから、rlを小さくするため
には%’llを小さくすることが必要である。陶様にt
2につ−ても、ra!は& o s畠、ニヨ)決ま多、
”rはSによ)決定されるので、これをOにすれef 
ar −0にでき、r諺を大きくできる。しかし裏板6
を構成する現実の材料では鰻大でも f a−a@ ま
でで限度があシ、r雪を大きくするためにはIllを大
暑(する必要がある。
'at is (to) As is clear from the expression '(le ``r
1° is a constant value because it is determined by the surface temperature and width dimension. Also, it is determined by the arU emissivity C, which is at most 1, so in order to reduce rl, it is necessary to reduce %'ll. To Mr. Sue
As for 2, ra! Ha & o s Hatake, Niyo) Kaidaita,
”Since r is determined by S, set it to Oef
It can be made ar -0 and r proverbs can be made large. However, back plate 6
In the actual materials that make up the eel, there is a limit of up to fa-a@, and in order to make the snow larger, it is necessary to heat it up.

尚、rllmは断熱層5の熱伝導率す、 を小さくし、
厚さd8を大暑(すればよいが、blは材質的に決まる
定数で、ある程度の耐熱性のあるものです。
In addition, rllm is the thermal conductivity of the heat insulating layer 5,
You can set the thickness d8 to a certain level of heat resistance, but BL is a constant determined by the material and has a certain degree of heat resistance.

の小さな物質は現実には存在しない、尚、一般にr H
> r am となるので、’l はd、に比例すると
考えて%良い、従って、r冨を大暑くするために蝶、断
熱層5の厚さを厚くする他3h、 しかし断熱層5の厚
1d、を厚(したので杜、面状と一!全体の厚さが厚く
なってしまい実用的でな−。
Substances as small as r do not exist in reality; in general, r H
> r am, so it is good to think that 'l is proportional to d.Therefore, in order to make r-rich very hot, the thickness of the insulation layer 5 is increased by 3h, but the thickness of the insulation layer 5 is 1d is thick (so it's a mori, and it's a plane! The overall thickness is thick, and it's not practical.

また熱審量も増大し、温度の立上p度金が悪くなってし
まう。
In addition, the amount of thermal evaluation increases, and the temperature start-up temperature deteriorates.

そこで’Il*  rsm(rs )をどのよう1に値
に設定すればよiかを考察する。前記韓式よ)、1m ダ寓 rat+rl、+r重 従って、ユL−工(−!−!!−+1)由・・・明・・
(至)r&1  1−η  rat 示す。この第12図は、jstが大きくなると、同じη
を維持するにはLπに比例してrl即ち断熱層5の厚さ
d、を増加させねばならないことを示している1例えば
” Vr @1■a5であると、   、rlA、1;
α3のものに比べて断熱層の厚さを約20%増加させね
ばならなくなる。ちなみに特開昭49−114131号
公報に示された面状と一タの放射面は、石綿スV−)で
形成されているが、その厚さは3〜5111と厚iため
rstひいてはrllhat(α5程度になる)が大き
くな)、断熱層の断熱効果を減少させてしまう。この点
を考慮して断熱層の効蝉を盲部ならしめるためには、”
1/r @1 a J’S ’75以下に設定すること
が好ましい。
Therefore, we will consider how to set the value of 'Il*rsm(rs) to 1. Said Korean style), 1m Daegrat+rl, +r heavy, therefore, Yu L-engine (-!-!!-+1) reason... Ming...
(To) r&1 1-η rat Show. This FIG. 12 shows that as jst increases, the same η
This shows that rl, that is, the thickness d of the heat insulating layer 5, must be increased in proportion to Lπ in order to maintain 1.For example, if ``Vr @1■a5, , rlA, 1;
The thickness of the heat insulating layer would have to be increased by about 20% compared to α3. Incidentally, the radiation surface shown in JP-A No. 49-114131 is made of asbestos V-), but its thickness is 3 to 5111, which is i, so rst and rllhat ( (approximately α5) is large), which reduces the heat insulating effect of the heat insulating layer. Considering this point, in order to make the effectiveness of the insulation layer a blind spot,
1/r @1 a J'S '75 or less is preferable.

従って、本発明の第二の目的は、断熱層がその効果を十
分に発揮して発熱体への入力をより多くの放射エネμギ
ーに変換できて高い熱伝達効率を得ることがで自るよう
にするとζろにある。
Therefore, the second object of the present invention is to make it possible for the heat insulating layer to fully exhibit its effect, convert the input to the heating element into more radiant energy, and obtain high heat transfer efficiency. If you do this, it will be on the right.

