JPS5819539A - Probe supporting mechanism - Google Patents

Probe supporting mechanism

Info

Publication number
JPS5819539A
JPS5819539A JP56117536A JP11753681A JPS5819539A JP S5819539 A JPS5819539 A JP S5819539A JP 56117536 A JP56117536 A JP 56117536A JP 11753681 A JP11753681 A JP 11753681A JP S5819539 A JPS5819539 A JP S5819539A
Authority
JP
Japan
Prior art keywords
probe
support
boat
setting device
support mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56117536A
Other languages
Japanese (ja)
Inventor
Seiichi Marumoto
清一 丸元
Nobuyasu Sakanashi
坂梨 暢泰
Ryuzo Kaneko
兼子 隆三
Akihiko Tokunaga
徳永 秋彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56117536A priority Critical patent/JPS5819539A/en
Publication of JPS5819539A publication Critical patent/JPS5819539A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/08Detecting presence of flaws or irregularities

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to securely support a probe at the standby state while it is elastically supported at the flaw detection stage by combining a support mechanism with an elastic reducibility and a mechanism for imparting a preelastic distortion. CONSTITUTION:A boat 10 containing a probe is separated from material 1. A support mechanism 11 with a proper reducibility for elastically supporting the boat 10, which is given a specified amount of preelastic distortion with a predistortion setting device 12, presses the boat 10 against the predistortion setting device 2 by a force according to the predistortion. On the other hand, at the flaw detection, the entire probe supporting mechanism is pressed against the material 1 to be inspeted with a support base 20 while the boat 10 is released from contact with the predistortion setting device 12. The boat 10 is supported so elastically with the support mechanism 11 with a proper reducibility to freely follow the positional displacement of the material 1 being inspected. This precludes the generation of oscillatory motion due to centrifugal force and mechanical vibration thereby enabling longer life of parts of the elastic support bodies.

Description

【発明の詳細な説明】 ζO脅―紘例えば違鏡式微慟機Oように、被検!!#−
!II暢位置に到達する重で鉱裸触子が待機値tに儂持
1れておp%被検査材が一饅可能な位置帆秦ゐとm触子
を砿検!1材O懺画に押しりけて被検**osiw変位
Wcas−t−taxs<*−pbes會行う微傷機O
支持機構に勇する%O″eある慟例えば、鋼管0*傷機
&C$Pいては、鋼管の製造精度上Oa界から鋼管O−
〉、偏平等拡避けられず、探傷機前後に強力な矯正機等
を設置するか又紘探傷機全体を鋼管の芯に港g/!させ
ない限シ、探傷機の中心と被検査材である鋼管の芯は一
致しない、このため探触子を鋼管O表両変位に追従させ
て探傷精度を確保すぺ(種々の機構が提案されているが
、41に被検査材が円筒形状0ものでは第1図に示すよ
うにl−)100支持装置21と被検査材1との間に相
対横変位#が生じた場合には―直(半径方向)変位に加
えて角度変位にも追従する必要−h)、鋼管の曲)量1
G−で外@100−の場脅ζO角度変位は11IIL以
上にもなる。
[Detailed Description of the Invention] ζO threat - Hiro, for example, a mirror-type micro-drying machine O, to be examined! ! #-
! As it reaches the position II, the bare metal probe is held at the standby value t, and the probe M is inspected at the position where the p% material to be inspected can be eaten! 1 material O sketch to be inspected
For example, steel pipe O-
〉, uneven expansion is unavoidable, so it is necessary to install a strong straightening machine before and after the flaw detector, or to install the entire flaw detector with the core of the steel pipe g/! The center of the flaw detector and the core of the steel pipe, which is the material to be inspected, will not coincide unless However, if the material to be inspected has a cylindrical shape at 41, as shown in FIG. It is necessary to follow the angular displacement in addition to the radial) displacement -h), the bending of the steel pipe) amount 1
At G-, the field threat ζO angular displacement outside @100- becomes more than 11IIL.

