JPS58196476A - Radiation image multiplying tube - Google Patents

Radiation image multiplying tube

Info

Publication number
JPS58196476A
JPS58196476A JP7960782A JP7960782A JPS58196476A JP S58196476 A JPS58196476 A JP S58196476A JP 7960782 A JP7960782 A JP 7960782A JP 7960782 A JP7960782 A JP 7960782A JP S58196476 A JPS58196476 A JP S58196476A
Authority
JP
Japan
Prior art keywords
image
phosphor layer
radiation image
electron
crt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7960782A
Other languages
Japanese (ja)
Other versions
JPH059898B2 (en
Inventor
Tatsuo Hashizume
橋詰 辰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP7960782A priority Critical patent/JPS58196476A/en
Publication of JPS58196476A publication Critical patent/JPS58196476A/en
Publication of JPH059898B2 publication Critical patent/JPH059898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1645Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using electron optical imaging means, e.g. image intensifier tubes, coordinate photomultiplier tubes, image converter

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiography Using Non-Light Waves (AREA)

Abstract

PURPOSE:To display or record a visible image corresponding to a radiation image, by a method wherein a fluorescent substance layer and an electron multiplying mechanism for multiplying an electron by the optical stimulation of said layer are accommodated in a single vacuum container to make it possible to directly multiply and convert the radiation image to an electric signal which is in turn supplied to an imaging mechanism. CONSTITUTION:After X-rays permeating a subject are irradiated to the fluorescent substance layer 2 of an X-ray image multiplying tube to form a latent image on the fluorescent surface thereof, galvanometers 7, 8 are swung by the signals of saw tooth wave generators 10, 11 and the surface of the fluorescent substance layer 2 is rapidly scanned by fine laser beams from a laser beam source 9. By this scanning, an exoelectron proportional to the irradiated X-ray amount is discharged from each scanning point and multiplied an electron multiplying mechanism 3 to be collected by an output electrode 5. The current obtained from the output electrode 5 is inputted in the Z-axis of CRT 12 through an amplifier 13 and an image treating circuit 14. Because the signals of the saw tooth wave generators 10, 11 are supplied to the X-axis terminal and the Y-axis terminal of the CRT 12, a visible image corresponding to the X-ray image permeating the subject is projected to the CRT 12.

Description

【発明の詳細な説明】 この発明は、X線像等の放射線像を増倍する放射線像増
倍管、特に光刺激エキソ電子放射物質で形成した蛍光体
層と蛍光体層から放出さまた電子を増倍する電子増倍機
構とを組み合わせた放射線像増倍管に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation image intensifying tube for intensifying radiation images such as X-ray images, and in particular to a phosphor layer formed of a photostimulable exoelectron emitting material and a phosphor layer formed of a photostimulable exoelectron emitting material. This invention relates to a radiation image intensifier tube that is combined with an electron multiplier mechanism that multiplies images.

従来からX線像等の放射線像を増倍しそ1.の明るい可
視像を得るためにイメージ管が用いら1ている。
Conventionally, radiographic images such as X-ray images have been multiplied.1. An image tube is used to obtain a bright visible image.

このイメージ管は、大型真空容器内に蛍光面と光電面か
らなる入力スクリーンと出力蛍光面とを対向配設すると
共にこわ、らの両者間に電子レンズ系を構成する集束電
極と陽極とを配設゛し、X線像等の放射線像を入力スク
リーンで電子像に交換し。
This image tube consists of an input screen consisting of a phosphor screen and a photocathode, and an output phosphor screen disposed facing each other in a large vacuum container, and a focusing electrode and an anode constituting an electron lens system arranged between the two. The input screen exchanges radiation images such as X-ray images with electronic images.

こ1を電子レンズ系で加速・集束して出力蛍光面に増倍
さ1.た縮少像を形成するようにしたものである。
This 1 is accelerated and focused by an electron lens system and multiplied on the output phosphor screen. It is designed to form a reduced image.

