JPS58193901A - Capacity compensation device for closed hydraulic circuit - Google Patents

Capacity compensation device for closed hydraulic circuit

Info

Publication number
JPS58193901A
JPS58193901A JP6637682A JP6637682A JPS58193901A JP S58193901 A JPS58193901 A JP S58193901A JP 6637682 A JP6637682 A JP 6637682A JP 6637682 A JP6637682 A JP 6637682A JP S58193901 A JPS58193901 A JP S58193901A
Authority
JP
Japan
Prior art keywords
pressure
air
air chamber
oil
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6637682A
Other languages
Japanese (ja)
Inventor
Katsuaki Ishizuka
石塚 克明
Eiki Izumi
和泉 鋭機
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP6637682A priority Critical patent/JPS58193901A/en
Publication of JPS58193901A publication Critical patent/JPS58193901A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/06Details
    • F15B7/10Compensation of the liquid content in a system

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To get a large effective capacity with a small pressure difference by a method wherein a pressurizied tank is provided with an oil chamber and an air chamber which are separated by a flexible membrane, and the air chamber is provided with a neumatic pressure supplying source and means for setting air discharging pressure set to such a higher pressure than said predetermined pressure through the pressure setting means. CONSTITUTION:A pressurized tank 15 is divided into an oil chamber A and an air chamber B by a flexible membrane 16, and guards 17 and 18 are arranged in each of the chambers so as to define the maximum deformation degree of the spacer film 16. To the air chamber B is connected a safety valve 19 and its setting pressure is lower than the set pressure in the relief valve 11. The air chamber B is connected to a compressor 23 through an air tank 22, the set pressure in a pressure relief valve 21 in the midway thereof is lower than the predetermined pressure in the safety valve 19. In the air tank 22 is arranged a safety valve 24.

Description

【発明の詳細な説明】 本発明は油圧閉回路において発生する作動油の過不足を
補償するだめの油圧閉回路の容量補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a capacity compensation device for a hydraulic closed circuit that compensates for excess or deficiency of hydraulic fluid occurring in the hydraulic closed circuit.

一般に油圧回路のアクチュエータとして使用される片ロ
ンドシリンダはロンド側とヘッド側の受圧面積が異なる
ため、これを油圧閉回路に接続してロンド側またはヘッ
ド@に等量駆動した場合、その回路の容積が変化する。
Generally, a single rond cylinder used as an actuator in a hydraulic circuit has different pressure receiving areas on the rond side and the head side, so if it is connected to a hydraulic closed circuit and driven equally to the rond side or head @, the volume of that circuit will be changes.

この容積変化に伴う作動油の過不足を補償するため、従
来、その回路内に油圧モータや油圧シリンダを設けたり
、別途アキュムレータを接続する等の手段が採用されて
いた。しかし、油圧モータや油圧シリンダは高価である
ため、通常はアキュムレータを用いることが多い。
In order to compensate for the excess or deficiency of hydraulic fluid due to this volume change, conventional methods have been adopted such as providing a hydraulic motor or a hydraulic cylinder in the circuit, or connecting a separate accumulator. However, since hydraulic motors and hydraulic cylinders are expensive, accumulators are usually used.

第1図は油圧閉回路にアキュムレータを接続した従来の
油圧閉回路を示す図である。
FIG. 1 is a diagram showing a conventional hydraulic closed circuit in which an accumulator is connected to the hydraulic closed circuit.

第1図で1は可変容量ポンプ、2は片ロツドシリンダで
ある。3は可変容量ポンプ1と片ロッドシリンダ20ロ
ンド側とを接続するための回路、4は可変容量ポンプ1
と片ロツドシリンダ2のヘッド側とを接続する回路であ
る。5は回路3および4の中間に配設された切換弁であ
り、可変容量ポンプ1から片ロンドシリンダ2への圧油
の供給、鐘断な行う06はフラッシング弁で回路3およ
び4の高圧側の圧力により作動し、低圧側回路とチャー
ジ回路14を接続する低圧選択弁である。l。
In FIG. 1, 1 is a variable displacement pump, and 2 is a single rod cylinder. 3 is a circuit for connecting the variable displacement pump 1 and the single rod cylinder 20 Rondo side, 4 is the variable displacement pump 1
This is a circuit that connects the head side of the single rod cylinder 2. 5 is a switching valve disposed between circuits 3 and 4, and 06 is a flushing valve for supplying pressure oil from the variable displacement pump 1 to the single cylinder cylinder 2. This is a low pressure selection valve that connects the low pressure side circuit and the charge circuit 14. l.

8.9および30は逆止弁であり、後述のチャージポン
プ、7ラツシング弁に接続されていて、片ロンドシリン
ダ2の容積変化や漏洩などKより不足した流量は前記フ
ラッシング弁6およびこれらの逆止弁7.8.9および
30v介して回路3または4へ供給されるようになって
いる口達止弁8および30は主として可変容量ポンプ1
への供給、また、逆止弁1は王として片ロツドシリンダ
2への供給に用いられる。
8. 9 and 30 are check valves, which are connected to a charge pump and a lashing valve 7, which will be described later.If the flow rate is insufficient than K due to a change in volume or leakage of the single cylinder cylinder 2, the check valves 8 and 30 The stop valves 8 and 30, which are supplied via the stop valves 7.8.9 and 30v to the circuit 3 or 4, are primarily connected to the variable displacement pump 1.
Also, the check valve 1 is used as a king to supply the single rod cylinder 2.

