JPS5819537A - Abnormality detector for particle counter - Google Patents

Abnormality detector for particle counter

Info

Publication number
JPS5819537A
JPS5819537A JP56118922A JP11892281A JPS5819537A JP S5819537 A JPS5819537 A JP S5819537A JP 56118922 A JP56118922 A JP 56118922A JP 11892281 A JP11892281 A JP 11892281A JP S5819537 A JPS5819537 A JP S5819537A
Authority
JP
Japan
Prior art keywords
circuit
counting
counts
value
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56118922A
Other languages
Japanese (ja)
Other versions
JPH023132B2 (en
Inventor
Akira Nishigaki
西垣 彰
Miyuki Yamada
美雪 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sysmex Corp
Original Assignee
Sysmex Corp
Tao Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sysmex Corp, Tao Medical Electronics Co Ltd filed Critical Sysmex Corp
Priority to JP56118922A priority Critical patent/JPS5819537A/en
Publication of JPS5819537A publication Critical patent/JPS5819537A/en
Publication of JPH023132B2 publication Critical patent/JPH023132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1425Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1024Counting particles by non-optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To achieve accurate detection of abnormal counting and erroneous counting by determining abnormality from a difference or an error between acutual counts and the maximum or minimum value which was only memorized for respective time intervals beforehand. CONSTITUTION:Particles pulse signals from a line 13 are sent to shift registers 1 and 3. A signal for starting the counting is inputted to a line 14 while a signal for ending thereof into a line 15. On the other hand, a clock pulse generator circuit 11 generates pulses at specified time intervals set by dividing the counting time and actuates comparators 5 and 6 to compare counts of shift registers 1 and 2 and 3 and 4 and the register 2 memorizes the maximum value of the counts while the register 4 the minimum value. The clock pulses also reset the shift register 1 and 3 through a delay circuit 12. Based on the counts thus obtained, a subtraction circuit 7, a division circuit 8 and an abnormality discrimination circuit 9 are actuated after the end of the counting and an alarm 10 starts to work when any count exceeds the limit.

Description

【発明の詳細な説明】 本発明は、血球などの粒子を計数する装置において、外
来ノイズによる異状計数や、ドリフトなどによる誤計数
を適格に検知し、測定データに誤差が混入するのを防止
することができる異状検出装置に関するものである。
[Detailed Description of the Invention] The present invention properly detects abnormal counts due to external noise and erroneous counts due to drift, etc. in a device that counts particles such as blood cells, and prevents errors from being mixed into measurement data. The present invention relates to an abnormality detection device capable of detecting abnormalities.

従来、外来雑音を検知する有効な手段としては。Conventionally, this is an effective means of detecting external noise.

粒子検出装置の粒子検出パルスが、たとえば1秒間ずつ
の時間間隔に区切って前後のパルス数を比較した場合に
、はぼ一定の値を示すことから、ノイズなどによる信号
の局部的な増加を−それぞれのインターバルの前後のパ
ルス数の差をとってその差が所定の値を越えたときを異
状状態とし、異状信号を発生するなどして検知する方法
がとられていた。
When comparing the number of pulses before and after the particle detection pulse of a particle detection device divided into time intervals of 1 second, for example, the number of pulses before and after is almost constant, so local increases in the signal due to noise etc. A method has been used in which the difference between the number of pulses before and after each interval is taken, and when the difference exceeds a predetermined value, it is determined to be an abnormal state, and the abnormal state is detected by generating an abnormal signal.

しかしこの種従来の方法は、急激な状態の変化を検知す
るにはきわめて有効である反面、ドリフトや一検出部の
緩やかな汚れなどKよる感度変化などに対してはあまり
効果がなく、異状の発見が遅れてしまうという欠点があ
った。
However, while this type of conventional method is extremely effective in detecting sudden changes in conditions, it is not very effective in detecting sensitivity changes due to K, such as drift and gradual contamination of the detection area, and is not effective in detecting abnormalities. The drawback was that discovery was delayed.