一方、横軸に”4at I縦軸にηを取った第13す、
この第1s図から明らかなように、’m従って前述の゛
ようにこのr雪が比例関係を示すd、を大暑(して%’
4* =2Q以上では*dMの増加率に比べてηの向上
率がきわめて悪<s’zの増加紘効果の無いことが理解
で龜る。tたqm社面状に−Jにとっては全くの熱リス
と考えられる九め一般の面状と一!ではダ≧901%と
することがil−*L−が、ヤぐらこえりにか一″ては
ふとんが掛けられるので、その保温効果を勘案すると、
η≧80%でも熱経済性からいって問題はなく、仁の点
をも併せ考慮すると、第1s図から’M/r @1 w
a、 5〜2011度に設定することが望ましい。
On the other hand, the 13th S with "4at I on the horizontal axis and η on the vertical axis,
As is clear from this Fig. 1s, 'm Therefore, as mentioned above, this r snow shows a proportional relationship d, and the great heat (and %'
Above 4*=2Q, the rate of improvement in η is extremely poor compared to the rate of increase in *dM, and it is difficult to understand that there is no increasing effect of s'z. ttqm company surface condition - 9th general surface condition and one that is considered to be a complete heat squirrel for J! Then, it is necessary to set Da≧901% for il-*L-, but since a futon is hung over the roof top, taking into account its heat-retaining effect,
Even if η≧80%, there is no problem from the thermoeconomic point of view, and if we also consider the point of heat, from Figure 1s, 'M/r @1 w
a. It is desirable to set the temperature between 5 and 2011 degrees.

而して、第14図乃至第18図は本発明に係る中ぐらこ
九りを示すもので1図中、11は四角い格子枠形に構成
された天板で、これ線画隅角部に取付は九脚12によっ
て支持される。13は天板11の下面に取付けられた面
状に−Jで、これは次のように構成されている。即ち、
14乃至16拡第1乃至t1gBの面状発無体で、これ
らは電気絶縁物たる二枚の集成マイ力板17.18間に
埋め込まれて一体化されている。集成!イカ板17゜1
8はマイカ粉をシリーンフニスで固めて、プレスによる
加圧状態のもとて加熱乾燥して製造されるが、発熱体1
4乃至16線この集成マイカ板17.18の製造過程に
お−て完全に乾燥する前段階で両マイカ板1’7 、1
8間に挾み込んで加熱プレスするため、両マイカ板t 
7 、18と完全に密着して一体化されてお夛、寮使用
時に発熱体14乃至16が発熱して全体が反るようなこ
とがあってもその密着状態を維持する。また各発熱体1
4乃至16は数十μの極薄のステンレス板をエツチング
或はプレスの打抜き等することにより製作されたもので
、#g1及び#52の発熱体14.15は直列に接続さ
れて第3の発熱体16と共に電源に対し並列に結線され
る。そして、第3の発熱体16或祉第1.第2の両発熱
体14.15に通電する状態及び全ての発熱体14乃至
16に通電する状態を切換スイッチによ)選択すること
によ〉、加熱の強弱切換えがで龜るように構成されて1
%Aる。
Figures 14 to 18 show a hollow rack according to the present invention. In Figure 1, numeral 11 is a top plate configured in the shape of a square lattice frame, which is attached to the corner of the line drawing. is supported by nine legs 12. Reference numeral 13 denotes a plane -J attached to the lower surface of the top plate 11, which is constructed as follows. That is,
14 to 16 enlarged 1st to t1gB planar inorganic bodies, which are embedded and integrated between two assembled mechanical plates 17 and 18 that are electrical insulators. Collection! Squid board 17゜1
8 is manufactured by solidifying mica powder with a silicone finis and heating and drying it under pressure with a press.Heating element 1
4 to 16 lines In the manufacturing process of this assembled mica plate 17 and 18, both mica plates 1'7 and 1 are
Both mica plates are sandwiched between 8 and heat pressed.
7 and 18, and even if the heating elements 14 to 16 generate heat and the whole body warps when used in a dormitory, the state of close contact is maintained. Also, each heating element 1
4 to 16 are manufactured by etching or press punching ultrathin stainless steel plates of several tens of micrometers, and the heating elements 14 and 15 of #g1 and #52 are connected in series and the third Together with the heating element 16, it is connected in parallel to the power supply. Then, the third heating element 16 or the first heating element 16 is heated. By selecting the state in which the second heating elements 14 and 15 are energized and the state in which all the heating elements 14 to 16 are energized using a changeover switch, it is possible to switch the strength of the heating. te1
%Aru.