以上のようEl!触子の支持機構は3次元的な被検葺材
04両度位に探触子を追従させることができなくて拡な
らないが、高い追従応答性を持たせゐために弾性支持機
構とすることが行なわれている。この弾性支持機構とし
て例えば4I開昭50−11284号がamされている
が、この機構では、被検査材のみか運動する状態しか考
慮されておらず、探触子が回転運動をする場合には探触
子および一一トに発生する遠心力や回転に伴う機械系振
動などによ1待機中に探触子が賃振〕運動を起ζすとい
う問題点を有している。一方特公II S5−22’1
4S4#f/Cみられるよらなり、り及び回転ビ。
As above, El! The support mechanism of the probe cannot expand because it cannot make the probe follow the three-dimensional roofing material to be inspected at about 04 degrees, but in order to have high tracking response, it is possible to use an elastic support mechanism. It is being done. For example, 4I Patent Publication No. 11284/1984 has been published as this elastic support mechanism, but this mechanism only takes into account the state in which only the material to be inspected moves, and when the probe rotates, There is a problem in that the probe vibrates during standby due to centrifugal force generated in the probe and parts, mechanical vibration due to rotation, etc. On the other hand, Special Public II S5-22'1
4S4#f/C can be seen in the rotation, rotation and rotation.

O親会せによる追従機構で杜、可動部質量が大きくなゐ
九め被検査材表面変位に対する振動応答性が劣為し、ま
た大きな押付力が必要なことに加えて可動1$61多い
ために摩耗・歪等に対する整備性等O間慝点がある。
Due to the follow-up mechanism based on the parent assembly, the mass of the movable parts is large, the vibration response to the surface displacement of the inspected material is poor, and in addition to the need for a large pressing force, the movable part requires 1 $61 more. However, there is a problem with maintainability against wear, distortion, etc.

本実@紘以上の如き問題点を解決した探触子の支持機構
であル待機状態と探傷状態で探触子位置−fi蜜化す為
臘式の探傷機の探触子支持機構において、弾性的な伸縮
悸を有した支持機構とそれに予弾性歪を与えゐ機構を組
合わせによル探触子を支持基せ、探触子が被検査材から
離れている状態で唸蝿触子はrIAji!保持され、探
傷状態では上記子弾Ik歪以上の力を′加えることによ
って探触子は伸縮性のある支持機構のみによる弾性的自
由支持とするようにし*ことを特徴とした探触子支持機
構である。
Honji@Hiro This is a probe support mechanism that solves the above-mentioned problems.In order to maintain the probe position -fi in the standby state and flaw detection state, elastic The fly probe is supported by a combination of a support mechanism that has elastic expansion and contraction and a mechanism that applies pre-elastic strain to it, and the fly probe is rIAji! A probe support mechanism characterized in that the probe is held and in a flaw detection state, by applying a force greater than the above-mentioned sub-bullet Ik strain, the probe is elastically freely supported only by the elastic support mechanism. It is.

以下本発明を第2図ないしm5図に社−実施例によりて
詳述する・ $2図は待機状態を示したtので被検査材1と探触子を
内蔵した&−)1Gは離れておル、& −)10を弾性
支持するための伸縮性を有した支持機構11は予歪設定
装置12によっである定められた量の予歪を与えられて
おj)、&−)10を予歪設定装置11!に予歪に応じ
九カで押しつけて安定している。つまル予歪設定装置1
2は支持台20に剛に支持されているのでヒの状態では
ゴー)10ははぼ固定支持に近い状態で保持されてiる
。また支持台20は固層していない開閉装置によル被検
査材1oIII!近方向へ、探傷を中、める場合紘被検
査材lかも離脱する方向へ動かすことができるようにな
9ている。第3図は探傷状態を示したもので、支持台2
0にょp探触子支持機構全体が被検査#lに押しつけら
れて# −) 1 Gと予歪設定装置12紘接触状態を
解かれ、が−)1Gは伸縮性を有した支持機構11によ
る弾性支持となって被検査材lの位置変位に自由に追従
できるようになっている。
The present invention will be described in detail below using examples shown in Figures 2 to 5. Figure 2 shows the standby state, so the object to be inspected 1 and the probe are built in. A support mechanism 11 having elasticity for elastically supporting j), &-) 10 is given a predetermined amount of prestrain by a prestrain setting device 12. Pre-strain setting device 11! It is stable by pressing with nine force according to the pre-strain. Tsume pre-strain setting device 1
2 is rigidly supported by the support stand 20, so in the state of 10) 10 is held in a state close to fixed support. In addition, the support stand 20 is equipped with a non-solid opening/closing device for inspecting the material to be inspected! When the flaw detection is carried out in the near direction, the material to be inspected can also be moved in the direction of separation. Figure 3 shows the flaw detection condition.
The entire probe support mechanism is pressed against the test target #l, and the contact between #-) 1G and the prestrain setting device 12 is released, but -) 1G is caused by the elastic support mechanism 11. It is elastically supported and can freely follow the positional displacement of the inspected material l.