また、この種イメージ管は、電子レンズ系による画像歪
を小さくするために入力スクリーンは球面に形成されて
いるものの2画像歪、特に周辺部の画像歪は大きく、入
力スクリーンの球面形状と電子レンズ系による増倍であ
ること、と相俟ってイメージ管の長さ方向の寸法が大き
くなる欠点があ−た。さらにイメージ管の出力像を拡大
観察するのにテレビジ菫ン装置と組み合わせらするが。
In addition, although the input screen of this type of image tube is formed into a spherical surface in order to reduce image distortion caused by the electron lens system, image distortion, especially in the peripheral area, is large, and the spherical shape of the input screen and the electron lens Coupled with the fact that the image tube is multiplied by the system, there is a drawback that the lengthwise dimension of the image tube becomes large. Furthermore, it can be combined with a television violet device to magnify and observe the image output from the image tube.

このイメージ管の出力像をテレビカメラに導くためにイ
メージ管の出力蛍光面とテレビカメラの間に光学系が用
いらするため集光効率が悪く、こ1を補う手段さして増
幅器の利得を高くするためS/N比が低下すると共にイ
メージ管とテレビジ日ン装置を含むシステム全体が高価
となるものであった。
In order to guide the output image of the image tube to the television camera, an optical system is used between the output phosphor screen of the image tube and the television camera, resulting in poor light collection efficiency.The way to compensate for this is to increase the gain of the amplifier. As a result, the S/N ratio deteriorates, and the entire system including the image tube and television equipment becomes expensive.

さらにまたイメージ管の出力像を形成するのに蛍光面を
用いているために良質の画質が得らlないものであった
Furthermore, since a phosphor screen is used to form the output image of the image tube, good image quality cannot be obtained.

この発明は上記に鑑みX線像等の放射線像をその照射線
量に応じた電気信号に直接増倍変換できると共にその変
換さまた電気信号をCRT等の像形成機構に供給するこ
とにより、放射線像に対応した可視光像が表示または記
録できるようにした放射線像増倍管を提供しようとする
もので、放射線照射を受けて潜像を形成すると共に光刺
激でエキソ電子を放出する物質を蛍光体層として用い。
In view of the above, the present invention is capable of directly multiplying and converting a radiographic image such as an X-ray image into an electrical signal corresponding to the irradiation dose, and also by supplying the electrical signal to an image forming mechanism such as a CRT. The aim is to provide a radiation image intensifier tube that can display or record visible light images corresponding to Used as a layer.

この蛍光体層と、この蛍光体層から光刺激で放出さ1.
た電子を増倍する電子増倍機構とを単一の真空容器内に
収容し放射線像増倍管を構成したものである。
This phosphor layer and the phosphor layer emitted from this phosphor layer upon light stimulation1.
A radiation image intensifier tube is constructed by accommodating an electron multiplier mechanism that multiplies the generated electrons in a single vacuum container.

以下図面に示す実施例によりこの発明の放射線像増倍管
ならびにそnを用いた放射線像形成装置について説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A radiation image intensifier of the present invention and a radiation image forming apparatus using the same will be described below with reference to embodiments shown in the drawings.