以上のように構wL堪れた発熱体14乃至14Fi函状
に−iの外枠190片側に配設固定されてお)、外側に
゛位置する集成!イカ板17の表面には、放射@20が
形成されている。外枠19の残る片側には裏板2l−I
IX鋏IIIされてお都、この裏板21と集成マイカ板
1Bとの間に紘空気層よ)−&る断熱層22)6m形成
されて−る。tた外枠19の内周部には七テミツタツア
イパー7干μトよ)1!にる断熱材2sが配設されてお
)、この断熱材2sの内側には断熱層22内を表裏方向
に複数量に区分するアA/ミ@2aが配設されている。
As described above, the heating elements 14 to 14F are arranged and fixed on one side of the outer frame 190 of -i in the form of a box, and the assembly is located on the outside! A radiation @20 is formed on the surface of the squid plate 17. On the remaining side of the outer frame 19, there is a back plate 2l-I.
After IX scissors III was used, a 6 m insulating layer 22) was formed between the back plate 21 and the laminated mica plate 1B. The inner periphery of the outer frame 19 has 7 temitsutatsutatsuaiper 7dμt) 1! A heat insulating material 2s is disposed inside the heat insulating material 2s), and an a/mi@2a is disposed inside the heat insulating layer 22 to divide the interior of the heat insulating layer 22 into a plurality of parts in the front and back directions.

尚、25は保護ガードである。Note that 25 is a protective guard.

本発明者は、放射物質の放射率改普に尚)、金属酸化物
嬬一般に赤外域にかiで分光放射率が良いことに着目し
た0例えば酸化ターム(” ”x Os )*酸化チタ
ン(’rio、)、酸化vμスニナム(!1iro、)
The present inventor focused on improving the emissivity of radioactive materials, and focused on the fact that metal oxides generally have a good spectral emissivity in the infrared region. 'rio,), oxidized vμ suninum (!1iro,)
.

酸化アμR(ム1wos)と酸化チタン(TlO,)と
の混合物の夫々について分光放射率を第19図乃至第2
2図に示した。尚、第19図乃至第22図は横軸に波畏
を取〕、縦軸に放射率を取って示す。
The spectral emissivity of each mixture of ammu oxide μR (mu1wos) and titanium oxide (TlO, ) is shown in Figures 19 to 2.
It is shown in Figure 2. In addition, in FIGS. 19 to 22, the horizontal axis represents the wave intensity, and the vertical axis represents the emissivity.

この第19図乃至第22図によれば、各金属酸化物は、
2.5〜約12μmにおiて高−分光放射率を有してい
ることが分かる。そして、本発明者は、と記の各金属酸
化物の他J酸化スパμ)(CGmm4・C010s)、
二酸化マンガン(Mn02)、酸化ニツシμ(Ni黛O
s)、酸化鉄(1’@aoa)等の金属酸化物を二種以
上約1000℃以上でか焼して複合酸化物”YOa 5
CハY (X Y ) Oa トf 4 ト、5〜25
μmの分光放射率が更に良いことを併せて究明した。尚
、X、Yは金属元素である。
According to FIGS. 19 to 22, each metal oxide is
It can be seen that it has a high spectral emissivity from 2.5 to about 12 μm. In addition to each of the metal oxides listed below, the present inventor also discovered J oxide spaμ) (CGmm4・C010s)
Manganese dioxide (Mn02),
Composite oxide "YOa 5" is produced by calcining two or more metal oxides such as s) and iron oxide (1'@aoa) at approximately 1000°C or higher.
ChaY (XY) Oa Tof 4 To, 5~25
It was also found that the spectral emissivity in μm was even better. Note that X and Y are metal elements.

そこで本発明者は、前記放射面20を形成する放射物質
として以下述べる成分よりなる三種の物質を用いた。尚
、頁分率紘−ずれも重量%である。
Therefore, the present inventor used three types of materials consisting of the components described below as the radiation materials forming the radiation surface 20. Note that the page fraction deviation is also expressed in weight %.

(1)  絡1の放射物質 Vリコーンワエス60%、金属酸化物50%。(1) Radiation material of connection 1 V silicone wax 60%, metal oxide 50%.

itv夕10%。Itv evening 10%.

上記F9:l−ンフェスは珪酸塩化合物に相当し、V賞
等すン結合−8i−0−8!−0−からなっている★た
上記金属酸化物社金属酸化物える二酸化マンガン、酸化
タローム、酸化鉄を約1200℃でか焼し、夜会酸化物
(Mu、re)(Or、re)104としたものである
。更にpw夕は珪酸樵鉱物の一種で放射面を荒し放射効
果を向上させる丸めのものである。
The above F9:l-face corresponds to a silicate compound, and the V-prize etc. bond -8i-0-8! The above-mentioned metal oxides consisting of -0-, such as manganese dioxide, talome oxide, and iron oxide, were calcined at about 1200°C to form Yakai oxide (Mu, re) (Or, re) 104. This is what I did. Furthermore, pw is a type of silicate mineral that is rounded to roughen the radiation surface and improve the radiation effect.

(IfJ  絡2の放射物質 珪酸す)!J?A(NalO,8ム0.)40%、金属
酸化物!So%、珪酸樵化合物30%。
(IfJ connection 2 radioactive material silicic acid)! J? A (NalO, 8μ0.) 40%, metal oxide! So%, silicate compound 30%.

