JPS58193545A - Photomask - Google Patents

Photomask

Info

Publication number
JPS58193545A
JPS58193545A JP57075278A JP7527882A JPS58193545A JP S58193545 A JPS58193545 A JP S58193545A JP 57075278 A JP57075278 A JP 57075278A JP 7527882 A JP7527882 A JP 7527882A JP S58193545 A JPS58193545 A JP S58193545A
Authority
JP
Japan
Prior art keywords
pattern
patterns
photomask
image
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57075278A
Other languages
Japanese (ja)
Inventor
Tsuneo Terasawa
恒男 寺澤
Yoshio Kawamura
河村 喜雄
Shinji Kuniyoshi
伸治 国吉
Akihiro Takanashi
高梨 明紘
Toshishige Kurosaki
利栄 黒崎
Sumio Hosaka
純男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57075278A priority Critical patent/JPS58193545A/en
Publication of JPS58193545A publication Critical patent/JPS58193545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To measure the shape and distortion distribution of a projected image by providing numbers of the 1st patterns and the 2nd pattern in a photomask and exposing those two kinds of pattern in an overlapping state. CONSTITUTION:Numbers of patterns 16 whose overlap error is measured in combination with a pattern 17 at the center part of the photomask 15 are arranged at intervals (l) at a circumferential part which is distance (m) away from the pattern 17. The patterns of this photomask 15 are projected temporarily on a wafer 7 to form a pattern 8; and an X.Y stage 6 on which the wafer 7 is mounted is moved by m/10 in a direction (x) and by nl/10 (n; number of patterns from the center of a side to the farthest pattern) in a direction (y) to cover the pattern group 16 on the mask 15 and then exposure is carried out to form a pattern 19. At this time, projected images of measured patterns 16a in the pattern 18 are set overlapping with the projected image of the pattern 17 in the center of the pattern 19 and the overlap error is measured.

Description

【発明の詳細な説明】 本発明は、レンズを通してパターンを形成していく縮小
投影露光装置に使用するホトマスクにおいて、縮小率眼
差や回転や歪等を含む投影像の形状の測定が可能なホト
マスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a photomask that is capable of measuring the shape of a projected image, including reduction ratio eye difference, rotation, distortion, etc., in a photomask used in a reduction projection exposure apparatus that forms a pattern through a lens. It is related to.

縮小投影霧光装置において、解儂線幅精度や重ね合わせ
精度の検討の面から、投影される儂の歪を含む形状を正
確に知ることが必要である。
In a reduction projection fog light device, it is necessary to accurately know the shape of the image that is projected, including distortion, from the viewpoint of examining the resolution line width accuracy and overlay accuracy.

従来、縮小投影露光装置の像形状あるいは像歪の測定は
、第1図に示す原画パターンの描かれたホトマスク(以
下レティクルと称す)を第2図に示すように照明系lで
照明し、縮小レンズ3を通してウェーハ7上にパターン
8を配列していき、隣接するパターン相互の周辺部の重
なり具合を測定することによりなされていた。レティク
ル2−ヒにあるパターン9a、9bとtoa、lObは
、それらが重なつ九ときその位置合わせ誤差が測定でき
るものである。したがって、第3図に示すように投影像
に台形歪を生じる場合には、隣接するパターン周辺部の
重なり具合の不均一性から像歪を計算することができる
Conventionally, to measure the image shape or image distortion of a reduction projection exposure device, a photomask (hereinafter referred to as a reticle) on which the original image pattern shown in Fig. 1 is drawn is illuminated with an illumination system l as shown in Fig. This was done by arranging the patterns 8 on the wafer 7 through the lens 3 and measuring the extent to which the peripheral areas of adjacent patterns overlapped each other. When the patterns 9a, 9b, toa, and lOb on the reticle 2-1 overlap, the alignment error can be measured. Therefore, when trapezoidal distortion occurs in the projected image as shown in FIG. 3, the image distortion can be calculated from the non-uniformity of the degree of overlap between adjacent pattern peripheries.