本図示例では予歪量の調整装置としてナラ)13が設け
られているが、シムその他の方″法による―整機構とし
てもよい、tた弾性支持機構11はシンがル化して図示
しであるが、ぺp−ズ、コイルバネ勢の弾性体でめれば
よくもちろんこれらの組合せによって構成することも可
能である。
In the illustrated example, a Nara 13 is provided as a device for adjusting the amount of pre-strain, but it may also be an adjusting mechanism using shims or other methods. However, it is sufficient to use an elastic body such as a pep-zu or a coil spring, and it is of course possible to construct a structure using a combination of these.

予歪設定装置12は探傷状態において&−)10と干渉
しその追従性を劣化させることがないような配置、形状
とする必要があ〉、弾性支持機構11の変位特性と被検
査材の変位量、変位方向を考え合わせて最適な配置とし
なけれはならないので、第2図、jI3図のように予歪
設定装置12t$−) 10に対し周方向に配置する場
合もあるし、これと直角の方向、鋼管の探傷であれば軸
方向に配置する場合もある。これらの−例としてカート
中央部に予歪設定装置を配置した例を示した%Oが、第
4図である。
The pre-strain setting device 12 must be arranged and shaped so that it will not interfere with &-) 10 in the flaw detection state and deteriorate its followability. Since the optimum arrangement must be made by considering the amount and direction of displacement, the prestrain setting device 12t$-) 10 may be arranged in the circumferential direction as shown in Fig. 2 and Fig. 3; For flaw detection of steel pipes, it may be placed in the axial direction. As an example of these, FIG. 4 shows %O, which shows an example in which a pre-strain setting device is arranged in the center of the cart.

第4図線待機状lilを示してお〉弾性支持機構として
ベローズ11−aとコイルバネ11−bを組合わせて使
用した例である。この状態でベローズ11−aおよびコ
イルバネ11−bは自由長さから設定量だけ予歪設定装
置12によ〉縮められておル、この反力が#−)10と
支持台20に剛に固定されている予歪設定装置12との
間に働いて&−) 10線支持台2011Cliii定
に近い状態で支持される。支持台20紘図示していない
開閉装置と連絡されている支持装置21によシ一定の位
置に保持されているが、探傷状態の信号が入ると開閉装
置によ〕支持装置21が動電これら0装置群を被検査材
に押しつける。この押付力會予歪の設定力よシ大きくし
ておけばバネであるベローズ11−aおよびコイルバネ
11−m5に更に歪が生じるので、被検査材に押しつけ
られた&−)10と支持台20との間隔が狭1)予歪設
定装置12・と−−)100*触部は離れて、#−)1
Gはぺp−ズ11−aと=イルバネ11−すによる非常
に可備性に富んだ支持状態で被検査材に押しつけられて
、被検査材の変位への追従を容易ならしめる、JII8
図は予歪設定管するための−と力の関係を示したもので
ある0本図では探触子等探偵機器が回転しながら探傷す
る場合を想定して力関係を示しておjPIll紘−一ト
sに働く遠心力、rは?−トを普検査材(/4イグ、丸
棒など円筒形状体)の変位に追従させるのに必要な追従
押付力、ΔFは追従逼れその他による追従押付力変動で
ある。追従押付力rは大きい方が&−)の追従性として
はよいがそれに伴う質量の増加との兼合いで適当な値が
&−)遠心力P、と弾性支持体の密着歪δ、に対応する
力P、の関に見出せ、更にΔFの変動が生じても干渉し
ない位置でカート遠心力pH1とO関に予圧P、を設定
しこれに見合う予歪りが求まる。こうして設定しておけ
ば待期状態では(p、−p、)の力によ)&−)は剛に
支持された予歪設定装置と接触しているので遠心カヤ機
械系振動による首振ル運動の発生が防げ、また探傷時に
は(δF  ’?)なる隙間を生じて予歪膜ji!装置
の拘束から離れ被検査材へO自由追従が可能である。罠
に弾性支持体の寿命唸歪(応力)振幅に依存しているが
、待機状態と探傷状態で生じる歪振幅を予歪を与えるこ
とによってδ、から(a、−a、)に小さくすることが
でき弾性支持体の部品寿命を長くすることができる。ま
た藁速探傷においては待機状態から探傷状態への移行を
迅速に行う必要があ夛、本機構はこの衝撃的な信号に対
して龜安定し7’t&−)の保持を可能にしている。
Figure 4 shows a standby state lil and is an example in which a bellows 11-a and a coil spring 11-b are used in combination as an elastic support mechanism. In this state, the bellows 11-a and the coil spring 11-b are compressed from their free lengths by a set amount by the prestrain setting device 12, and this reaction force causes them to be rigidly fixed to the #-) 10 and the support base 20. It works between the pre-strain setting device 12 which is The support stand 20 is held at a fixed position by a support device 21 that is connected to a switchgear (not shown); however, when a flaw detection status signal is received, the support device 21 is activated by the switchgear. 0 device group against the material to be inspected. If this pressing force is made larger than the pre-strain setting force, further distortion will occur in the bellows 11-a and the coil spring 11-m5, which are the springs, so that the 1) The pre-strain setting device 12 and --) 100
G is pressed against the material to be inspected in a highly flexible supported state by the peps 11-a and the spring 11-a, making it easy to follow the displacement of the material to be inspected.
The figure shows the relationship between - and force for pre-strain setting tubes. This figure shows the force relationship assuming a case where detective equipment such as a probe performs flaw detection while rotating. What is the centrifugal force r acting on s? ΔF is the follow-up pressing force required to make the test material follow the displacement of the standard test material (cylindrical body such as a /4 Ig or a round bar), and ΔF is the follow-up pressing force variation due to follow-up tightness and other factors. The larger the follow-up pressing force r is, the better the followability of &-) is, but in consideration of the accompanying increase in mass, an appropriate value should correspond to the &-) centrifugal force P, and the contact strain δ of the elastic support. Furthermore, a preload P is set at the cart centrifugal force pH1 and O at a position that does not interfere even if fluctuations in ΔF occur, and a predistortion commensurate with this is determined. With this setting, in the standby state, due to the force of (p, -p,)) & -) is in contact with the rigidly supported prestrain setting device, so that the head oscillation due to the vibration of the centrifugal kayak mechanical system will be prevented. This prevents the occurrence of movement, and also creates a gap of (δF'?) during flaw detection to prevent the pre-strained film ji! It is possible to move away from the constraints of the device and freely follow the object to be inspected. Although the trap depends on the lifetime strain (stress) amplitude of the elastic support, the strain amplitude generated in the standby state and flaw detection state can be reduced from δ to (a, -a,) by applying prestrain. This allows the elastic support to extend the life of the parts. In addition, in rapid flaw detection, it is often necessary to quickly transition from the standby state to the flaw detection state, and this mechanism is able to maintain stability against this shocking signal and maintain 7't&-).

