JPS58196333A - Magnetic particle type electromagnetic coupling device - Google Patents

Magnetic particle type electromagnetic coupling device

Info

Publication number
JPS58196333A
JPS58196333A JP8188182A JP8188182A JPS58196333A JP S58196333 A JPS58196333 A JP S58196333A JP 8188182 A JP8188182 A JP 8188182A JP 8188182 A JP8188182 A JP 8188182A JP S58196333 A JPS58196333 A JP S58196333A
Authority
JP
Japan
Prior art keywords
magnetic
cooling
passage
cooling passage
driven member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8188182A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshino
吉野 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8188182A priority Critical patent/JPS58196333A/en
Publication of JPS58196333A publication Critical patent/JPS58196333A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/002Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by a single substantially axial gap in which the fluid or medium consisting of small particles is arranged

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

PURPOSE:To improve cooling effect by passing a magnetic fluid as coolant through a cooling passage, and disposing the cooling passage adjacent to the outer peripheral surface of a driven member generating frictional heat as much as possible. CONSTITUTION:A cooling passage 15a is disposed extremely adjacent to the outer peripheral surface of a driven member 15. One end of the passage is connected to a supply path 15b, and the other end thereof is connected to a pump 17. One end of a discharge pipe 18 is connected to a discharge path 15c, and the other end therof is connected to a radiator 19. The pump 17 is connected to the radiator 19 by a pipe 20. A magnetic fluid 21 circulates through the pump 17, the supply pipe 16, the supply path 15b, the cooling passage 15a, the discharge path 15c, the discharge pipe 18, the radiator 19, the pipe 20 to the pump 17.

Description

【発明の詳細な説明】 この発明は、互いvcll状の間隙を介し対向して配設
された一対の連結主体を有し、これらの間隙に充填され
た磁性粒子に磁界を与えることにより、トルク伝達を行
なうようにした磁性粒子式電磁連結装置で、特にその冷
却構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a pair of connecting bodies disposed opposite each other through a VCL-shaped gap, and by applying a magnetic field to magnetic particles filled in these gaps, torque can be increased. This invention relates to a magnetic particle type electromagnetic coupling device for carrying out transmission, and particularly relates to its cooling structure.

この種の連結′Hwt−t、摩擦式連結装置に比して微
多くの長所を持っているが、中でも励磁電流を変化させ
ることによってトルク制御ができ、熱容量的に許される
範囲において連続スリップさせて使用が可能という卓越
した長所を有【7ている。しかし自然冷却のま\では、
連続スリップさせて使用できる熱容量的範囲が限定され
るので、水等の冷却媒体による冷却方式が数多く提案さ
れている。
This type of coupling 'Hwt-t has a number of advantages over friction type couplings, but among them, torque can be controlled by changing the excitation current, and continuous slippage can be achieved within the range permitted by heat capacity. It has the outstanding advantage of being able to be used at any time. However, with natural cooling,
Since the range of heat capacity that can be used by continuous slipping is limited, many cooling methods using cooling media such as water have been proposed.

以下、水冷式の従来装置をat図によって説明する。な
おこの第一0図に示す装置t;It一対の連結主体のう
ち一方を固定してブレーキとしたものである。第1図に
おいて、(1)ifステータ、(2)はこのステータ(
1)に内蔵され光源状の励磁コイル、(S)Iriボル
ト(図示せず)にて上記ステータ(1〕に固定さ引、ス
テータ(1)を支承するブラケットで、ベアリング(4
)(5)を介して回転軸(6)を回転自在に支承してい
る。
Hereinafter, a conventional water-cooled device will be explained using an at diagram. Incidentally, one of the pair of connecting bodies t;It shown in FIG. 10 is fixed to serve as a brake. In Figure 1, (1) if stator, (2) this stator (
A light source-like excitation coil built into the stator (1) is fixed to the stator (1) with (S) Iri bolts (not shown), and a bearing (4) is attached to the bracket that supports the stator (1).
) (5), and rotatably supports a rotating shaft (6).