上記金属酸化物は第1の放射物質のそれと同様のもので
ある。
The metal oxide is similar to that of the first radiation material.

yb*sの放射物質 珪石40%、はう砂20%、酸化チIン20%、その4
20%。
yb*s radioactive material 40% silica, 20% sand, 20% titanium oxide, part 4
20%.

上記成分のもの嬬珪酸50%、酸化チタン20%を含む
一種のはうるうである。
The above-mentioned ingredients are a kind of moisture containing 50% silicic acid and 20% titanium oxide.

以上の嬉1乃jItsの放射物質の分光放射率1λを第
2S図乃至第26図に示す、第23図乃至第25図から
明らかなように、前記しえような第1乃至嬉5の放射物
質によれば、従来の放射物質の欠点、即ち波長5μm以
F及び8〜12μmの帯域においてελが著るしく低い
という欠点を解消して、波長25〜5μm及び8〜12
μmにおiでりを約80%以上になすことができ、その
結果、波長L5μm以上においてgムを高い値に略−走
化でき、波長2.5μ−以上での放射面20の放射率1
を向上させることができる。
The spectral emissivity 1λ of the above-mentioned radiation substances of 1 to 5 is shown in Figures 2S to 26, and as is clear from Figures 23 to 25, the radiation of According to the material, the disadvantage of conventional radiation materials, that is, the shortcoming that ελ is extremely low in the wavelength range of 5 μm or less F and the band of 8 to 12 μm, can be overcome, and the wavelength of 25 to 5 μm and 8 to 12
The emissivity of the emitting surface 20 can be increased to approximately 80% or more in μm, and as a result, the gm can be chemotactic to a high value at wavelengths L of 5 μm or more, and the emissivity of the radiation surface 20 at wavelengths of 2.5 μm or more 1
can be improved.

従って、人体及びその着衣に吸収され易い波長15μm
以上の帯域ての放射エネμギー比が90%程度以上とな
るようにナベ(、放射面20の温度を500〜600℃
以下例えば220°Cに設定する。すると第1図から明
らかなように黒体の放射エネμギーの90%は15〜2
5μmの間に存するようになり、この帯域での放射面2
0の分光放射率1λひiでは放射率εそのものが大き(
なp1放射面20からの放射エネμギーは従来の石綿を
用iたものに比べて大きくなる。しか4その放射スペタ
)μは人体及びその着衣の吸収スベク)μに一致するか
ら、放射エネμギーは人体及び着衣に効率良く吸収され
採暖効率が向上する。
Therefore, the wavelength of 15 μm is easily absorbed by the human body and its clothing.
Adjust the temperature of the radiation surface 20 to 500 to 600℃ so that the radiant energy ratio in all the above bands is about 90% or more.
For example, the temperature is set at 220°C. Then, as is clear from Figure 1, 90% of the blackbody's radiant energy μ is 15~2
5 μm, and the radiation surface 2 in this band
At a spectral emissivity of 0 and 1λhii, the emissivity ε itself is large (
The radiant energy μ from the p1 radiation surface 20 is larger than that of the conventional one using asbestos. However, since the radiation energy (μ) corresponds to the absorption coefficient (μ) of the human body and its clothing, the radiant energy μ is efficiently absorbed by the human body and clothing, improving heating efficiency.

tた一般゛にやぐらζたりは床上に敷かれたζたり用マ
ツ)(繊維織物)の上に置かれる九め、マツFの熱吸収
が廉(なる、このため、111−消費電力の赤外線ラン
プに比べてマツFの温度嬬約10℃上昇し、また放射、
面?!)かもの放射エネルギーは主として下方に放射さ
れるため、ζたりを覆うふとんを透過して途げる熱が少
なくなって、垂直611度分布はマットから放射112
0部分まで略絢−となp、更にζたり内の平均温度も上
昇し採暖効果が一層艮(なる、これらのこと嬬第26@
の実験結果に示されている。この第26図社横軸に温度
を、縦軸にマットからの高さを取って示し、実線は本発
明に係る面状と−Iを用%Aたものを表わし、破線は従
来の赤外線ランプのものを表わす。
In general, the Yagura ζ is placed on a pine (fiber fabric) spread on the floor. Compared to the lamp, the temperature of Matsu F increases by about 10℃, and the radiation
surface? ! ) Since the radiant energy of the duck is mainly radiated downward, less heat passes through the futon that covers the ζ and is lost, and the vertical 611 degree distribution is radiated from the mat at 112 degrees.
The average temperature within the ζ area increases, and the heating effect becomes even more pronounced.
This is shown in the experimental results. The horizontal axis in Figure 26 shows the temperature, and the vertical axis shows the height from the mat, the solid line represents the surface shape according to the present invention and -I, and the broken line represents the conventional infrared lamp. represents something.