以上に述べた利点は探触子が直線運動をしながら探傷す
る探傷機にも適用できるものであシ、また被検査材のみ
が直送又は回転搬送され探触子は定位置にて被検査材と
の接触、退避0みを行う構造O探傷設備にも適用可能で
ある。また被検査材の形状拡円筒形のみならず板状、矩
形棒状その他制限を有さないし、検出端は超音波法に限
定されること危く電磁気的な検出法等にも適用できるも
のである。
The above-mentioned advantages can be applied to flaw detectors that detect flaws while the probe moves in a straight line.Also, only the material to be inspected is directly transported or rotated, and the probe is held at a fixed position while the material to be inspected is being transported. It can also be applied to structural O flaw detection equipment that performs contact and evacuation. In addition, the shape of the material to be inspected is not limited to the expanded cylindrical shape, but also the plate shape, rectangular bar shape, and other shapes, and the detection end is limited to the ultrasonic method, so it can also be applied to electromagnetic detection methods. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は円筒形状被検査材では探触子は角度追従が必要
なことを示す概念図、第2図は本発明の実施例における
待機状態における&−)と弾性支持体および予歪設定装
置の関係を示す略図、第3図は第2図の機@関係を探傷
状態で示した図、第・4図紘♂−ト中央に予歪設定装置
を設けた場合の略図、第5図は本発明の歪と力の関係を
示したグラフである。 l・・・被検査材、 lO・・・°探触子音内蔵したが一ト、11ならびに1
1−&および11−b・・・弾性支持機構(/4ネ)、 12・・・予歪設定装置、13・−子歪量調整ナット、
20・・・弾性支持機構および予歪設定装置の支持1台
、 21・・・ざ−ト追従系の支持装置。 Ii 1 区 第 2 図 ;: 4 区
Fig. 1 is a conceptual diagram showing that the probe needs to follow the angle in the case of a cylindrical inspected material, and Fig. 2 shows the &-), elastic support, and prestrain setting device in a standby state in an embodiment of the present invention. Fig. 3 is a diagram showing the machine @ relationship in Fig. 2 in a flaw detection state, Fig. 4 is a schematic diagram showing the case where a pre-strain setting device is installed in the center of the plate, Fig. 5 is a schematic diagram showing the relationship between It is a graph showing the relationship between strain and force according to the present invention. l...material to be inspected, lO...° probe consonant built-in, one, 11 and 1
1-& and 11-b... Elastic support mechanism (/4), 12... Pre-strain setting device, 13- Child strain adjustment nut,
20... One support for an elastic support mechanism and a pre-strain setting device; 21... A support device for a target tracking system. Ii 1 Ward 2nd Figure: 4 Ward