10はチャージポンプであり、前述のように回路3また
は41Ci量不足を生じた場合、逆止弁1゜8 、9 
、30.7ラツシング弁6およびチャージ回路14を介
して圧油を回路3または4へ供給する。
10 is a charge pump, and when there is a shortage of Ci in circuit 3 or 41 as described above, check valves 1°8, 9
, 30.7 supplies pressure oil to the circuit 3 or 4 via the lashing valve 6 and the charging circuit 14.

11は+7 +J−7弁であり、一定の圧力が設定され
ていて、回路14の圧力がその設定圧を超えると回路1
4の圧油をタンクへ戻すものである。12はタンクを示
し、チャージボン110とリリーフ弁11の一方側が接
続されている。
11 is a +7 +J-7 valve, and a constant pressure is set, and when the pressure in circuit 14 exceeds the set pressure, circuit 1
This is to return the pressure oil from step 4 to the tank. Reference numeral 12 indicates a tank, to which one side of the charge bong 110 and the relief valve 11 are connected.

13は例えばブラダ式のような気体を封入する型の7キ
ユムレータである。アキュムレータ13は回路3,4に
生じた余分なエネルギーを有する圧油な蓄積したり、前
述した片ロンドシリンダ2の容積変化や漏洩などKよる
流量不足な補ったりする。アキュムレータ13は逆止弁
1,30およびフラッシング弁6を介して回路3,4へ
蓄積している圧油を供給するようになっており、また、
圧油の蓄積は、チャージポンプ10から逆止弁9を介し
て、または回路3,4から7ラツシング弁6、チャージ
回路14を介して行うよう罠なっている。
Reference numeral 13 denotes a 7-cumulator of a type such as a bladder type that encloses gas. The accumulator 13 accumulates pressurized oil having excess energy generated in the circuits 3 and 4, and compensates for insufficient flow rate due to volume change or leakage of the single cylinder cylinder 2 described above. The accumulator 13 supplies the accumulated pressure oil to the circuits 3 and 4 via the check valves 1 and 30 and the flushing valve 6, and
The accumulation of pressure oil takes place from the charge pump 10 via the check valve 9 or from the circuits 3 and 4 via the 7 lashing valve 6 and the charge circuit 14.

このような油圧閉回路において、回路3.4に流量不足
を生じるとチャージポンプ10は逆止弁9、チャージ回
路14、逆止弁7,30およびフラッシング弁6を介し
て圧油を供給して流量不足を補償するが、チャージポン
プ10の容量は小さくてこの流量不足を補償するには充
分でないので、同時にアキュムレータ13からもチャー
ジ(ロ)路14゜逆止弁I、30および7ラツシング弁
6を介して圧油を供給する。−万、回路3および4の圧
力差が大きくなると、その圧油は7ラツシング弁6、チ
ャージ回路141に経てアキュムレータ13に蓄積され
、また、チャージポンプ10からの圧油も逆止弁9を介
してアキュムレータ13KmF覆される。
In such a hydraulic closed circuit, when a flow shortage occurs in the circuit 3.4, the charge pump 10 supplies pressure oil via the check valve 9, the charge circuit 14, the check valves 7 and 30, and the flushing valve 6. However, since the capacity of the charge pump 10 is small and not sufficient to compensate for the insufficient flow rate, the accumulator 13 is also connected to the charge (b) path 14°, the check valves I, 30 and 7, and the lashing valve 6. Supply pressure oil through. - When the pressure difference between circuits 3 and 4 increases, the pressure oil passes through the 7 lashing valve 6 and the charge circuit 141 and is accumulated in the accumulator 13, and the pressure oil from the charge pump 10 also passes through the check valve 9. The accumulator 13KmF is overturned.

回路3−4の低圧側の圧力、したがってチャージ回路1
4の圧力がリリーフ弁110設定圧な超えると、圧油は
リリーフ弁11を通ってタンク12へ戻されるので、+
7 +7−7弁110設定圧以上の圧力においては、圧
油はアキュムレータ13に蓄積されることはない。
Pressure on the low side of circuits 3-4 and therefore charge circuit 1
4 exceeds the relief valve 110 set pressure, the pressure oil is returned to the tank 12 through the relief valve 11, so that +
Pressure oil is not accumulated in the accumulator 13 at a pressure equal to or higher than the 7+7-7 valve 110 set pressure.

このように、アキュムレータ13は閉回路の作動中、圧
油の蓄積、供給を繰返すが、アキュムレータ13が充分
にその動作を行うためには、アキュムレータ13自体、
相蟲大きな有効面積をもっことが必要である。ところで
、アキュムレータ13が大きな有効答t#をもつKは、
#!2図に示すように、大きな圧力差を設定するか、ま
たはアキュム)レータ自体の容器の容積を大きくしなけ
ればならない。
In this way, the accumulator 13 repeatedly accumulates and supplies pressure oil during closed circuit operation, but in order for the accumulator 13 to perform its operation sufficiently, the accumulator 13 itself,
It is necessary to have a large effective area. By the way, K for which the accumulator 13 has a large effective answer t# is
#! As shown in Figure 2, either a large pressure difference must be set or the volume of the container of the accumulator itself must be increased.