一方、マイ力板18社厚さd1=1闘に設定し、断熱M
22の厚さd、w=4Qaに設定する。マイカ板1Bの
熱伝導率b 1 m a 5 (”/ll’c )で、
断熱層22の熱伝導率す2諺αo 62 (’/sn”
0 )、また放射向20(放射物質)の放射率g1−α
9、躾板18(アμミペイン)を―布する)の放射重り
5−aSである。(8)〜(2)式を用iで熱抵抗等を
求めると次のようになる。
On the other hand, the thickness of the 18 power plates is set to d1 = 1, and the insulation M
The thickness d and w of 22 are set to 4Qa. The thermal conductivity of mica plate 1B is b 1 m a 5 (''/ll'c),
Thermal conductivity of the heat insulating layer 22 αo 62 ('/sn”
0), and the emissivity g1-α in the radiation direction 20 (radiating material)
9. Radiation weight 5-aS of discipline board 18 (clothing). Using equations (8) to (2) to find the thermal resistance etc. at i, the following results are obtained.

ratx(LO515,r@、m(LOO2゜r畠x=
l1132.        r@ 雪 冨 α645
 。
ratx(LO515, r@, m(LOO2゜r@x=
l1132. r@ Yuki Tomi α645
.

′ l″/      −(LO4,r雪/、at  
m  1 5   。
′ l″/ −(LO4, r snow/, at
m 1 5.

1 η”95.5゜ また電気絶縁物として集成マイカ板でなく、厚さds 
Wlmlmのアスベスト板を用いると、その熱伝導率b
 1 w o、 17 (−一℃) テtbJbカb%
rll −α005 m ’ I ’/r  =cL’
とナル他は上[:MC−t”1 ある。
1 η”95.5°Also, instead of using a laminated mica board as an electrical insulator, the thickness ds
When using Wlmlm asbestos board, its thermal conductivity b
1 w o, 17 (-1℃) TetbJb Kab%
rll −α005 m'I'/r=cL'
and Naru et al. are above [:MC-t”1.

更に厚さdB =1amのアスベスト紙を用いると、熱
伝導率bIRα05 C”/−℃)であるから、r1=
0−0172 * rat/r as !0.!i S
 ト& ルe ” イミドを用いた場合には、アスペス
を板と同程度の尚、放熱面部分の強度が問題となる場合
に杜、鉄板等に放射“物質をコーティングし、集成′マ
イカ板17尋の電気絶縁物に重合わせることが考えられ
るが、その際に、鉄板等と電気絶縁物とは羨層ねじ止め
醸して装着させ、その間に空気層ができないようにする
必要がある。
Furthermore, if asbestos paper with a thickness of dB = 1 am is used, the thermal conductivity is bIRα05 C”/-°C), so r1 =
0-0172 * rat/ra as! 0. ! iS
In the case of using ``T&LE'' imide, the Aspes is the same as the plate, but if the strength of the heat dissipation surface part is a problem, the wood, iron plate, etc. are coated with a radiant substance and the laminated ``mica plate 17'' is used. It is conceivable to overlap the electrical insulating material with a thin layer, but in this case, it is necessary to attach the iron plate etc. and the electrical insulating material with screws so that there is no air space between them.

このように放射面20と発熱体14乃至16との間の熱
抵抗rstを、放射面20と空気との間の熱抵抗rat
の略1/s  以下に設定したので、断熱層22の断熱
効果を有効ならしめ得、より多くの放射エネμギーに変
換できる。しかも断熱層22偶の熱抵抗rlを放射面2
0と空気との間の熱抵抗ratの5〜20倍に設定し九
ので、断熱層19の厚さをむやみに厚くせずとも十分に
その断熱効果を発揮して高い熱伝達効率1を呈するよう
になる。従って、断熱層22の厚さをそれ程厚くせずと
も、熱的wjLを低く抑えて、発熱体14乃至16への
入力をより多くの放射エネμギーに変換できる。尚、実
際には裏板21と天板11の上にかけられるふとんとの
間の空気層も断熱層として作用するから、ηは実際に嬬
更によくなる。
In this way, the thermal resistance rst between the radiation surface 20 and the heating elements 14 to 16 is changed to the thermal resistance rat between the radiation surface 20 and the air.
Since it is set to approximately 1/s or less, the heat insulating effect of the heat insulating layer 22 can be made effective, and more radiant energy μ can be converted. Moreover, the thermal resistance rl of the heat insulating layer 22 is the radiation surface 2
Since the heat resistance layer 19 is set to 5 to 20 times the thermal resistance between air and air, the heat insulation layer 19 can sufficiently exhibit its heat insulation effect and exhibit high heat transfer efficiency 1 without making the thickness of the heat insulation layer 19 unnecessarily thick. It becomes like this. Therefore, without increasing the thickness of the heat insulating layer 22 so much, the thermal wjL can be kept low and the input to the heating elements 14 to 16 can be converted into more radiant energy μ. In fact, since the air layer between the back plate 21 and the futon placed over the top plate 11 also acts as a heat insulating layer, η is actually much better.