Claims (1)

【特許請求の範囲】[Claims] 待機状膳と織傷状態で1a11A子位置が変化す為履式
0III傷機O探触子支持機111において、弾性的な
伸線at有し九支持機構とそれに予弾性歪を与え為−梼
を龜会わせによ)探触子を支持させ、探触子が彼検l!
材から離れて−る状態で嬬探触子は圃電保**れ、探傷
状態では上記予弾性歪以上の力會加えることにようて榔
触子は伸縮11!06る支持機構O李によゐ弾性的自由
支持とするようにしたことを時機とした探触子支持機構
Since the position of the 1a11A probe changes between the standby state and the weaving state, the 1a11A probe support machine 111 has an elastic wire drawing at, and a support mechanism for giving pre-elastic strain to it. (Let him hold his head) Support the probe, and let the probe touch him!
In the state where it is separated from the material, the probe maintains its field power**, and in the flaw detection state, the probe expands and contracts by applying a force greater than the pre-elastic strain mentioned above to the support mechanism Oli. The probe support mechanism takes advantage of the fact that it has a highly elastic free support.
JP56117536A 1981-07-27 1981-07-27 Probe supporting mechanism Pending JPS5819539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56117536A JPS5819539A (en) 1981-07-27 1981-07-27 Probe supporting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56117536A JPS5819539A (en) 1981-07-27 1981-07-27 Probe supporting mechanism

Publications (1)

Publication Number Publication Date
JPS5819539A true JPS5819539A (en) 1983-02-04

Family

ID=14714219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56117536A Pending JPS5819539A (en) 1981-07-27 1981-07-27 Probe supporting mechanism

Country Status (1)

Country Link
JP (1) JPS5819539A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335086B2 (en) * 1971-08-02 1978-09-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335086B2 (en) * 1971-08-02 1978-09-25

Similar Documents

Publication Publication Date Title
US3846795A (en) Early warning material failure indicator
US8365584B1 (en) Apparatus for inspecting turbomachine components in-situ
JP4361269B2 (en) Pneumatic control system and method for forming a deformable mirror in a lithographic projection system
US2936185A (en) Laterally movable pipe joint with bellows
US6198564B1 (en) Optical scanning system
US3781576A (en) High temperature ultrasonic transducer
JPS5819539A (en) Probe supporting mechanism
US3028754A (en) Measuring instrument
US9147571B2 (en) Welded bellows for semiconductor manufacturing device
JPS60209370A (en) Pipe transfer device
US7486068B2 (en) Rotating head for nondestructive tests
WO2020078042A1 (en) Optical lens spherical diaphragm support apparatus
US20080085371A1 (en) Fixturing methods and apparatus for thermal spray systems and processes
Kuo Optical tests of an intelligently deformable mirror for space telescope technology
US3704681A (en) Variable depth, remotely selective seismic cable depth controller
US3202974A (en) Fluid supported members
US2921596A (en) Electro-pneumatic vane and bellows system with feedback arrangement
Wang et al. Piezoelectric Adaptive Shell Reflectors for Future Space Telescopes
US20220399137A1 (en) Method and mechanical design of a flexure interface for ultra-high-vacuum nanopositioning invar base near-zero-length feedthrough
JP2003130550A (en) Seal mechanism of rotary kiln
US2894171A (en) Magnetrons
SU1229503A1 (en) Universal silphon compensator
GB1423811A (en) Method of and apparatus for adapting an angle weld ultrasonic inspection transducer
JPH03115912A (en) Optically measuring instrument for internal diameter of tube
GB2129554A (en) Attitude gyro for projectile