通常、液体に浮態する血球などの粒子を計数するには1
粒子が1個宛通過できるような狭い通路を設け、この通
路に粒子の浮態液を通過させ、液と粒子との電気インピ
ーダンスの差、あるいは光学的な差異に基づいて粒子を
検出して電気信号に変換し、さらに粒子信号よりも低く
かつ不要なノイズや他の粒子信号よりも大きいレベルの
闇値電圧を有する閾値回路により、所定の粒子信号だけ
を通過させて1個宛計数する方法が用いられている。
Normally, to count particles such as blood cells floating in a liquid, 1
A narrow passageway that allows each particle to pass through is provided, and a liquid in which the particles are suspended is passed through the passageway. Particles are detected based on the difference in electrical impedance between the liquid and the particles, or the optical difference, and electrical There is a method of converting it into a signal and then counting each particle by passing only a predetermined particle signal using a threshold circuit that has a dark value voltage that is lower than the particle signal and higher than unnecessary noise and other particle signals. It is used.

一般に一計数測定時における異状状態とは−たとえば外
来からの前記閾値電圧レベルよりも大きいノイズ信号が
混入した場合−検出領域の通路に詰りを生じた場合、検
出領域の通路に汚、れを生じて検出感度が低下した場合
−粒子の浮態液を移送する手段に変動を生じて流速が変
動した場合、または粒子の浮態液の攪拌が不足で示均−
な粒子の分布を示す試料を測定した場合などが挙げられ
る。
In general, abnormal conditions during one count measurement are: - For example, when a noise signal larger than the threshold voltage level from an external source is mixed in. - When a passage in the detection area is clogged, when the passage in the detection area is contaminated. If the detection sensitivity decreases due to fluctuations in the means for transporting the particle suspension, or if the flow rate fluctuates due to fluctuations in the means for transporting the particle suspension, or due to insufficient stirring of the particle suspension.
For example, when measuring a sample that shows a specific distribution of particles.

また血球などの生体粒子は液のpHや浸透圧などKよっ
て破壊されることがあり一破壊過程の粒子を計数測定し
た場合には、検出パルス数が時間とともに減少して真の
測定値が得られないといった結果を招く、またさらに、
血球のうち白血球などの血球の全体に対する割合の小さ
い粒子を測定する場合などにおいては一赤血球をサポニ
ンなどの溶血剤により破壊させ−0血球のみを残留せし
めて測定するが、赤血球の溶血が不十分のときKも時間
とともに検出パルスが減少するといった測定ミスが生ず
る。
In addition, biological particles such as blood cells can be destroyed by K, such as the pH and osmotic pressure of the liquid. When counting and measuring particles in the process of destruction, the number of detected pulses decreases over time and the true measured value cannot be obtained. In addition,
When measuring particles that make up a small proportion of blood cells, such as white blood cells, one red blood cell is destroyed with a hemolytic agent such as saponin, and only -0 blood cells remain for measurement, but the hemolysis of red blood cells is insufficient. In this case, a measurement error occurs in which the number of detected pulses decreases with time for K as well.

本発明は上記の諸点に鑑みなされたもので、計数測定時
間を所定の時間インターバルに分割する回路と、各分割
時間における計数値の最大値と最小値のみを別々に記憶
させる回路と、最大値と最小値との差−および差の割合
が所定の限界値を越えたときに異状信号を発生せしめる
回路とから異状検出装置を構成することにより、異状計
数や誤計数を確実に検出することができる粒子計数装置
の異状検出装置を提供せんとするものである。
The present invention has been made in view of the above points, and includes a circuit that divides counting measurement time into predetermined time intervals, a circuit that separately stores only the maximum and minimum values of count values in each divided time, and By configuring an abnormality detection device from a circuit that generates an abnormality signal when the difference between and the minimum value and the ratio of the difference exceeds a predetermined limit value, it is possible to reliably detect abnormal counts and erroneous counts. The purpose of the present invention is to provide an abnormality detection device for a particle counting device that can be used in a particle counting device.