このように裏板と天板(ふとん)との間の空気層も断熱
層として作用することを考慮すると、面状と−!それ自
身の断熱層の断−性はそれ程厳しくする必要はないと考
えられる。927図及び第28図はこの点を考慮して構
成した面状ヒータを使用せるヤぐらこたつを示すもので
、面状と−タ26は次のように構成されている。即ち、
27は鉄タームリボンヒータ線27&をマイカ板27b
に巻装して成る複数個の砧熱体で、これらを電気絶縁物
たる二枚のマイカ板2g、29間に挾み込んで放射板3
0に押え金A31を用いて密層状順にねじ止めしている
0以上のように構成され九発熱体27及び放射板30は
下面にガード25を装着した外枠32内に配設固定され
てiる。この固定状態において、上側の!イカ板28と
外枠32の裏板s8との間には空気層より成る断熱層5
4が形成され、この断熱層34の中間部には反射板35
が取付けられている0面状ヒータ26は以上のように構
成されている。尚、前記面状ヒータ26下面の放射面に
相当する放射板30は前述したと同様の放射物質によシ
形成されている。このように構成しても、裏板33と天
板11との間の空気層も断熱層として作用するため、断
熱効果の点でそれ程孫色はなく、実用上問題はない。
Considering that the air layer between the back plate and the top plate (futon) also acts as a heat insulating layer, the surface shape and -! It is considered that there is no need to make the insulation layer itself so severe in terms of breakability. FIG. 927 and FIG. 28 show a roof kotatsu that can use a planar heater constructed with this point in mind, and the planar heater 26 is constructed as follows. That is,
27 is iron term ribbon heater wire 27 & mica plate 27b
A radiation plate 3 is formed by sandwiching these between two mica plates 2g and 29 which are electrical insulators.
The heating element 27 and the radiation plate 30 are arranged and fixed in an outer frame 32 with a guard 25 attached to the lower surface. Ru. In this fixed state, the upper ! A heat insulating layer 5 made of an air layer is provided between the squid plate 28 and the back plate s8 of the outer frame 32.
4 is formed, and a reflective plate 35 is provided in the middle of this heat insulating layer 34.
The zero-plane heater 26 to which is attached is constructed as described above. Incidentally, the radiation plate 30 corresponding to the radiation surface on the lower surface of the planar heater 26 is formed of the same radiation material as described above. Even with this configuration, since the air layer between the back plate 33 and the top plate 11 also acts as a heat insulating layer, there is no significant difference in the heat insulating effect and there is no problem in practical use.

本発明は以上説明したように、熱源として面状と−タを
用いたので、こたつふとんを直接透過して逃げる熱及び
対流によシ逃げる熱が少なく、しかもこたつ用マットを
敷くことによりこたつ内部の温度分布が均一化され且つ
平均温度も上昇する上に、人体及びその着衣に吸収され
品い波長2.5μm以上で放射面の放射率を大きくでき
、その結果、放射面からの放射エネμギーがより多くな
9、しかもその放射スペク)pは人体及びその着衣の吸
収スペク)〃に一致するから、採暖効率が向上する。ま
友面状ヒータの上部の断熱層の断熱効果を十分に発揮さ
せることができ、熱的9諷を抑えて、発熱体への入力を
より多くの放射エネμギーに変換できる。
As explained above, since the present invention uses a planar mattress as a heat source, there is less heat escaping by directly passing through the kotatsu futon and less heat escaping by convection. In addition to making the temperature distribution uniform and increasing the average temperature, the emissivity of the radiation surface can be increased at wavelengths of 2.5 μm or more that are absorbed by the human body and its clothing, and as a result, the radiation energy μ from the radiation surface is reduced. 9, and its radiation spectrum p matches the absorption spectrum of the human body and its clothing, improving heating efficiency. The heat insulating effect of the heat insulating layer on the top of the flat heater can be fully exhibited, thermal interference can be suppressed, and the input to the heating element can be converted into more radiant energy μ.

【図面の簡単な説明】[Brief explanation of drawings]