[7) [、h紀ベアリング(4)(5)の軸方向移動
を阻止する止め輪N (It)はスペースカラー、(9
)は上記回転軸(6)に溶接により固着された第2の連
結主体を構成するドライブメンバ、α(lこのドライブ
メンバ(9)Kボルト(図示せず)Kて固着されたプレ
ート、■はボルト(図示せず)Kて上記ステータ(1)
 K固定さね、該ステータ(1)と後述するドリブンメ
ンバ(ロ)とを連結するブラケットである。a2ハこの
ブラケツ)(Icポル′ト(図示せず)VCよって固定
され、を記ドライブメンバ(9)の内側に所定の径方向
環状間隙を介して設けられた11!1の連結主体を構成
するドリブンメンバである。(12aX 12b) I
dこのドリブンメンバ(6)に設けられ、後述する冷却
水(ロ)が流通する給水路と排水路で、(12o)Fi
これら給水路(12m)と排水路(121))とに連通
ずる環状の冷却通路である。
[7] [, The retaining ring N (It) that prevents the axial movement of the bearings (4) and (5) is a space collar, (9
) is a drive member constituting the second connecting body fixed to the rotating shaft (6) by welding, α (l) is a plate fixed to this drive member (9) by K bolts (not shown), and ■ is Bolt (not shown) K to the stator (1)
K fixing tongue is a bracket that connects the stator (1) and a driven member (b) to be described later. a2 This bracket) (Ic port (not shown)) is fixed by VC and constitutes the connection main body of 11!1 provided inside the drive member (9) with a predetermined radial annular gap. (12aX 12b) I
d A water supply channel and a drainage channel provided in this driven member (6), through which cooling water (b) described later flows, (12o) Fi
It is an annular cooling passage that communicates with these water supply channel (12 m) and drainage channel (121).

Q3は上記ドライブメンバ(9)と上記ドリブンメンバ
(6)とが対向する環状の間1liK充填された磁性粒
子、04は上記冷却通路(12o)内を強制的に流通せ
しめられる冷却水である。
Q3 is magnetic particles filled with 1liK in the annular space between the drive member (9) and the driven member (6), and 04 is cooling water forced to flow through the cooling passage (12o).

次に上記従来装置の動作を説明する。図示していない駆
動源に結合された回転軸(6)が回転さね、ドライブメ
ンバ(9)が該回転軸(6)と一体に回転している時、
ステータ(1)に内蔵された励磁コイル(2)を給電装
置t(If!!示せず)VCより励磁すると、図中の点
線に示す如くステータ(1)、及びドライブメンバ(−
)、ドリブンメンバQIK磁束(Φ)が発生し、この磁
路の一部である磁性粒子0が、回転しているドライブメ
ンバ(9)ト、静止しているドリブンメンバ(6)との
間で固化して鎖状に結合し、ドライブメンバ(9) F
i回転軸(6)と共に停止されるか、若しくは制動され
ながら回転する。このスリップにより摩擦熱が発生し、
この摩擦熱によってドライブメンバ(9)、磁性粒子曽
、ドリブンメンバ(6)が非常に加熱される。そしてこ
れらの温度が過大となれば、上記ドライブメンバ(11
)の近傍にある励磁コイル(g)の焼損等の不具合を生
ずる。
Next, the operation of the above conventional device will be explained. When a rotating shaft (6) connected to a drive source (not shown) is rotating and the drive member (9) is rotating together with the rotating shaft (6),
When the excitation coil (2) built in the stator (1) is excited by the power supply device t (If!! not shown) VC, the stator (1) and the drive member (-
), driven member QIK magnetic flux (Φ) is generated, and magnetic particles 0, which are part of this magnetic path, are connected between the rotating drive member (9) and the stationary driven member (6). It solidifies and combines into a chain, forming the drive member (9) F
i It is stopped together with the rotating shaft (6) or rotates while being braked. This slip generates frictional heat,
This frictional heat causes the drive member (9), the magnetic particles, and the driven member (6) to become extremely heated. If these temperatures become excessive, the drive member (11
) may cause problems such as burnout of the excitation coil (g) near the excitation coil (g).

ところでこの摩擦熱を吸収するために、冷却媒体である
冷却水(ロ)が給水路(12&)から導入前れ、冷却通
路(12o)内を充満流通させられ、排水路(12b)
から排出される。このようにしてこの冷却水Q4により
ドリブンメンバ(6)が冷却され、それにより磁性粒子
斡、ドライブメンΔ(9)も冷却されるため、こ引ら近
傍の温度は下げられる。
By the way, in order to absorb this frictional heat, the cooling water (b), which is a cooling medium, is introduced from the water supply channel (12&), is made to flow through the cooling channel (12o), and then flows through the drain channel (12b).
is discharged from. In this way, the driven member (6) is cooled by this cooling water Q4, and thereby the magnetic particle box and drive member Δ(9) are also cooled, so that the temperature near the drawer is lowered.