以下一本発明の構成を図面に基づいて説明する。The configuration of the present invention will be explained below based on the drawings.

第1図は本発明の装置の一実施態様を示す系統的説明図
−第2図〜第4図は実測例における計数値と時間インタ
ーバルとの関係を示すグラフである。
FIG. 1 is a systematic explanatory diagram showing one embodiment of the apparatus of the present invention, and FIGS. 2 to 4 are graphs showing the relationship between count values and time intervals in actual measurement examples.

第1図において、L’13−4はそれぞれシフトレジス
タで、シフトレジスタ1−2が直列に、シフトレジスタ
3−4が直列に接続されている。
In FIG. 1, L'13-4 are shift registers, and shift registers 1-2 and 3-4 are connected in series, respectively.

5はシフトレジスタ1−2に接続されたディジタル比較
器、6はシフトレジスタ6.4に接続されたディジタル
比較器である。7はシフトレジスタ2−4に接続された
引算回路、8はシフトレジスタ2−4に接続された割算
回路−9は引算回路7−割算回路8に接続された異状判
定回路、10はこの異状判定回路9に接続された警報装
置−11はディジタル比較器5.6に接続されたり一ロ
ックパルス発生回路−12はこのクロックパルス発生回
路11およびシフトレジスタ1.3に接続された遅延回
路である。
5 is a digital comparator connected to shift register 1-2, and 6 is a digital comparator connected to shift register 6.4. 7 is a subtraction circuit connected to the shift register 2-4; 8 is a division circuit connected to the shift register 2-4; 9 is an abnormality determination circuit connected to the subtraction circuit 7-division circuit 8; 10 The alarm device 11 connected to this abnormality judgment circuit 9 is connected to the digital comparator 5.6, and the lock pulse generation circuit 12 is connected to the clock pulse generation circuit 11 and the shift register 1.3. It is a circuit.

粒子パルス信号は線路16により2つのシフトレジスタ
1−2に送られる。一方一計数測定の開始信号は線路1
4に、終了信号は線路15に入力される。クロックパル
ス発生回路11は前記開始信号−終了信号によって制御
され、たとえば1秒間隔のクロックパルスを発生し一デ
ィジタル比較器5−6に送る。ディジタル比較器5はシ
フトレジスタ1,2に一時記憶された計数値を比較し。
The particle pulse signals are sent by line 16 to two shift registers 1-2. On the other hand, the start signal for one counting measurement is line 1.
4, the termination signal is input to line 15. The clock pulse generating circuit 11 is controlled by the start signal and the end signal, and generates clock pulses at intervals of, for example, one second and sends them to one digital comparator 5-6. Digital comparator 5 compares the count values temporarily stored in shift registers 1 and 2.

シフトレジスタ2に記憶された計数値よりも大きな値が
シフトレジスタ1に計数されたときに−シフトレジスタ
1の計数値をシフトレジスタ2に移送させる。同様にデ
ィジタル比較器6はシフトレジスタ4に一時記憶された
計数値とシフトレジスタ6の計数値とを比較し、シフト
レジスタ6の計数値の方が小さいときに、シフトレジス
タ4に計数値を移送させる。この操作はディジタル比較
器5−6からシフトレジスタ1,13.4にそれぞれ接
続されている線路1117を介して行なわれる。さらに
クロックパルス発生回路11のクロックパルスは、遅延
回路12により時間をずらしたリセット信号となり一シ
フトレジスタ1.6の内容をリセットし、再びつぎのク
ロック信号までの間のパルス数を計数する。計数開始直
後のシフトレジスタ1−6の計数値はそのままシフトレ
ジスタ2,4に移送され、比較はつぎのクロックパルス
から行なわれる。最後の計数値はクロックの途中で停止
するために一端数が生じ上記操作は禁止される。
When a value larger than the count value stored in the shift register 2 is counted in the shift register 1, the count value of the shift register 1 is transferred to the shift register 2. Similarly, the digital comparator 6 compares the count value temporarily stored in the shift register 4 with the count value of the shift register 6, and when the count value of the shift register 6 is smaller, transfers the count value to the shift register 4. let This operation takes place via a line 1117 which is connected from the digital comparator 5-6 to the shift register 1, 13.4, respectively. Further, the clock pulse of the clock pulse generating circuit 11 is turned into a reset signal with a time shift by the delay circuit 12, which resets the contents of the first shift register 1.6, and counts the number of pulses until the next clock signal. Immediately after the start of counting, the count values of shift registers 1-6 are transferred as they are to shift registers 2 and 4, and comparison is performed from the next clock pulse. Since the final count value stops in the middle of the clock, a fraction occurs and the above operation is prohibited.