第1図はこの発明の放射線像増倍管の一実施例の構成を
示す略断面図で、(1)はガラス等で形成した真空容器
、(2)は前記真空容器(1)の入力窓(11)に面し
て設けられ、た平板状の蛍光体層、(3)は蛍光体層(
2)の後面に配設された電子増倍機・構で、複数個のダ
イメートT’b)(42)・・・・・・(46)とこの
ダイオードで増倍さ1.た電子流を捕促する出力電極(
5)とで構成さ1.ている。(6)は前記蛍光体層(2
1と電子増倍機構(3)との間に配設さ12.蛍光体層
(2)面から光刺激で放出さまたエキソ電子を電子増倍
機構(3)のダイオード(4)に収束させる集束電極、
  [12)は真空容器(1)外から蛍光体層(2)の
背面を望視できる真空容器(1)の肩部に形成した窓で
、蛍光体層(1)に蓄積さまた!像の読み出し時、この
窓(12)からレーザー光等の細い光ビームが投射さ1
て蛍光体層(2)が2次元的に走査される。なi−3,
窓Cl2)は真空容器<1)がガラスなどの透明体であ
る場合は容器(1)の外壁に不透明物質を塗布して形成
する。蛍光体層(2)を形成する蛍光物質としては、 
LiF、 Bed、 Al2O3,Ta205゜CaS
O4,BaSO4,SrSO4等の各種アルカリハライ
ド。
FIG. 1 is a schematic cross-sectional view showing the structure of an embodiment of the radiation image intensifier of the present invention, in which (1) is a vacuum container made of glass or the like, and (2) is an input window of the vacuum container (1). (11) is a flat phosphor layer provided facing the phosphor layer (3) is a phosphor layer (
2) In the electron multiplier mechanism/mechanism arranged on the rear surface, multiple dymates T'b) (42)...(46) and these diodes are used to multiply 1. The output electrode (
5) Consists of 1. ing. (6) is the phosphor layer (2)
1 and the electron multiplier mechanism (3). a focusing electrode that focuses exoelectrons emitted from the surface of the phosphor layer (2) by optical stimulation onto the diode (4) of the electron multiplication mechanism (3);
[12] is a window formed on the shoulder of the vacuum container (1) through which the back side of the phosphor layer (2) can be viewed from outside the vacuum container (1). When reading out an image, a narrow beam of light such as a laser beam is projected from this window (12).
The phosphor layer (2) is two-dimensionally scanned. nai-3,
If the vacuum container <1) is a transparent body such as glass, the window Cl2) is formed by applying an opaque substance to the outer wall of the container (1). As the fluorescent substance forming the fluorescent layer (2),
LiF, Bed, Al2O3, Ta205°CaS
Various alkali halides such as O4, BaSO4, SrSO4.

酸化物、硫化物及びこ1らの混合物が用いらn。Oxides, sulfides and mixtures thereof may be used.

例えばBeOの粉末にグラファイトを混ぜたものを基板
(例えばグラファイト)に塗布して蛍光体層(2)を形
成する。
For example, a mixture of BeO powder and graphite is applied to a substrate (eg, graphite) to form a phosphor layer (2).

こ1らの蛍光物質はX線等の放射線を照射して励起し、
その後レーザー等の光を当てると照射放射線量に比例し
たエキソ電子を放出することが知ら1.でいる。
These fluorescent substances are excited by irradiation with radiation such as X-rays,
It is known that when exposed to light such as a laser, exoelectrons are emitted in proportion to the amount of radiation irradiated.1. I'm here.

上記構成において被検体(7)を透過したX線が入射窓
(11)を介して蛍光体層(2)に照射されると、蛍光
体層(2)はそわを吸収し潜像が形成される。
In the above configuration, when the X-rays transmitted through the object (7) are irradiated onto the phosphor layer (2) through the entrance window (11), the phosphor layer (2) absorbs the fidgeting and forms a latent image. Ru.

潜像の形成後、真空容器(1)の肩部に形成さ1.た窓
(12)からレーザー光等の細く絞った光ビームを蛍光
体層(2)の背面に投射し、この光ビームで蛍光体層(
2)面を2次元走査すると、光ビームの走査点からその
走査点における照射X線量に比例した電子が放出される
After the formation of the latent image, 1. is formed on the shoulder of the vacuum container (1). A narrowly focused light beam such as a laser beam is projected onto the back surface of the phosphor layer (2) through the window (12), and this light beam illuminates the phosphor layer (2).
2) When a surface is two-dimensionally scanned, electrons proportional to the amount of X-rays irradiated at the scanning point are emitted from the scanning point of the light beam.

この光ビーム走査で放出さ1.た電子は集束電極(6)
でダイノード(4)に集束さ1.て順次増倍されて出力
電極(5)に捕促さ1.て電流として取り出さ1.る。
Emitted by this light beam scanning: 1. The electrons are focused by the focusing electrode (6)
focused on the dynode (4) at 1. are sequentially multiplied and captured by the output electrode (5).1. 1. Ru.

すなわら、出力電極(5)から蛍光体層(2)の各点に
おける照射X線量に比例し、且つ増強された電流が取り
出さn、る。
That is, an enhanced current is extracted from the output electrode (5) in proportion to the amount of X-rays irradiated at each point on the phosphor layer (2).