しかしながら、と述した従来装置においては、・冷却通
路(12c)は、摩擦熱の発生するドリブンメンバ@の
外周面の内側や磁束(Φ)が通過できるだけの磁気通路
を隔てて配設ざねでいるため、つまり摩擦熱の発生する
ドリブンメンバ(6)の外周面と、その摩擦熱を吸収す
る冷却媒体Q4が流通する冷却通、路(12c)との間
の距離が長いために、この摩擦熱を十分に吸収すること
ができず、この装置の機能を十分に働かすことができな
い。また従来装置の構造のま一冷却通路(12o)をド
リブンメンバ(6)の外周[fTK近づければ磁・*(
旬が十分通過し得る磁気通路が得らねないことになり、
一方、磁気通路を十分得ようとすれば冷却通路が極小と
なるなどの欠点があつ皮。
However, in the conventional device described above, the cooling passage (12c) is arranged inside the outer circumferential surface of the driven member @ where frictional heat is generated or separated by a magnetic passage that allows the magnetic flux (Φ) to pass through. In other words, this frictional heat is cannot be absorbed sufficiently, and the function of this device cannot be fully utilized. In addition, if the cooling passage (12o) of the conventional device structure is brought closer to the outer circumference [fTK] of the driven member (6), the magnetic
It becomes impossible to obtain a magnetic path through which the season can pass through,
On the other hand, if you try to get enough magnetic paths, there are drawbacks such as the cooling path becomes extremely small.

この発明は上記のような従来装置の欠点を除失するため
になさhたもので、冷却通路に冷却媒体として磁性流体
を流通させることにより、この磁性流体を磁気回路の一
部となし、冷却通路を摩擦熱の発生するドリブンメンバ
の外局面にできるだけ近接させて設けられるようにし、
もって冷却効果の向上を図ったものである。
This invention was made in order to eliminate the drawbacks of the conventional device as described above, and by circulating a magnetic fluid as a cooling medium in the cooling passage, this magnetic fluid becomes a part of the magnetic circuit, and the cooling The passage is provided as close as possible to the outer surface of the driven member where frictional heat is generated,
This is intended to improve the cooling effect.

以下、この発明の一実施例を第2図について説明する。An embodiment of the present invention will be described below with reference to FIG.

第2図において、四はドリブンメンバで、(16a)F
iこのドリブンメンバ(至)の外lll1面に極めて近
接されて設けられた環状の冷却通路であり、その一端は
給入路(15b)K、他端は排出路(15o)VCソh
 (’ね連通している。aaFi給入管で、その一端は
上記給入路(15b)[、他端はポンプQ7)Kそれぞ
引連通している。(至)は排出管で、その一端は上記排
出路(15c)に、他端は放熱器■にそれぞれ連通して
いる。ま次上記ポンプいと上記放熱器四とは管g3で連
通している。@は磁性流体で、上記ポンプQη、給入骨
頭、給入路(15b)、冷却通路(15&)、排出路(
15o)、排出管01〜放熱器に)、管(ホ)、ポンプ
Q7)へと循環する。
In Figure 2, 4 is the driven member, (16a) F
i This is an annular cooling passage provided very close to the outer surface of this driven member (towards), one end of which is the supply passage (15b) K, and the other end is the discharge passage (15o) VC soh.
(') is an aaFi supply pipe, one end of which communicates with the above-mentioned supply passage (15b) [and the other end with the pump Q7]K. (to) is a discharge pipe, one end of which communicates with the above-mentioned discharge path (15c), and the other end communicates with the radiator (2). The pump and the radiator 4 are connected through a pipe g3. @ is a magnetic fluid, which includes the pump Qη, the feeding femoral head, the feeding passage (15b), the cooling passage (15&), and the discharge passage (
15o), the discharge pipe 01 to the radiator), the pipe (e), and the pump Q7).

なおその他の構造Fi第1図と同様であるので説明を省
略する。
Note that the other structures Fi are the same as those in FIG. 1, so the explanation will be omitted.

次にその作用について説明する。先ず、励磁コイル(2
)を励磁すると、磁束(Φ)は上記冷却通路(15a)
内の磁性流体(2)を磁気通路として点線で示す如く流
通する。
Next, its effect will be explained. First, the excitation coil (2
), the magnetic flux (Φ) flows through the cooling passage (15a).
The magnetic fluid (2) inside is used as a magnetic path to flow as shown by the dotted line.