J1g1図は黒体の放射エネμギー特性図、第2図は黒
体の放射エネμギーの分布特性図、tg s 眸p石綿
の放射特性図、agJ図は石英の放射特性図、第5図及
び第6図は夫々水及び食肉の分光透過特性図、$7図及
び1g8図は夫々木綿及び羊毛の吸光特性図、$9図及
び1810図は夫々ポリエステμ及びア七テートの分光
透過特性図、第11図は一般的な面状ヒータの断面図、
第12図拡熱抵抗関連図、第1!i図は断熱特性図、第
14図乃至第18図は零発−明の一寮施i示す夫々やぐ
らこたつの斜視図9部分縦断面図並びに面状と−タの平
面図、破断図、拡大断面図、第19図乃至第22凶状金
属酸化物の分光放射特性図、第23図乃至第25図は本
発明に係る放射物質の分光放射特性図、第26図はこた
つ内部の温度分布図、927図及び第28図は本発明の
他の実施例を示すやぐらこたつの部分縦断面図及び面状
と−タの分解斜視図である。 図中、11FiX板、13Fi面状と−!、14乃至1
6は発熱体、17.18は集成マイカ板、・20は放射
面、22は断熱層、26は面状ヒータ、27は発熱体、
28.29はマイカ板、50Fi放射板(放射面)、5
4は断熱層である。 第2図 黒a逼rIL(・o)□ 1PJ3  図 渡憂 (μyyl)−一− 第4図 液長(声(転)−東京電力a−耳7 第51!1 波長(μ鴇)→ 第6図 波長(ふmン→ 第 7 図 第8図 第9図 第10図 0 第12図     3 1%1− #、  13図 7ra1” 第14囮 11 第 15 図 1 互      2b 第19図 第z図 浪炙躯1)0 第21図 波長(声鴇)→ 第n図 通長Cμmン→ 第 3図 液長(、b m l呻 ! 24  図 濃丸にAり亀J7− 雰 、示 噌−)。 11.26図 taayノ ′0 第27図 第28図 3
The J1g1 diagram is the radiant energy μ characteristic diagram of a black body, the 2nd diagram is the radiant energy μ distribution characteristic diagram of the black body, the radiant characteristic diagram of asbestos is shown, and the agJ diagram is the radiation characteristic diagram of quartz. Figure 6 and Figure 6 are the spectral transmission characteristics of water and meat, respectively, Figure 7 and Figure 1g8 are the absorption characteristics of cotton and wool, respectively, Figure 9 and Figure 1810 are the spectral transmission characteristics of polyester μ and a7tate, respectively. Figure 11 is a cross-sectional view of a general planar heater.
Figure 12 Diagram related to heat expansion resistor, 1st! Figure i is a heat insulation characteristic diagram, and Figures 14 to 18 are a perspective view of a Yagurakotatsu, a partial vertical sectional view, a plan view of the surface, a cutaway view, and an enlarged view. 19 to 22 are spectral radiation characteristic diagrams of the harmful metal oxide; FIGS. 23 to 25 are spectral radiation characteristic diagrams of the radioactive substance according to the present invention; FIG. 26 is a temperature distribution diagram inside the kotatsu; 927 and 28 are a partial vertical sectional view and an exploded perspective view of a planar kotatsu showing another embodiment of the present invention. In the figure, 11FiX board, 13Fi surface shape and -! , 14 to 1
6 is a heating element, 17.18 is a laminated mica plate, 20 is a radiation surface, 22 is a heat insulating layer, 26 is a sheet heater, 27 is a heating element,
28.29 is mica board, 50Fi radiation plate (radiation surface), 5
4 is a heat insulating layer. Figure 2 Black a〼rIL(・o)□ 1PJ3 Zuwatari Yuu (μyyl)-1- Figure 4 Liquid head (voice (transformed)-TEPCO a-ear 7th 51!1 Wavelength (μyyl)→ Chapter Figure 6 Wavelength (Hmm → Figure 7 Figure 8 Figure 9 Figure 10 Figure 0 Figure 12 3 1% 1-#, 13 Figure 7ra1" 14 Decoy 11 15 Figure 1 Mutual 2b Figure 19 Z Figure 21 Wave length (voice) → Figure n Through length C μm → Figure 3 Liquid length (, b ml groan! 24 Figure 24 Figure 24 A turtle J7- Atmosphere, illustration) -). 11.26 taayノ'0 Figure 27 Figure 28 Figure 3

Claims (1)