以上のようにして=シフトレジスタ2には各クロックパ
ルス間の計数値の最大のもの一シフトレジX14には最
小のものが一時記憶されるので−これらの計数値に基づ
いて計数途中に−あるいは計数測定の終了後に引算回路
7、割算回路8−異状判定回路9を作動させ、所定の限
界値を越えたときに警報装置10を作動させる。比較的
粒子密度の小さい場合には、計数される粒子数の絶対値
が小さいため、全粒子数に対する割合を見る必要があり
1割算回路が重要となるが、一方、高密度の粒子数が計
数されている場合には、多少のノイズ信号は隠れてしま
う?それがあり、差で判定することが望ましい。
As described above, the maximum count value between each clock pulse is temporarily stored in the shift register 2, and the minimum count value is temporarily stored in the shift register X14. After the measurement is completed, the subtraction circuit 7, the division circuit 8 and the abnormality determination circuit 9 are activated, and when a predetermined limit value is exceeded, the alarm device 10 is activated. When the particle density is relatively low, the absolute value of the number of particles counted is small, so it is necessary to look at the ratio to the total number of particles, and the division by 1 circuit is important. If it is counted, will some noise signal be hidden? Therefore, it is desirable to judge based on the difference.

通常1粒子計数に供される血液などの試料は。Samples such as blood are usually subjected to single particle counting.

比較的希薄な軟菌にまで希釈され、測定後にもとの比率
に換算される。よく用いられる希釈倍率は赤血球計数の
場合で5万倍程度であり一原血で500万個/襲畠の場
合は100個/w程度の粒子の浮態液となる。たとえば
、これの250−について測定を行ない一計数回路に至
る回路に50分の1の分周回路を設けると− (100個/s11つx 25Qss”x 1150 
=500個となり一原血の万の位までの有効数字が得ら
れる。
It is diluted to a relatively dilute soft tissue and converted to the original ratio after measurement. A commonly used dilution ratio is about 50,000 times for counting red blood cells, which results in a floating liquid containing about 5 million particles per raw blood/about 100 particles/w for Sobatake. For example, if we measure 250- of these and install a 1/50 frequency dividing circuit in the circuit leading to one counting circuit, - (100 pieces/s11 x 25Qss" x 1150
= 500, and you can get the effective figures up to the ten thousandth place of one original blood.

したがって粒子検出パVスは50倍の2万5千個程度で
あり、1回の測定に要する時間を10秒前後とすると、
1秒当りの粒子検出パルス数は2500個程度となる。
Therefore, the number of particle detection paths is approximately 25,000, which is 50 times larger, and the time required for one measurement is approximately 10 seconds.
The number of particle detection pulses per second is approximately 2,500.