第2図はアキュムレータ13円の封入気体の谷検−圧力
曲線ik承し、横軸に容積■が、縦軸に圧力Pがとっで
ある。この曲線は周知の Pv−K(Kは常数)の弐に
したがう(ただし、温度は一定とする。)0図において
、Plはリリーフ弁11の設定圧、P2はアキュムレー
タ13の最低使用圧力(アキュムレータ13は容器の容
積からこれ以下の圧力では使用されない。)である。■
1は圧力Plのときの、また■2は圧力P2のときの7
キユムレータ13の封入気体の容積を示す。
FIG. 2 shows a valley test-pressure curve of the gas enclosed in an accumulator of 13 yen, with the horizontal axis representing the volume (2) and the vertical axis representing the pressure P. This curve follows the well-known Pv-K (K is a constant) (however, the temperature is constant). In the figure, Pl is the set pressure of the relief valve 11, P2 is the minimum operating pressure of the accumulator 13 13 is not used at a pressure lower than this based on the volume of the container.) ■
1 is when the pressure is Pl, and ■2 is 7 when the pressure is P2.
The volume of gas enclosed in the cumulator 13 is shown.

アキュムレ〜り13が最低使用圧力P2にあるとき、回
路3,4に過剰流量が生じると、アキュムレ〜り13に
は圧油が蓄積される。圧油が蓄積されてゆ(につれて、
蓄積された圧油はアキュムレータ13円の封入気体を圧
縮する。そして、この新入気体の容積と圧力は第2図の
曲線上の点に2から点に、に向5にしたがって容積を減
少し圧力を増加する〇一方、アキュムレータ13円に占
める圧油の容積は増加する。圧力が増加して圧力IJ1
に達するとリリーフ弁11が開いてチャージ回路14を
タンク12に接続するので、前記封入気体の圧力は圧力
11以上にはならない。このときの容積■1がアキュム
レータ13内の封入気体の最小容積となる。
When the accumulator 13 is at the minimum working pressure P2, if an excessive flow rate occurs in the circuits 3 and 4, pressure oil is accumulated in the accumulator 13. As pressure oil accumulates,
The accumulated pressure oil compresses the gas enclosed in the accumulator 13 yen. The volume and pressure of this new gas decrease from point 2 to point 5 on the curve in Figure 2, and the pressure increases in the direction of 5. On the other hand, the volume of pressure oil that occupies 13 yen of the accumulator increases. Pressure increases and pressure IJ1
When the pressure is reached, the relief valve 11 opens and connects the charge circuit 14 to the tank 12, so that the pressure of the sealed gas does not exceed pressure 11. The volume 1 at this time becomes the minimum volume of the gas enclosed in the accumulator 13.

この状態で、回路3.4に流量不足を生じると、アキュ
ムレータ13円に蓄積された圧油はチャージ回路14、
逆止弁7,30およびフラッシング弁6を介して放出さ
れてゆく。このため、容積−圧力の変化が、曲線上の点
に1から点に、へ向’IKしたがって前記封入気体の容
積は増加しく当然作動油の容積は減少する。)、圧力は
減少してゆく。圧力が最低使用圧力P2に達すると圧力
はそれ以下とはならず、そのときの前記封入気体の容積
v2が7キユムレータ13内の封入気体の最大容積とな
る0以上の説明から明らかなよ5に、アキュムレータ1
3の有効容積は、V、 −Vlであり、この有効容積を
得るための圧力差は、Pl−P、である。そこで、アキ
ュムレータ13の容積が一定の大きさであれば、より大
きな有効面積を得るためKは、前述のように圧力Pl即
ち、リリーフ弁の設定圧Plを高くして容積VxYさら
に小さくし、圧力義を大きくすればよいこととなる〇 しかしながら、IJ IJ−7弁の設定圧P、を高くす
ると回路の圧損が大きくなり望ましくなく、また、第2
因の曲線からも明らかなように、圧力F1を高くしても
有効容積の増加はきわめて少ない。さらに、圧力P1を
高くして圧力差を大きくすると、前記封入気体が断熱圧
縮する変化により瞬間的に高温になり、例えばブラダ式
アキュムレータの場合は圧油と封入気体とを隔てている
ブラダが燃焼して火災や爆発を発生するおそれがあるの
で、封入気体として空気は使用できず、窒素等の不活性
カスを使用しなければならない。
In this state, if a flow shortage occurs in the circuit 3.4, the pressure oil accumulated in the accumulator 13 will be transferred to the charge circuit 14,
It is discharged via the check valves 7 and 30 and the flushing valve 6. Therefore, the volume-pressure change is from point 1 to point on the curve in the direction 'IK'.Therefore, the volume of the enclosed gas increases and naturally the volume of the hydraulic fluid decreases. ), the pressure decreases. When the pressure reaches the minimum working pressure P2, the pressure does not become lower than that, and the volume v2 of the sealed gas at that time becomes the maximum volume of the sealed gas in the 7 cumulator 13.0 As is clear from the above explanation, , accumulator 1
The effective volume of 3 is V, -Vl, and the pressure difference to obtain this effective volume is Pl-P. Therefore, if the volume of the accumulator 13 is constant, in order to obtain a larger effective area, the pressure Pl, that is, the set pressure Pl of the relief valve, is increased to further reduce the volume VxY, and the pressure However, if the set pressure P of the IJ IJ-7 valve is increased, the pressure loss in the circuit will increase, which is undesirable.
As is clear from the curve, the effective volume increases very little even if the pressure F1 is increased. Furthermore, when the pressure P1 is increased to increase the pressure difference, the sealed gas becomes adiabatically compressed and instantly becomes high temperature. For example, in the case of a bladder type accumulator, the bladder separating the pressure oil and the sealed gas burns. Air cannot be used as the sealing gas, and an inert gas such as nitrogen must be used, as there is a risk of fire or explosion.