【特許請求の範囲】 1、脚に支持された天板の下面に面状と一層を取付けて
構成畜れ、その面状と−Iの下面の放射面を珪酸叉社珪
酸樵化金物を主成分とし、これに分光放射波長帯域15
〜5μm及び8〜1271111におiて高i分光放射
率を有する金属酸化物等の物質の一種以上を10重量%
以上添加してなる放射物質によ)表面の放射面を形成し
て、尚該放射面の放射率を前記分光放射波長帯域2.5
〜5μm及び8〜12μ臘におiで約80%以上とする
と共に、放射面からの分光放射エネμギー分布を分光放
射波長2.5μ鳳以上に約90%以上−分布させたこと
を特徴とするやぐらこたつ。 2、脚に支持されえ天板の下面に面状と−Iを取付けて
構成され、その面状と一層の下面の放射面からの分光放
射エネμギー分布を分光放射波要約 2.5μm以上&y90%以上分布さ′せると共に、前
記放射面と発熱体間の熱抵抗を放射面と空気との間の熱
抵抗の略14 以下にしたことを特徴とするやぐらこた
つ。
[Scope of Claims] 1. A plane and a layer are attached to the lower surface of the top plate supported by the legs, and the plane and the radial surface of the lower surface of -I are made of silicate metal. component, and this has a spectral emission wavelength band of 15
~5 μm and 10% by weight of one or more substances such as metal oxides having high i spectral emissivity at i of 8 to 1271111
A radiation surface is formed on the surface using the radiation material added above, and the emissivity of the radiation surface is set to 2.5 in the spectral radiation wavelength band.
It is characterized by having an i of about 80% or more between ~5 μm and 8-12 μm, and a distribution of spectral radiant energy μ from the radiation surface of about 90% or more over a spectral radiation wavelength of 2.5 μm or more. A kotatsu tower. 2. It is constructed by attaching a plane and -I to the lower surface of the top plate that can be supported by the legs, and the spectral radiant energy μ distribution from the plane and the radiation surface on the lower surface is calculated with a spectral radiation wave summary of 2.5 μm or more &y 90% or more, and the thermal resistance between the radiation surface and the heating element is approximately 14 times or less of the thermal resistance between the radiation surface and the air.
JP56119466A 1981-07-29 1981-07-29 Kotatsu (foot warmer) in frame work Granted JPS5819647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56119466A JPS5819647A (en) 1981-07-29 1981-07-29 Kotatsu (foot warmer) in frame work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56119466A JPS5819647A (en) 1981-07-29 1981-07-29 Kotatsu (foot warmer) in frame work

Publications (2)

Publication Number Publication Date
JPS5819647A true JPS5819647A (en) 1983-02-04
JPH0240939B2 JPH0240939B2 (en) 1990-09-13

Family

ID=14762029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56119466A Granted JPS5819647A (en) 1981-07-29 1981-07-29 Kotatsu (foot warmer) in frame work

Country Status (1)

Country Link
JP (1) JPS5819647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261169B1 (en) 1997-11-13 2001-07-17 Kabushiki Kaisha Nippon Conlux Coin processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101169A (en) * 1972-12-15 1974-09-25
JPS5429936B2 (en) * 1974-04-15 1979-09-27
JPS55107462A (en) * 1979-02-13 1980-08-18 Mtp Kasei Kk Cushion sheet laminated* which has wrinkle pattern

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623651U (en) * 1979-08-02 1981-03-03

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101169A (en) * 1972-12-15 1974-09-25
JPS5429936B2 (en) * 1974-04-15 1979-09-27
JPS55107462A (en) * 1979-02-13 1980-08-18 Mtp Kasei Kk Cushion sheet laminated* which has wrinkle pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261169B1 (en) 1997-11-13 2001-07-17 Kabushiki Kaisha Nippon Conlux Coin processing device

Also Published As

Publication number Publication date
JPH0240939B2 (en) 1990-09-13

Similar Documents

Publication Publication Date Title
JP3181506B2 (en) Far-infrared radiator and far-infrared radiation method
CA2132287C (en) Radiant heater, in particular for heating a glass-ceramic hot plate
JPS5819647A (en) Kotatsu (foot warmer) in frame work
JPS59210228A (en) Radiant-energy heating or cooking device
CN108032570A (en) A kind of high-strength light marine climate resistant composite heat-insulated material and preparation method thereof
BR8005655A (en) STRIP-SHAPED MATERIAL CONSISTING OF COATED MATERIAL, CONSISTING OF FIBERS, LAMINATES OR SIMILAR TO PRODUCE INSULATION VENEZIAN, PERSIAN OR SIMILAR WINDOW COVERINGS
KR102086954B1 (en) Far-infrared ray hair dryer
JPS5819651A (en) Kotatsu (foot warmer) in frame work
JPH0155380B2 (en)
KR20210002264U (en) Iron with excellent far-infrared radiation performance
KR102224041B1 (en) Hair dryer with expansion nozzle to emit far infrared rays
KR20110017081A (en) Far infrared rays radiation sheet
JPS5819889A (en) Panel heater
KR100537042B1 (en) Manufacturing method of panel for sauna booth
JPS6227189Y2 (en)
KR200221427Y1 (en) Electric heater
KR0123576Y1 (en) Health mattres of a bed
KR0177026B1 (en) Far Infrared Radiation Mechanism
CN208907289U (en) A kind of compound microvesicle ceramic wafer of solid wood containing fever film layer
JPS6139404A (en) Heat ray wavelength converting radiation element
RU2208742C1 (en) Method for manufacture of electroheating wall panel
KR0133441Y1 (en) Pulp mattress radiating infrared ray
KR19990015888A (en) Manufacturing method of hot water ceramic mat for bed emitting far infrared rays and its hot water ceramic mat
CN2847898Y (en) Far infrared warming waistband
KR20200113091A (en) Far-infrared ray hair dryer