つぎに実測例について説明する。第2図〜第4図は縦軸
に計数値を、横軸に時間インターバルを示している。第
2図は通常の計数値の各インターバフ1/(1秒間)K
ついて示しており、最大値が2535、最小値が251
5であり、最大、最小の差の割合は0.8憾程度である
。ところが第3図のように、計数値がバラつくと誤差が
数幅にも達するようになる。また第4図のように一計数
値が時間とともに減少するような場合には、最大値は初
期値であシ、最小値は最終値である。この場合も数喘の
誤差が生ずる。したがって異状判定回路9の限界値を1
−2憾程度に設定することにより異状を検知することが
できる。さらに高濃度の粒子に対しては、との誤差の割
合が小さくなるために一絶対値そのものが有効となる。
Next, an actual measurement example will be explained. In FIGS. 2 to 4, the vertical axis shows the count value, and the horizontal axis shows the time interval. Figure 2 shows the normal count value for each interval buff 1/(1 second)K
The maximum value is 2535 and the minimum value is 251.
5, and the ratio of the maximum and minimum difference is about 0.8. However, as shown in Figure 3, if the counted values vary, the error can reach several degrees. Further, when a count value decreases over time as shown in FIG. 4, the maximum value is the initial value and the minimum value is the final value. In this case as well, an error of several fractions will occur. Therefore, the limit value of the abnormality judgment circuit 9 is set to 1.
Anomalies can be detected by setting the value to around -2. Furthermore, for particles with a high concentration, the ratio of error between and becomes small, so one absolute value itself becomes effective.

したがってこの場合には、異状判定回路の限界値を下記
のように設定することができる。
Therefore, in this case, the limit value of the abnormality determination circuit can be set as follows.

(最大値)−(最小値)ζ25(実計数値2500のl
呪)これらの値を越えたときに異状と判定し、警報装置
10を作動させる。
(Maximum value) - (Minimum value) ζ25 (l of actual count value 2500
When these values are exceeded, it is determined that there is an abnormality and the alarm device 10 is activated.

以上の判定は必要に応じて計数測定の途中で行ない一警
報を発すると途中で測定を停止させ一異状原因を確認し
た後、再度の計数測定をうながす方法、あるいは測定終
了後、印字や表示の際に同時にマークさせる方法などが
とられる。
The above judgments can be made during the count measurement as necessary, and if an alarm is issued, the measurement is stopped midway, and the cause of the abnormality is confirmed, followed by prompting the count measurement again, or after the measurement is completed, printing or displaying At the same time, a method is used to mark the data at the same time.

本発明の装置は上記のように、各時間インターバルにお
ける計数値の最大値、最小値のみを記憶し−その差およ
び誤差の割合から異状を判断するために1判定が確実に
行なわれ、また比較的簡単な回路構成であり、従来の粒
子計数装置に内蔵させるだけで一異状を適格に判定させ
ることができるという効果を有している。
As described above, the device of the present invention stores only the maximum and minimum values of the count values in each time interval, and one judgment is reliably made in order to judge an abnormality from the difference and error ratio, and the comparison It has an extremely simple circuit configuration, and has the effect of being able to accurately determine a single abnormality simply by incorporating it into a conventional particle counting device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発叫の装置の一実施態様を示す系統的説明図
−第2図〜第4図は実測例における計数値と時間インタ
ーバVとO関係を示すグラフである。 L 2.5−4・・・シフトレジスタ、5,6−・・デ
ィジタ゛ル比較器、7・・・引算回路−8・・−割算回
路。 9・・・異状判定回路−10−・・警報装置、11・・
・クロックパルス発生回路、1・2−・−遅延回路−1
6−14,15−1117・・・線路 特許出願人 東亜医用電子株式会社 第2図 % m A ン9− i−@−(4’、θ第4図 %閤Aンダーl心し1今す
FIG. 1 is a systematic explanatory diagram showing one embodiment of the present shouting device, and FIGS. 2 to 4 are graphs showing the relationship between the count values and time intervals V and O in actual measurement examples. L 2.5-4...Shift register, 5,6-...Digital comparator, 7...Subtraction circuit -8...-Division circuit. 9...Abnormality determination circuit-10-...Alarm device, 11...
・Clock pulse generation circuit, 1・2-・-Delay circuit-1
6-14, 15-1117...Line patent applicant Toa Medical Electronics Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 計数測定時間を所定の時間インターバルに分割する
回路と、各分割時間における計数値の最大値と最小値の
みを別々に記憶させる回路と、最大値と最小値との差、
および差の割合が所定の限界値を越えたときに異状信号
を発生せしめる回路とからなることを特徴とする粒子計
数装置の異状検出装置。
1. A circuit that divides the counting measurement time into predetermined time intervals, a circuit that separately stores only the maximum and minimum values of the count value in each divided time, and the difference between the maximum and minimum values,
and a circuit that generates an abnormality signal when the ratio of the difference exceeds a predetermined limit value.
JP56118922A 1981-07-28 1981-07-28 Abnormality detector for particle counter Granted JPS5819537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118922A JPS5819537A (en) 1981-07-28 1981-07-28 Abnormality detector for particle counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118922A JPS5819537A (en) 1981-07-28 1981-07-28 Abnormality detector for particle counter