一方、大きな有効容積を得るためアキュムレータ自体を
大きくすることは、アキュムレータの専有面積や1董を
増大することとなり望ましいことではないっ 本発明の目的は、小さな圧力差で大きな鳴動容積を得る
ことができ、また、気体として空気を使用することがで
きる油圧閉回路の容量補償装置を提供するにある。
On the other hand, increasing the size of the accumulator itself in order to obtain a large effective volume increases the area occupied by the accumulator and increases the number of units.The purpose of the present invention is to obtain a large ringing volume with a small pressure difference. The object of the present invention is to provide a capacity compensation device for a hydraulic closed circuit that can also use air as a gas.

この目的を達成するため、本発明は、油圧閉回路に接続
された油室、空気が供給される空気室、この両室を遮断
する変形可能の隔膜を備えた加圧タンクと、前記空気室
に逆止弁を介して接続された圧力設定手段と、この圧力
設定手段に接続された空気圧供給源と、前記空気室に接
続された前記圧力設定手段の設定圧より高い圧力に設定
された空気排出圧設定手段とを設けたことを特徴とする
0以下、本発明を第3図に示す一実施例について説明す
る。
To achieve this objective, the present invention provides a pressurized tank having an oil chamber connected to a closed hydraulic circuit, an air chamber to which air is supplied, a deformable diaphragm separating both chambers, and the air chamber. a pressure setting means connected to the air chamber via a check valve; an air pressure supply source connected to the pressure setting means; and air set to a pressure higher than the set pressure of the pressure setting means connected to the air chamber. An embodiment of the present invention shown in FIG. 3 will be described below.

第3図で、閉回路を構成する可変容量ポンプ1、片ロン
ドシリンダ2、回路3.4、切換弁5、フラッシング弁
6、逆止弁7,8.9.30、チャージポンプ10、リ
リーフ弁11、タンク12およびこれらの接続について
はwE1図に示す油圧閉回路のものと岡じであるので説
明は省略するっ15は加圧タンクである。加圧タンク1
5はそのほぼ中央に設けられた隔膜[Kより油室Aと空
気室Bとに分けられる。隔膜16はゴム等のような伸縮
変形自在な材料で作られ、油室Aの圧油が空気i[Bに
、また空気室Bの空気が油室Aに侵入しないように画室
を隔てている。油室Aと空気室Bとの容積の割合は隔膜
16の変形により変化する。・17および18はそれぞ
れ油室Aおよび空気室BK&けられたガードである。各
ガード17゜18は油および空気が自由に連通できるよ
うに例えばメツシュ状に、また、球面形状に形成され、
さらに2所定の空気圧および油圧を支えるだけの強度を
もち、しかも、少なくともガード17は油に侵されない
材料で作られている0隔膜16が油圧または空気圧によ
りガード17または18に接触すると、隔膜16はそれ
以上変形しない。
In Fig. 3, variable displacement pump 1, single cylinder cylinder 2, circuit 3.4, switching valve 5, flushing valve 6, check valves 7, 8, 9, 30, charge pump 10, and relief valve constitute a closed circuit. 11, tank 12, and their connections are the same as those of the hydraulic closed circuit shown in Fig. wE1, so the explanation will be omitted. 15 is a pressurized tank. Pressurized tank 1
5 is divided into an oil chamber A and an air chamber B by a diaphragm [K provided approximately in the center thereof. The diaphragm 16 is made of a stretchable and deformable material such as rubber, and separates the compartments so that the pressurized oil in the oil chamber A does not enter the air i[B, and the air in the air chamber B does not enter the oil chamber A. . The volume ratio between the oil chamber A and the air chamber B changes as the diaphragm 16 deforms.・17 and 18 are oil chamber A and air chamber BK & cut guard respectively. Each of the guards 17 and 18 is formed, for example, in a mesh shape or in a spherical shape so that oil and air can freely communicate with each other.
Furthermore, when the diaphragm 16 comes into contact with the guard 17 or 18 due to hydraulic or pneumatic pressure, the diaphragm 16 It will not deform any further.

19は加圧タンク15の空気室Bと連通している安全弁
である。安全弁19には所定の圧力が設定できるように
なっており、空気室Bの空気圧がこの設定圧を超えると
安全弁19が開いて空気室Bの空気を逃がす。安全弁1
9の設定圧は前記リリーフ弁11の設定圧よりも低い圧
力に選定されている。
19 is a safety valve communicating with the air chamber B of the pressurized tank 15. A predetermined pressure can be set in the safety valve 19, and when the air pressure in the air chamber B exceeds this set pressure, the safety valve 19 opens and the air in the air chamber B is released. safety valve 1
The set pressure 9 is selected to be lower than the set pressure of the relief valve 11.

20は空気室Bと連通ずる逆止弁であり、空気室Bから
の空気の流れを遮断する。
20 is a check valve that communicates with the air chamber B and blocks the flow of air from the air chamber B.

21は、一方が逆止弁20と、他方がエアタンク22と
接続されている減圧弁である。減圧弁21には所定の圧
力が設定されるようになっており、空気室Bの空気圧が
この設定圧を超えると減圧弁21が閉じてエアタンク2
2がら空気室Bへの空気の供給を遮断する。減圧弁21
の設定圧は前記安全弁190設定圧よりも低い圧力に選
足されている。
21 is a pressure reducing valve connected to the check valve 20 on one side and the air tank 22 on the other side. A predetermined pressure is set in the pressure reducing valve 21, and when the air pressure in the air chamber B exceeds this set pressure, the pressure reducing valve 21 closes and the air tank 2
2, the supply of air to air chamber B is cut off. Pressure reducing valve 21
The set pressure is selected to be lower than the set pressure of the safety valve 190.