即ち従来装置において磁束は冷却通路の外8sのみを磁
気通路としているのに対して、本発明では冷却通路(1
5&)そのものを磁気通路として構成している。なお、
冷却通路(15m)の外郭をなすドリブンメンバ(至)
の外周部近辺も僅かであるが磁気通路となっている。と
記以外の作用については、前述し次従来装置と同様であ
るので省略する◇以上のようにこの発明によれば、冷却
通路(15m)は、従来の冷却通路(12o)と比べて
、摩擦熱の発生するところであるドリブンメンバ四の外
111!にきわめて近く配設し、その内部に磁性流体を
充満流通させて、冷却通路(15a)自体を磁気通路と
しているので、磁束の流通を疎外することなく、摩擦熱
をきわめて効率よく吸収することができる。
That is, in the conventional device, the magnetic flux uses only the outer 8s of the cooling path as a magnetic path, whereas in the present invention, the magnetic flux is generated only in the outer 8s of the cooling path.
5&) itself is configured as a magnetic path. In addition,
Driven member (to) forming the outer shell of the cooling passage (15m)
There is also a magnetic path near the outer periphery, albeit slightly. The functions other than those described above are the same as those of the conventional device, so they will be omitted.◇As described above, according to the present invention, the cooling passage (15m) has a lower friction than the conventional cooling passage (12o). 111 outside of driven member 4 where heat is generated! Since the cooling passage (15a) itself is a magnetic passage by disposing the cooling passage (15a) very close to the cooling passageway (15a) and circulating magnetic fluid therein, it is possible to absorb frictional heat extremely efficiently without disturbing the circulation of magnetic flux. can.

なお、上述した実施例では磁性粒子式1[6BN!!結
装置としてブレーキ装置について説明したが、他の応用
例としてクラッチ装置においても同様であり、この場合
はドリブンメンバ(至)をベアリング等で回転自在にす
ればよい。
In addition, in the above-mentioned embodiment, the magnetic particle formula 1 [6BN! ! Although a brake device has been described as a coupling device, the same applies to a clutch device as another application example. In this case, the driven member (to) may be made rotatable using a bearing or the like.

また上記の実施例において、給入路と排出路を夫々逆と
してもよく、また放熱器のかわりに単なるタンクとして
も相当の冷却作用が得らねる。なお冷却通路(15a)
はドリブンメンバの摩擦熱の発生する部分に近接して設
ければ良く、環状である必要はない。
Further, in the above embodiment, the inlet passage and the discharge passage may be reversed, and even if the radiator is replaced by a mere tank, a considerable cooling effect cannot be obtained. In addition, the cooling passage (15a)
may be provided close to the portion of the driven member where frictional heat is generated, and does not need to be annular.

以上のようにこの発明によれば、冷却通路を、磁束の流
通を疎外することなく、摩擦熱の発生するドリブンメン
バの外INKきわめて近く設けられるので、従来装置と
比べて摩擦熱を非常に吸収しやすい優れた装置を得るこ
とができるという効果がある。また通オの磁性流体は油
中に磁性体を分散させ良ものである喪め、水で冷却する
場合のように冷却通路に防錆処理を施す必要もないとい
う効果もある。
As described above, according to the present invention, the cooling passage can be provided very close to the outer INK of the driven member where frictional heat is generated without disturbing the flow of magnetic flux, so that it can absorb frictional heat much better than conventional devices. This has the effect of providing an excellent device that is easy to use. In addition, since the magnetic fluid is a good material because the magnetic material is dispersed in the oil, there is no need to apply anti-rust treatment to the cooling passages as is the case when cooling with water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置を示す断面図、第2図はこの発明の一
実施例を示す断面図である。 図中、fl) Fiステータ、(2)は励磁コイル、(
6)は回転軸、(g)はドライブメンバ、Q3Fi磁性
粒子、(至)はドリブンメンバ、(16a)は冷却通路
、(15b)は給入路、(15G)は排出路、αGは給
入管、σ7)Fiポンプ、aSは排出管、QQti放熱
器、(ハ)は磁性流体である0尚、図中同一符号は同−
又は相当部分を示す。 代理人 葛 野 信 −
FIG. 1 is a sectional view showing a conventional device, and FIG. 2 is a sectional view showing an embodiment of the present invention. In the figure, (fl) is the Fi stator, (2) is the excitation coil, (
6) is the rotating shaft, (g) is the drive member, Q3Fi magnetic particles, (to) is the driven member, (16a) is the cooling passage, (15b) is the supply passage, (15G) is the discharge passage, αG is the supply pipe , σ7) Fi pump, aS is a discharge pipe, QQti radiator, (c) is a magnetic fluid 0 In addition, the same symbols in the figure are the same -
or a corresponding portion. Agent Shin Kuzuno −