Publications (2)

Publication Number Publication Date
JPS5819537A true JPS5819537A (en) 1983-02-04
JPH023132B2 JPH023132B2 (en) 1990-01-22

Family

ID=14748502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118922A Granted JPS5819537A (en) 1981-07-28 1981-07-28 Abnormality detector for particle counter

Country Status (1)

Country Link
JP (1) JPS5819537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213850A (en) * 1984-04-09 1985-10-26 Hitachi Ltd Particle analyzer
JPS6258383A (en) * 1985-09-09 1987-03-14 Dan Kagaku:Kk Automatic measuring instrument for floating fine grain
JPS62134542A (en) * 1985-12-07 1987-06-17 Hitachi Electronics Eng Co Ltd Data processing system of fine particle detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213850A (en) * 1984-04-09 1985-10-26 Hitachi Ltd Particle analyzer
JPS6258383A (en) * 1985-09-09 1987-03-14 Dan Kagaku:Kk Automatic measuring instrument for floating fine grain
JPS62134542A (en) * 1985-12-07 1987-06-17 Hitachi Electronics Eng Co Ltd Data processing system of fine particle detector
JPH0577017B2 (en) * 1985-12-07 1993-10-25 Hitachi Electr Eng

Also Published As

Publication number Publication date
JPH023132B2 (en) 1990-01-22

Similar Documents

Publication Publication Date Title
IL26915A (en) Particle analyzing apparatus and method of utilizing multiple apertures
CA1171299A (en) Coincidence-error correcting apparatus and method
CA1279698C (en) Debris detector
US4653078A (en) Method and apparatus for detecting occurrence of clogging conditions by counting particles suspended in a liquid method
US3868498A (en) Method and apparatus for determining errors during counting of particles
JPS5819537A (en) Abnormality detector for particle counter
US3963983A (en) Pulse amplitude discriminating circuit
US3936741A (en) Method and apparatus for providing primary coincidence correction during particle analysis utilizing time generation techniques
US4016492A (en) Pulse discriminator and misprobe detector for digital logic tester probe
CA1091350A (en) Particle-density measuring system
US3963909A (en) Method and apparatus for computation in a kinetic analyzer
JPS5950342A (en) Method and device for correcting coincident error when counting particle of two kind
JPH0989908A (en) Method of detecting liquid level by automatic hemocytometer
JP2876677B2 (en) How to check the wheel speed pulse
JPS5825144A (en) Method and apparatus for analyzing blood
JPS58113735A (en) Analyzing device for blood
JPH0375833B2 (en)
JPS5764151A (en) Ae monitor
JP2997576B2 (en) Output method of unit flow rate signal for leakage inspection in fluidic gas meter
JPS61126447A (en) Particle analyzing instrument
JPS5836296B2 (en) Flowmeter
JPS61262616A (en) Radioactive waste measurement control apparatus
JP2982347B2 (en) Pressure sensor and self-diagnosis method for pressure sensor
JPS6317018Y2 (en)
JPH0862336A (en) Radiation measuring device with abnormality diagnostic function