23は加圧タンク15の空気室Bへ空気を供給するニア
コンプレッサであり、ニアコンプレッサ23からの圧縮
空気はエアタンク22に蓄積される。24はエアタンク
220安全弁であり、エアタンク22の圧力が所定値を
超えるとこれを放出してその圧力を所定値以下に保持し
危険を防止する0 次に、こり実施例の動作を、!4図に示す加圧タンク1
5の空気室Bの容積−圧力曲線に基づいて説明する。
A near compressor 23 supplies air to the air chamber B of the pressurized tank 15, and compressed air from the near compressor 23 is stored in the air tank 22. 24 is an air tank 220 safety valve, which releases air when the pressure of the air tank 22 exceeds a predetermined value to maintain the pressure below a predetermined value and prevent danger. Pressurized tank 1 shown in Figure 4
The explanation will be based on the volume-pressure curve of air chamber B in No. 5.

この実施例の加圧タンク15は作動油の供給、蓄積を繰
返す点においては第1図の油圧回路におけるアキュムレ
ータ13と同じである。即ち、回路3.4Kd普不足を
生じると、油室Aからチャージ回路14、逆止弁I、3
0およびフラッシング弁6を介して回路3,4に圧油を
供給し、回路3゜4に遇鯛流量が生じると、フラッシン
グ弁6、チャージ回路14を介して圧油を蓄積する。し
かし、その動作は前記アキュムレータ13とは異なる。
The pressurized tank 15 of this embodiment is the same as the accumulator 13 in the hydraulic circuit shown in FIG. 1 in that it repeatedly supplies and accumulates hydraulic oil. That is, if a circuit shortfall of 3.4Kd occurs, the flow from oil chamber A to charge circuit 14, check valves I and 3
Pressure oil is supplied to the circuits 3 and 4 through the flushing valve 6 and the flushing valve 6, and when the flow rate of red sea bream occurs in the circuit 3 and 4, the pressure oil is accumulated through the flushing valve 6 and the charging circuit 14. However, its operation is different from that of the accumulator 13 described above.

ここで、加圧タンク15の動作を説明jる第4図におけ
る容積−圧力曲線について述べるO第4図においては、
横軸に空気室Bの容積■が、縦軸に空気室Bの圧力Pが
とっである。Prはリリーフ弁11の設定圧、Paは安
全弁19の設定圧、Pcは減圧弁210役定圧を示す。
Here, in FIG. 4, which describes the volume-pressure curve in FIG. 4, which explains the operation of the pressurized tank 15,
The horizontal axis represents the volume of the air chamber B, and the vertical axis represents the pressure P of the air chamber B. Pr indicates the set pressure of the relief valve 11, Pa indicates the set pressure of the safety valve 19, and Pc indicates the constant pressure of the pressure reducing valve 210.

各設定圧の関係は前述のようにPr>Pa>Pcとされ
ている。また、■1は隔膜16がガード18と接触した
ときの空気室Bの容積、■2は隔膜16がガード17と
接触したときの空気室Bの容積を示す。
As described above, the relationship between the set pressures is Pr>Pa>Pc. Further, (1) indicates the volume of the air chamber B when the diaphragm 16 contacts the guard 18, and (2) indicates the volume of the air chamber B when the diaphragm 16 contacts the guard 17.

今、回路3または4に過剰流量が生じ、回路3のとする
。この蓄積は回路3または4の低圧側の圧力が油室Aの
圧力より高い状MKある限り、油室Aの圧力がリリーフ
弁11の設定圧Prになるまで続(0このとき、隔膜1
6はガード18と接触し、空気ii!Bの圧力は安全弁
19の圧力Paと等しくなっている。減圧弁21の圧力
Pcは圧力Paより低く設定しであるので、空気室Bと
減圧弁21は逆止弁20により遮断されている。油室A
の圧力は空気室Bの圧力Paより高い。
Now assume that an excess flow occurs in circuit 3 or 4, and that circuit 3 has an excessive flow rate. This accumulation continues as long as the pressure on the low pressure side of circuit 3 or 4 is higher than the pressure in oil chamber A, until the pressure in oil chamber A reaches the set pressure Pr of relief valve 11 (at this time, diaphragm 1
6 contacts guard 18 and air ii! The pressure B is equal to the pressure Pa of the safety valve 19. Since the pressure Pc of the pressure reducing valve 21 is set lower than the pressure Pa, the air chamber B and the pressure reducing valve 21 are shut off by the check valve 20. Oil room A
The pressure in the air chamber B is higher than the pressure Pa in the air chamber B.

この状態において、回路3またはnKi量不足が生じる
と、油室Aから圧油が放出され、その圧力は圧力Frか
ら低下し空気室Bの圧力Paと等しくなる。この状態が
第4図に示す点に、における状態である。
In this state, if a shortage of circuit 3 or nKi occurs, pressure oil is released from oil chamber A, and its pressure decreases from pressure Fr to become equal to pressure Pa of air chamber B. This state is the state at the point shown in FIG.

さらに、回路3または4の流量不足が続いていると、空
気室Bの空気圧により油gAからの圧油の放出が続き、
隔膜16はガード18から離れる。
Furthermore, if the flow rate in circuit 3 or 4 continues to be insufficient, pressure oil continues to be released from oil gA due to the air pressure in air chamber B.
Diaphragm 16 separates from guard 18.