Claims (1)

【特許請求の範囲】 +1)第1の連結主体、この第1の連結主体に対し所定
の径方向の環状間隙を介して配設さねた第2の連結主体
、上記環状間隙内に充填さ名た磁性粒子、を紀各連結主
体を磁気通路として上記磁性粒子を磁化することにより
上記各連結主体間に連結トルクを発生せしめる励磁装置
を備え、上E各連結主体の少なくとも一方の内1@Sに
おいて、上記環状間隙近辺に冷却通路を設け、この冷却
通路内に磁性流体を流通させることを特徴とする磁性粒
子式1式% (2)磁性流体の流通経路に、放熱器まfcは熱交換器
を設け、上記磁性流体を循環させるようにしたことを特
徴とする特許請求の範囲第1項記載の磁性粒子式電磁連
結装置。
[Scope of Claims] +1) A first connecting body, a second connecting body disposed with respect to the first connecting body through a predetermined radial annular gap, and a second connecting body disposed with a predetermined radial annular gap filled in the annular gap. an excitation device that generates a coupling torque between the respective coupling bodies by magnetizing the magnetic particles with each coupling body as a magnetic path; In S, a cooling passage is provided in the vicinity of the annular gap, and a magnetic particle type 1 set is characterized in that a magnetic fluid is circulated in the cooling passage. The magnetic particle type electromagnetic coupling device according to claim 1, characterized in that an exchanger is provided to circulate the magnetic fluid.
JP8188182A 1982-05-13 1982-05-13 Magnetic particle type electromagnetic coupling device Pending JPS58196333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8188182A JPS58196333A (en) 1982-05-13 1982-05-13 Magnetic particle type electromagnetic coupling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8188182A JPS58196333A (en) 1982-05-13 1982-05-13 Magnetic particle type electromagnetic coupling device

Publications (1)

Publication Number Publication Date
JPS58196333A true JPS58196333A (en) 1983-11-15

Family

ID=13758789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8188182A Pending JPS58196333A (en) 1982-05-13 1982-05-13 Magnetic particle type electromagnetic coupling device

Country Status (1)

Country Link
JP (1) JPS58196333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906324A (en) * 2016-10-13 2019-06-18 埃索欧耐迪克超动力 Share multiple MR fluid clutch devices of MR fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906324A (en) * 2016-10-13 2019-06-18 埃索欧耐迪克超动力 Share multiple MR fluid clutch devices of MR fluid
CN109906324B (en) * 2016-10-13 2022-07-29 埃索欧耐迪克超动力 Multiple MR fluid clutch apparatus sharing MR fluid

Similar Documents

Publication Publication Date Title
US2879755A (en) Fluid coupling mechanism
KR100732922B1 (en) Magnetic heater
JP5757368B2 (en) Fluidic speed reducer
KR20080105170A (en) Liquid-cooled disc brakes
JP3234145B2 (en) Power transmission device cooling structure
JPH07117466B2 (en) Eddy current power brake cooling system
JP2004522080A (en) Fully-loaded wet-run clutch using hydrodynamic cooling
US4262789A (en) Water cooled brake having mixed boundary contact between the torque transmitting surfaces
JPS58196333A (en) Magnetic particle type electromagnetic coupling device
JPS60146925A (en) Magnetic coupling device
US4362017A (en) Hydraulic torque converter
JPH0664183B2 (en) High temperature pump thermal fatigue prevention device
JPS6121614Y2 (en)
JPS5930265Y2 (en) Magnetic particle type electromagnetic coupling device
JPS6322338Y2 (en)
JPS61155828A (en) Method and device for cooling eddy current power meter
US3148294A (en) Fluid-cooled rotary electrical apparatus
JPS63149430A (en) Magnetic particle type electromagnetic connection device
JPS63149431A (en) Magnetic particle type electromagnetic connection device
JP3460454B2 (en) Viscous heater
JPS6392833A (en) Magnetic particle type electromagnetic coupling device
JPS63149428A (en) Magnetic particle type electromagnetic connection device
JPS63149427A (en) Magnetic particle type electromagnetic connection device
JPS6244199Y2 (en)
JPS6392834A (en) Magnetic particle type electromagnetic coupling device