したがって、出力電極(5)の出力信号をCRTの2(
輝度)信号とし、光ビーム走査とCRT(7)X軸、Y
軸スイープ信号を同期させればCRT上に被写体のX線
透過像に対応した可視像が得られることになる。また、
ファクシミリ−技法を用い蛍光体層(1)のX軸方向の
光ビーム走査とCRTのX軸方向走査とを同期させ、蛍
光体層(1)のY軸方向の光ビーム走査と記録媒体の送
りとを同期させ1゜ば、印画紙に記録することができる
Therefore, the output signal of the output electrode (5) is transferred to the CRT's 2(
(brightness) signal, light beam scanning and CRT (7) X axis, Y axis
By synchronizing the axis sweep signals, a visible image corresponding to the X-ray transmitted image of the object can be obtained on the CRT. Also,
Using a facsimile technique, the light beam scanning of the phosphor layer (1) in the X-axis direction and the scanning of the CRT in the X-axis direction are synchronized, and the light beam scanning of the phosphor layer (1) in the Y-axis direction and the feeding of the recording medium are performed. It is possible to record on photographic paper if the images are synchronized by 1°.

なお、第1図では電子増倍機構(3)を蛍光体層(2)
に直交して配設し、蛍光体層(2)走査用の光ビームを
斜め方向から投射するようにしたが、蛍光体層(2)に
直交する位置に走査用光ビームの入射窓を設け。
In addition, in Figure 1, the electron multiplication mechanism (3) is replaced by the phosphor layer (2).
The light beam for scanning the phosphor layer (2) was arranged perpendicularly to the phosphor layer (2), and the light beam for scanning was projected from an oblique direction. .

第1図の窓(12)の位置に電子増倍機構を設けてもよ
い。
An electron multiplier may be provided at the position of the window (12) in FIG.

第2図は第1図構成のX線像増倍管と潜像読み出し用の
光ビーム走査機構とCRT等の像形成機構とを組み合わ
せたX線像形成システムの構成を示す図である。なお1
図中第1図と同一構成部品には同一符号が付されている
FIG. 2 is a diagram showing the configuration of an X-ray image forming system that combines the X-ray image intensifier tube configured in FIG. 1, a light beam scanning mechanism for reading out latent images, and an image forming mechanism such as a CRT. Note 1
In the figure, the same components as in FIG. 1 are given the same reference numerals.

図において+71 +81は光ビーム走査機構を構成す
るX軸用スキャニングガルバノメータならびにY軸出ス
キャニングガルバノメータで、そn、ぞ1.鏡(71)
(81)を有している。(9)はレーザー光源で、細く
絞られたレーザー光Bは前記鏡(71) (8t)を介
して真空容器(1)の窓(12)から蛍光体層(2)に
投射さ1.る。
In the figure, +71 and +81 are an X-axis scanning galvanometer and a Y-axis scanning galvanometer that constitute the light beam scanning mechanism. Mirror (71)
(81). (9) is a laser light source, and the narrowly focused laser light B is projected onto the phosphor layer (2) from the window (12) of the vacuum container (1) via the mirror (71) (8t). Ru.

α(IcIIIはそ1.ぞn、x軸、Y軸周鋸歯状波発
生器で。
α (IcIII is a sawtooth wave generator around the n, x, and y axes.

その出力信号は対応する前記ガルバノメータ(71(8
1に与えら1.鏡(71) (81)は図中矢印で示す
ように揺動さ1.る。この両鏡(71,) (81)の
揺動により、レーザー光Bは蛍光体層(2)面を2次元
的に走査する。
The output signal is transmitted to the corresponding galvanometer (71 (8)
1 given to 1. The mirrors (71) and (81) are swung as shown by the arrows in the figure.1. Ru. By swinging these mirrors (71,) (81), the laser beam B scans the surface of the phosphor layer (2) two-dimensionally.

叩はCRTで、x軸、Y軸端子には対応する前記x軸、
Y軸用鋸歯状波発生器α〔Iの出力信号が供給され、で
おり、Z軸には電子増倍機構(3)の出力電極(5)の
出力信号が増幅器α31画像処理回路α勾を介して供給
さl、ている。
The tapping is a CRT, and the x-axis and Y-axis terminals have the corresponding x-axis,
The output signal of the sawtooth wave generator α[I for the Y axis is supplied, and the output signal of the output electrode (5) of the electron multiplier (3) is supplied to the amplifier α31 and the image processing circuit α gradient on the Z axis. It is supplied via l.