空気室Bの空気圧は安全弁19の設定圧Pa以下となる
が減圧弁21の設定圧Pcよりは扁いので、空気gBへ
の空気の供給は減圧9F:21によりfiwlrされて
いる。空気室Bの空気圧により隔膜16か押されて変形
するので、空気室Bの柊Stは増加してゆき、その圧力
は減少してゆ(。この容積と圧力の変化は、点Klから
曲mlに沿って推移し、この間、空気室Bの圧力と油室
Aの圧力とは等しい状態にある。
The air pressure in the air chamber B is lower than the set pressure Pa of the safety valve 19, but lower than the set pressure Pc of the pressure reducing valve 21, so the supply of air to the air gB is fiwlr by the reduced pressure 9F:21. Since the diaphragm 16 is pushed and deformed by the air pressure in the air chamber B, the Hiiragi St in the air chamber B increases and its pressure decreases (this change in volume and pressure is calculated from the point Kl to the curve ml). During this period, the pressure in the air chamber B and the pressure in the oil chamber A are equal.

空気室Bの圧力が減圧弁21の設定圧PCまで減少し、
前記推移が曲idI上の点に4に運すると、減圧弁21
は開いてエアタンク22からの空気を空気室Bへ供給す
る。したかつて、空気4Bの圧力はそれ以上減少するこ
とはない。一方、v4膜16は空気室B o)圧力によ
りガード17の方へ向ってさらに変形を軟けるので、油
室Aかりはひき続き作動油が放出され、仝急呈Bの容積
は増加を糾ける。即ち、伊気至Bは圧力PCで一短のま
ま容積は増加する。こり変化は点に4からの直#Mll
で不される。
The pressure in the air chamber B decreases to the set pressure PC of the pressure reducing valve 21,
When the transition reaches point 4 on the curve idI, the pressure reducing valve 21
is opened to supply air from the air tank 22 to the air chamber B. Once that happens, the pressure of the air 4B will not decrease any further. On the other hand, the V4 membrane 16 further softens its deformation toward the guard 17 due to the pressure in the air chamber B, so hydraulic oil continues to be released from the oil chamber A, and the volume of the pressure chamber B increases. Let's go. That is, the volume of Ikeshi B increases while the pressure PC remains constant. The stiffness changes directly from 4 to the point #Mll
It will be rejected.

1111i展16が変形を続けて逐にガード17に接触
して直線■上の点に、に達すると、空気室Bは圧力PC
1容積v2の一定した状態となる。このとき、まだ回路
3または4の圧力が油室Bの圧力より低いと油盲人から
は圧油が放出される。
When the 1111i expansion 16 continues to deform and comes into contact with the guard 17 one by one and reaches a point on the straight line, the air chamber B has a pressure PC.
It becomes a constant state of 1 volume v2. At this time, if the pressure in circuit 3 or 4 is still lower than the pressure in oil chamber B, pressure oil is released from the oil blind person.

この状態から、回路3または4に余剰な流量が生じて回
路14の圧力が高くなると、圧油が油室Aへ蓄積されて
ゆくので、油室Aの圧力は上昇し、空気i[Bの圧力P
Cと等しくなる。さらに蓄積が続くと、隔膜16は油室
Aの圧力に押されてガード17から離れる。このとき、
空気室Bの容積は減少するのでその圧力は上昇して減圧
弁21の設定圧20以上になるので、逆止弁20は空気
室Bから減圧弁21への空気の通過を遮断する。油室A
に圧油が蓄積されてゆくにつれて隔膜16はガード18
の方へ向って変形を続け、空気室Aの容積は減少してゆ
くとともに圧力は増加してゆく。この容積−圧力の変化
は点Ksから曲線IK沿って推移し、この間、空気iB
と油NAの圧力は尋しい状態にある。
In this state, when excess flow occurs in circuit 3 or 4 and the pressure in circuit 14 increases, pressure oil accumulates in oil chamber A, so the pressure in oil chamber A increases, and the air i [B] increases. pressure P
It becomes equal to C. As the accumulation continues, the diaphragm 16 is pushed away from the guard 17 by the pressure in the oil chamber A. At this time,
As the volume of the air chamber B decreases, its pressure increases and becomes equal to or higher than the set pressure 20 of the pressure reducing valve 21, so the check valve 20 blocks the passage of air from the air chamber B to the pressure reducing valve 21. Oil room A
As pressure oil accumulates in the diaphragm 16, the guard 18
As the air chamber A continues to deform toward , the volume of the air chamber A decreases and the pressure increases. This volume-pressure change changes along the curve IK from the point Ks, during which time the air iB
The oil NA pressure is in a strange state.

空気室Hの圧力が安全弁19の設定圧Paまで増加し、
曲4mlに沿う推移が点に・に達すると、安全弁19が
開いて空気量Bの空気を室外へ放出する。したかつて、
空気室Bの圧力はそれ以上増加することはない。一方、
隔・M#16は油室Aの圧力によりカード18の方へ向
ってさらに変形を続けるので、油室Aにはひき絖ぎ圧油
が蓄積され、空気室B17)容積は減少を続ける。この
貧化は点に6からの直線■で示されるD 隔膜16が変形を絖けて遂にガード18と嵌没して直耐
■上の点に3に達すると、空気室Bは圧力Pa、容積■
1の−にした状態となる。このとき、まだI!12I略
3または4の圧力が高(油室Aへの蓄積が続くと、油4
Aの圧力は空気%Hの圧力Paよりも^くなり、IJ 
IJ−)弁11の設定圧Prまで上昇するっ このような動作において、容積−圧力の変化がIL巌■
上を推移しているとき、即ち、空気室Bの圧力か一定の
まま隔膜16がガード1rに向−ノて変形し、圧油が油
室Aから放出されているとき、回路3または4のJjt
不足がなくなると、隔膜16の変形は停止する(このと
きの状態における空気室Bの容積と圧力の関係が直11
s11上の点に7で示される。)0その後、油室Aへの
圧油の蓄積があると、空気室Bの容積−圧力の変化は、
点に7から曲線VIK沿って推移し、直線■上の点Ks
K達して圧力P1で一定となった後は、隔膜16が変形
してゆきガード18と接触する点に3に到るまで直線I
VK沿って推移する。
The pressure in the air chamber H increases to the set pressure Pa of the safety valve 19,
When the transition along the 4 ml curve reaches the point ., the safety valve 19 opens and releases air amount B to the outside. Once upon a time,
The pressure in air chamber B will not increase any further. on the other hand,
Since the spacer M#16 continues to deform further toward the card 18 due to the pressure in the oil chamber A, the threading pressure oil is accumulated in the oil chamber A, and the volume of the air chamber B17) continues to decrease. This impoverishment is indicated by a straight line ``D'' from point 6. When the diaphragm 16 undergoes deformation and finally fits into the guard 18 and reaches point 3 on the direct resistance ■, the air chamber B has a pressure Pa, Volume ■
It will be in a negative state of 1. At this time, it was still I! 12I Approximately 3 or 4 pressure is high (if accumulation in oil chamber A continues, oil 4
The pressure of A is higher than the pressure Pa of air %H, and IJ
In such an operation in which the pressure rises to the set pressure Pr of the IJ-) valve 11, the change in volume-pressure
When the pressure in the air chamber B remains constant, the diaphragm 16 deforms toward the guard 1r, and the pressure oil is released from the oil chamber A. Jjt
When the shortage is eliminated, the deformation of the diaphragm 16 stops (at this time, the relationship between the volume of the air chamber B and the pressure is 11).
The point on s11 is indicated by 7. )0 After that, when pressure oil accumulates in oil chamber A, the change in volume-pressure of air chamber B is:
Transitioning along the curve VIK from point 7 to point Ks on the straight line ■
After the pressure reaches K and becomes constant at P1, the diaphragm 16 deforms and the straight line I reaches the point where it contacts the guard 18.
It moves along VK.

もし、直線■に沿5推移が点に3に到る以前に停止する
と、即ち、油室λへの圧油の蓄積が停止すると、ガード
18の方へ向っている隔膜16の変形も停止する(この
ときの空気室Bの容積と圧力の関係が直線■上の点に、
で示される。)りその後、油室Aから圧油が放出される
と、空気!!Bの容積−圧力の変化は、点に9から曲線
■に沿って推移し、直線n上の点Kloに達して圧力P
cで一定となり、その後は[線■に沿って推移する。
If the 5 transition along the straight line ■ stops before reaching point 3, that is, if the accumulation of pressure oil in the oil chamber λ stops, the deformation of the diaphragm 16 toward the guard 18 also stops. (At this time, the relationship between the volume and pressure of air chamber B is at a point on the straight line ■,
It is indicated by. ) Then, when pressure oil is released from oil chamber A, air! ! The change in volume-pressure of B changes from point 9 along the curve ■, and reaches point Klo on the straight line n, where the pressure P
It becomes constant at c, and then changes along [line ■].

このように、本実施例では、加圧タンクの空気室に安全
弁と逆止弁を介して減圧弁を接続し、有効容積を得るた
めの圧力差をリリーフ弁の設定圧よりも低い安全弁の設
定圧と減圧弁の設定圧との差としたので圧力差を小さく
することができる。
In this way, in this embodiment, a pressure reducing valve is connected to the air chamber of the pressurized tank via a safety valve and a check valve, and the safety valve is set so that the pressure difference to obtain the effective volume is lower than the set pressure of the relief valve. Since the difference is between the pressure and the set pressure of the pressure reducing valve, the pressure difference can be made small.

この結果、リリーフ弁の設定圧を高くして回路の圧損が
大きくなることもなく、また、気体の断熱圧縮による温
度上昇も低くすることができるので空気の使用が可能で
あり、例えば、油圧ショベル等においては車載のニアコ
ンプレッサを利用することができる0さらに1加圧タン
クの容積も小さくて済む。
As a result, the pressure drop in the circuit does not increase due to the high set pressure of the relief valve, and the temperature rise due to adiabatic compression of gas can also be reduced, making it possible to use air. In such cases, an on-vehicle near compressor can be used, and the volume of the pressurized tank can also be small.

したので、容量補償のための有効容積を得る圧力差を小
さくすることができ、このため回路の圧損を小さくする
ことかできるとともに容量補償装置に空気を使用するこ
とが可能となり、しかも、容量補償装置の容積も小さく
することができる。
Therefore, it is possible to reduce the pressure difference to obtain the effective volume for capacity compensation, which makes it possible to reduce the pressure loss in the circuit and to use air in the capacity compensation device. The volume of the device can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の油圧閉回路の系統図、第2図は第1eE
IK示すアキュムレータの封入気体の容積と圧力の関係
を示す特性図、第3図は本発明の一夾施例に係る油圧閉
回路の加圧タンクの系統図、第4図は第3図の加圧タン
ク空気室の容積と圧力の関係を示す特性図である。 1・・・・・・可変容量ポンプ、2・・・・・・片ロツ
ドシリンダ、5・・・・・・切換弁、10・・・・・・
チャージポンプ、11・・・・・・リリーフ弁、15・
・・・・・加圧タンク、19・・・・・・安全弁、20
・・・・・・逆止弁、21・・・・・・減圧弁、22・
・・・・・エアタンク、A・・・・・・油室、B・・・
・・・空気室。 第1図 第2図 第4図 1 第′3図 B\ /6− A′
Figure 1 is a system diagram of a conventional hydraulic closed circuit, and Figure 2 is a diagram of 1eE.
A characteristic diagram showing the relationship between the volume and pressure of the gas enclosed in the accumulator shown in IK, FIG. 3 is a system diagram of a pressurized tank in a hydraulic closed circuit according to one embodiment of the present invention, and FIG. FIG. 3 is a characteristic diagram showing the relationship between the volume and pressure of a pressure tank air chamber. 1...Variable displacement pump, 2...Single rod cylinder, 5...Switching valve, 10...
Charge pump, 11...Relief valve, 15.
... Pressurized tank, 19 ... Safety valve, 20
...Check valve, 21...Reducing valve, 22.
...Air tank, A...Oil chamber, B...
...Air chamber. Figure 1 Figure 2 Figure 4 Figure 1 Figure '3 B\ /6-A'