上記構成で被写体透過X線がX線映像増倍管の蛍光体層
(2)に照射さ12.蛍光面に潜像が形成さ1て後、鋸
歯状波発生器叫αBの信号でガルバノメータ+7] +
81が揺動さすると、蛍光体層(2)面はレーザー光源
(9)からの細いレーザー光でもって高速に走査される
With the above configuration, the X-rays transmitted through the object are irradiated onto the phosphor layer (2) of the X-ray image intensifier.12. After a latent image is formed on the fluorescent screen, the signal from the sawtooth wave generator αB turns the galvanometer +7.
When 81 swings, the surface of the phosphor layer (2) is scanned at high speed with a narrow laser beam from a laser light source (9).

このレーザー光によ□る走査により各走査点から照射X
線量に比例したエキソ電子が放出(読み出し)さ11.
この電子は電子増倍機構(3)で増倍さ1゜で出力電極
(5)で捕促さ1.る。
Irradiation X from each scanning point by scanning with this laser beam
Exoelectrons proportional to the dose are emitted (read out)11.
These electrons are captured by the output electrode (5) with an electron multiplier (3) at a multiplication level of 1°. Ru.

出力電極(5)から得ら1.た電流は、増幅器α31.
画像処理回路α4を経てCRTQ3のZ軸に入力される
Obtained from the output electrode (5) 1. The current generated by the amplifier α31.
The signal is input to the Z axis of CRTQ3 via image processing circuit α4.

CRT a7JのX軸端子、Y軸端子には前記鋸歯状波
発生器Q(1(Illの信号が供給さ1.でいるので、
CRTt13に被写体透過X線像に対応した可視像が映
出さ1、る。
The signal of the sawtooth wave generator Q (1 (Ill) is supplied to the X-axis terminal and Y-axis terminal of the CRT a7J, so
A visible image corresponding to the transmitted X-ray image of the object is displayed on the CRTt13.

また、第2図の実施例のように蛍光体層(2)の全面に
一様な光を照射し、蛍光体層(2)に蓄積形成さ1、た
潜像を消去する消去用光源−と、この消去用光源凹の点
灯、パルスX線照射ならびにレーザー光走査(読み出し
)を制御する制御回路(161とを設け、X線照射、読
み出し、ならびに消去を第3図のタイムチャートで示す
タイミングで繰り返し制御すnばCRT Q3にリアル
タイムのX線像(動画)を表示できる。この際点線で示
す録画再生装置αりを設けておけば、パルスX線透視が
可能となる。
Furthermore, as in the embodiment shown in FIG. 2, an erasing light source is used to irradiate uniform light over the entire surface of the phosphor layer (2) and erase the latent image accumulated and formed on the phosphor layer (2). A control circuit (161) is provided to control the lighting of the erasing light source, pulsed X-ray irradiation, and laser beam scanning (reading), and the timing of X-ray irradiation, reading, and erasing is shown in the time chart of FIG. By repeatedly controlling the CRT Q3, a real-time X-ray image (moving image) can be displayed on the CRT Q3.At this time, if a recording/playback device α indicated by a dotted line is provided, pulse X-ray fluoroscopy becomes possible.

さらに第2図中一点鎖線で囲ったようにフレームメモリ
(181) 118z)と引き算回路a9を設けておけ
ばサブトラクシ目ン像を得ることができ、またCRTに
代えて記録袋!■を設けておけばX線像を印画紙または
フィルムに記録することも可能となる。
Furthermore, if a frame memory (181) 118z) and a subtraction circuit a9 are provided as shown in the dashed line in FIG. 2, a subtraction image can be obtained, and a recording bag can be used instead of a CRT! If (2) is provided, it becomes possible to record an X-ray image on photographic paper or film.

なお、第2図中C!11 i、t A/D変換器、(2
21ハD/A変換器である。また画像処理回路(141
は階調やコントラストの改善等の処理を行なうものであ
る。
In addition, C! in Figure 2! 11 i,t A/D converter, (2
It is a 21-channel D/A converter. Also, the image processing circuit (141
performs processing such as improving gradation and contrast.

上記の実施例ではX線像の増倍について説明したが、こ
の発明の放射線像増倍管は、γ線像、中性子線像の増倍
にも適用できるものである。
Although the above embodiments have explained the multiplication of X-ray images, the radiation image intensifier of the present invention can also be applied to the multiplication of gamma-ray images and neutron-ray images.

また実施例では潜像の読み出しにレーザー光を使用した
が、レーザー光に限らず可視、赤外、紫外光であっても
よく、光走査機構も実施例のガルバノメータに限定され
るものではない。
Furthermore, although laser light was used to read out the latent image in the embodiment, it is not limited to laser light, and visible, infrared, or ultraviolet light may be used, and the light scanning mechanism is not limited to the galvanometer of the embodiment.

さらに実施例では電子増倍機構をダイノードと出力電極
で構成したが、チャンネル、プレート形の電子増倍機構
等2種々の電子増倍機構が適用できるものである。
Further, in the embodiment, the electron multiplication mechanism is constructed of a dynode and an output electrode, but two types of electron multiplication mechanisms such as channel and plate type electron multiplication mechanisms can be applied.

さらにまた実施例では光ビーム走査 機構を真空容器外
に設けたが、蛍光体層、電子増倍機構と同様に真空容器
内に収容することも可能である。
Furthermore, although the light beam scanning mechanism is provided outside the vacuum container in the embodiment, it can also be housed within the vacuum container in the same manner as the phosphor layer and the electron multiplier.

以上のようにこの発明の放射線像増倍管は、光刺激でエ
キソ電子を放出する蛍光体層とこの蛍光体層から放出さ
れたエキソ電子を増倍する電子増倍機構とを単一の真空
容器内に収容したので、放射線像の電気信号への直接変
換が可能となり、且つその電気信号を画像形成に既適用
できるものである。
As described above, the radiation image intensifier of the present invention combines a phosphor layer that emits exo-electrons upon optical stimulation and an electron multiplier mechanism that multiplies the exo-electrons emitted from this phosphor layer in a single vacuum. Since it is housed in a container, it is possible to directly convert a radiation image into an electrical signal, and the electrical signal can already be applied to image formation.

したがって従来から放射線像の増倍に用いら1ていたイ
メージ管で不可欠な電子レンズ系ならびに像形成のため
の出力蛍光面が不要であるので。
Therefore, there is no need for an electron lens system or an output phosphor screen for image formation, which are indispensable in image tubes conventionally used to multiply radiation images.

放射線像から可視像への変換効率が著しるしく向上する
と共に蛍光体層の平面化と相俟って像歪のない画像が得
ら1.るものである。
1. The conversion efficiency from a radiation image to a visible image is significantly improved, and together with the planarization of the phosphor layer, an image without image distortion can be obtained.1. It is something that

また蛍光体層は放射線を吸収し潜像を形成するので、放
射線の積分量が検出されることから量子効率が良<、S
/Nの良好な画像が得られ、るものである。
In addition, since the phosphor layer absorbs radiation and forms a latent image, the integrated amount of radiation can be detected, resulting in good quantum efficiency.
/N good images can be obtained.

さらに放射線像増倍管が小型化でき、放射線像に対応し
た電気信号が得られ、そ1を直接CRT等の像表示手段
に供給できるので、肢管とCRT等を連結するテレビカ
メラ等が不要となり、構成・が簡単となるなど顕著な効
果を呈するものである。
Furthermore, the radiation image intensifier tube can be made smaller and an electrical signal corresponding to the radiation image can be obtained, which can be directly supplied to an image display means such as a CRT, so there is no need for a television camera or the like to connect the limb tube and the CRT. This provides remarkable effects such as a simplified configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明放射線像増倍管の一実施例の構成を示
す断面略図、第2図は第1図構成の放射線像増倍管を用
いた像形成システムの構成を示すブロック図、第3図は
動作説明用波形図である。 1:真空容器 2:蛍光体層 3:電子増倍機構(4・・・ダイノード、5・−・出力
電極) 6:集束電極
FIG. 1 is a schematic cross-sectional view showing the configuration of an embodiment of the radiation image intensifier of the present invention, FIG. 2 is a block diagram showing the configuration of an image forming system using the radiation image intensifier configured in FIG. 1, and FIG. FIG. 3 is a waveform diagram for explaining the operation. 1: Vacuum container 2: Phosphor layer 3: Electron multiplication mechanism (4... dynode, 5... output electrode) 6: Focusing electrode