Claims (1)

【特許請求の範囲】[Claims] 片=−ツドシリンダと、低圧選択弁と、チャージポンプ
と、排出圧力設定手段と可変容量ポンプとな有する油圧
閉回路において、この油圧閉回路に接続された油室、空
気が供給される空気室および前記油室と前記空気室とを
鐘断し変形により前記両型の容積の割合を変化する隔H
な備えた加圧タンクと、前記空気室に逆止弁を介して接
続された圧力設定手段と、この圧力設定手段に接続され
た空気圧供給源と、前記空気W1に接続され前記圧力設
定手段の設定圧より高い圧力に設定された空気排出圧設
定手段とを設けた油圧閉回路の容量補償装置。
In a hydraulic closed circuit comprising a cylinder, a low pressure selection valve, a charge pump, a discharge pressure setting means, and a variable displacement pump, an oil chamber connected to the hydraulic closed circuit, an air chamber to which air is supplied, and A gap H that changes the ratio of the volumes of the two types by cutting the oil chamber and the air chamber and deforming the oil chamber and the air chamber.
a pressurized tank, a pressure setting means connected to the air chamber via a check valve, an air pressure supply source connected to the pressure setting means, and a pressure setting means connected to the air W1. A hydraulic closed circuit capacity compensator comprising an air discharge pressure setting means set to a higher pressure than the set pressure.
JP6637682A 1982-04-22 1982-04-22 Capacity compensation device for closed hydraulic circuit Pending JPS58193901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6637682A JPS58193901A (en) 1982-04-22 1982-04-22 Capacity compensation device for closed hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6637682A JPS58193901A (en) 1982-04-22 1982-04-22 Capacity compensation device for closed hydraulic circuit

Publications (1)

Publication Number Publication Date
JPS58193901A true JPS58193901A (en) 1983-11-11

Family

ID=13314041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6637682A Pending JPS58193901A (en) 1982-04-22 1982-04-22 Capacity compensation device for closed hydraulic circuit

Country Status (1)

Country Link
JP (1) JPS58193901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613361A (en) * 1991-09-11 1997-03-25 Mannesmann Rexroth Gmbh Hydraulic circuit for supplying a plurality of series-operated of a hydraulically controlled installation
US5937646A (en) * 1997-07-10 1999-08-17 Mi-Jack Products Hydraulic charge boost system for a gantry crane
CN105190052A (en) * 2013-03-14 2015-12-23 斗山英维高株式会社 Hydraulic system for construction machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138119A (en) * 1974-09-27 1976-03-30 Hitachi Construction Machinery OIRUTANKU

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138119A (en) * 1974-09-27 1976-03-30 Hitachi Construction Machinery OIRUTANKU

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5613361A (en) * 1991-09-11 1997-03-25 Mannesmann Rexroth Gmbh Hydraulic circuit for supplying a plurality of series-operated of a hydraulically controlled installation
US5937646A (en) * 1997-07-10 1999-08-17 Mi-Jack Products Hydraulic charge boost system for a gantry crane
CN105190052A (en) * 2013-03-14 2015-12-23 斗山英维高株式会社 Hydraulic system for construction machine
US9829013B2 (en) 2013-03-14 2017-11-28 Doosan Infracore Co., Ltd. Hydraulic system for construction machine

Similar Documents

Publication Publication Date Title
EP1451500B1 (en) Hydraulic hybrid accumulator shut-off valve
US20220134834A1 (en) Gas spring assembly for a vehicle suspension system
CA1125144A (en) Control for hydraulic accumulator system
US2300722A (en) Hydraulic pressure fluid accumulator
JP2964607B2 (en) Hydraulic supply device
US7121304B2 (en) Low permeation hydraulic accumulator
JP2008524535A (en) Hydraulic drive
EP0125849A2 (en) Piston accumulator
EP1039134B1 (en) Redundant pump control system
CN112594233B (en) Pressure boost oil feeding system
US3522941A (en) Hydraulic suspension system having a plurality of accumulators
JPS58193901A (en) Capacity compensation device for closed hydraulic circuit
JPS6253412B2 (en)
US2676605A (en) Hydraulic accumulator and like pressure storage vessel
JPS59151602A (en) Volume compensating equipment of hydraulically closing circuit
US4669265A (en) Oleopneumatic control system for electric circuit-breakers
JP6673205B2 (en) Accumulator rack
CN210397279U (en) Diaphragm type accumulator
US2943635A (en) Gas pressure booster system
US1937149A (en) Hydropneumatic accumulator
CN116045047B (en) Safety valve and rocket storage tank
JPS6121814A (en) Pressure regulator of gas spring
SU448694A1 (en) Helicopter hydraulic system
CN110118206B (en) Novel hydraulic accumulator control circuit
CN217396841U (en) Semi-adjustable pressure accumulator of carrier rocket