Claims (3)

【特許請求の範囲】[Claims] (1)放射線を吸収し潜像を形成すると共に光刺激でエ
キソ電子を放出する蛍光物質で形成された蛍光体層と、
この蛍光体層から放出さ1.た電子を増倍する電子増倍
機構とを設け、こわ、ら蛍光体層と電子増倍機構とを単
一の真空容器内に収容したことを特徴とする放射線像増
倍管。
(1) A phosphor layer formed of a phosphor material that absorbs radiation to form a latent image and emits exo-electrons upon optical stimulation;
Emitted from this phosphor layer1. What is claimed is: 1. A radiation image intensifier tube, comprising: an electron multiplier for multiplying electrons, and a phosphor layer and the electron multiplier are housed in a single vacuum container.
(2)電子増倍機構は、蛍光体層から放出さnた電子を
順次増倍するダイノード群と、このダイノード群で増倍
さn、た電子流を補足する出力電極とで構成さ1.でい
るものであ′ることを特徴とする特許請求の範囲第1項
記載の放射線像増倍管。
(2) The electron multiplication mechanism consists of a dynode group that sequentially multiplies the electrons emitted from the phosphor layer, and an output electrode that supplements the electron flow multiplied by the dynode group.1. A radiation image intensifying tube according to claim 1, characterized in that the radiation image intensifying tube is
(3)真空容器は前記蛍光体層走査用光ビームの入射窓
を有しているものであることを特徴とする特許請求の範
囲第1項または第2項記載の放射線像増倍管。
(3) The radiation image intensifier tube according to claim 1 or 2, wherein the vacuum container has an entrance window for the light beam for scanning the phosphor layer.
JP7960782A 1982-05-11 1982-05-11 Radiation image multiplying tube Granted JPS58196476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7960782A JPS58196476A (en) 1982-05-11 1982-05-11 Radiation image multiplying tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7960782A JPS58196476A (en) 1982-05-11 1982-05-11 Radiation image multiplying tube

Publications (2)

Publication Number Publication Date
JPS58196476A true JPS58196476A (en) 1983-11-15
JPH059898B2 JPH059898B2 (en) 1993-02-08

Family

ID=13694700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7960782A Granted JPS58196476A (en) 1982-05-11 1982-05-11 Radiation image multiplying tube

Country Status (1)

Country Link
JP (1) JPS58196476A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511997B2 (en) * 2005-06-10 2010-07-28 株式会社リガク X-ray image reader

Also Published As

Publication number Publication date
JPH059898B2 (en) 1993-02-08

Similar Documents

Publication Publication Date Title
US3848130A (en) Selective material x-ray imaging system
US2525832A (en) Tube with composite photocathode for conversion and intensification of x-ray images
JPS58118733A (en) Radiography apparatus
US4210812A (en) X-Ray imaging diagnostic apparatus with low X-ray radiation
US4598207A (en) Storage and reconstruction apparatus for radiation image
JPH0678216A (en) Device and method for photographing radiograph
US4952794A (en) X-ray imaging system
US5115132A (en) Radiation image recording and read-out apparatus
JPH0678908A (en) Radiation image reader
JP2557265B2 (en) Energy subtraction method
JPS58196476A (en) Radiation image multiplying tube
US4493096A (en) Method of X-ray imaging using slit scanning with controlled target erase
CA1165904A (en) Radiography apparatus with a fan-shaped beam
US4843240A (en) Radiation image recording and read-out apparatus
Ando et al. Real-time radiological survey by intraoral fluoroscopic TV system to minimize radiation dose
JPH02239598A (en) Exposure compensating device of radiographic device
JPH05192318A (en) X-ray image forming device
JPH02273873A (en) Method and device for energy subtraction of radiograph
JPS63153048A (en) Radiation image data reading method and apparatus
JPS5936243A (en) Radiation detector
JPS61214860A (en) Radiation image reading method
EP0226235A1 (en) Method and apparatus for producing an X-ray photograph of a specimen
JPS59117057A (en) Radioactive ray image converter
JPS61253753A (en) X-ray image sensor
JPS6088934A (en) Radiation image detector