しかしながら、第4図に示すように投影像の左右ある込
は上下の辺が平行にずれるような歪を有するような場合
には、上記方法では正確な像形状を得ることができない
という欠点があった。
However, as shown in Figure 4, when the left and right sides of the projected image have distortions such that the top and bottom sides are shifted parallel to each other, the above method has the disadvantage that it is not possible to obtain an accurate image shape. Ta.

したがって、本発明の目的は、−F記欠点をなくし、投
影像の形状を正確に求め得るホトマスクを提供すること
にある。
Therefore, an object of the present invention is to provide a photomask that eliminates the -F defect and allows accurate determination of the shape of a projected image.

−F記目的−を達成するために、本発明では、縮小投影
胤光装置を用いてレティクルの周辺部あるいは内側に多
数配置したパターンとレティクル上の特定のパターンと
の投影像の合成を行ない、X・Yステージ上に取付けら
れたミラー面を基準として像形状を測定するように中ホ
トマスク(レティクル)を構成したものである。
In order to achieve -Objective F-, the present invention uses a reduction projection light device to synthesize a projected image of a large number of patterns arranged around or inside the reticle and a specific pattern on the reticle, A medium photomask (reticle) is constructed so that the image shape is measured using a mirror surface mounted on an X/Y stage as a reference.

以[、本発明を実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第5図は、本発明を1/10縮小投彰露光装置の像形状
測定のためのレティクルに応用し友l実施例を示してい
る。レティクル15の中央部にはパターン17があり、
中央から距離mだけ離れたレティクル150周辺部には
、パターンI7と組合わせることにより重ね合わせ誤差
を測定できるパターン16が間隔tをおいて多数配置さ
れてhる。
FIG. 5 shows an embodiment in which the present invention is applied to a reticle for measuring the image shape of a 1/10 reduction projection exposure apparatus. There is a pattern 17 in the center of the reticle 15,
At the periphery of the reticle 150 at a distance m from the center, a large number of patterns 16, which can be used to measure overlay errors by combining with the pattern I7, are arranged at intervals t.

まス、レティクル15のパターンをウェーハ7上に一度
投影し、第6図に示すパターン18を形成する。次に、
ウェーハ7を載せたX−Yステージ6を、X方向にm/
10、X方向にnz/l。
First, the pattern of the reticle 15 is once projected onto the wafer 7 to form a pattern 18 shown in FIG. next,
The X-Y stage 6 on which the wafer 7 is placed is moved m/m in the X direction.
10, nz/l in the X direction.

(nは辺の中央から最外遠のパターンまでの個数を示す
。)の距離だけ移動させてレティクル15上のパターン
群16を覆った後、露光を行ない、パターン19を形成
する。このとき、パターン18内に含まnる測定パター
ン16aの投影像と、バp−:/19の中央にあるパタ
ーン17の投影像とが重なり、その重ね合わせ誤差を測
定することができる。
(n indicates the number of patterns from the center of the side to the outermost pattern.) After the pattern group 16 on the reticle 15 is covered by moving the pattern group 16, exposure is performed to form the pattern 19. At this time, the projected image of the measurement pattern 16a included in the pattern 18 and the projected image of the pattern 17 located at the center of the bar p-:/19 overlap, and the overlay error can be measured.

X−Yステージ6の位Itをy方向Kt/10ずつ移動
させながら露光を(2n+t)回くり返し、パターン1
8の右側にパターン19を配列してい〈。同様の方法で
パターン18の周囲全面にわたりパターン19を形成し
ていく。X−Yステージ6は、その上に取付けられ九2
軸ミラー50面を基準としてレーザ測長器4により正確
に位置決めされる。
While moving the position It of the X-Y stage 6 by Kt/10 in the y direction, exposure is repeated (2n+t) times to form pattern 1.
Pattern 19 is arranged on the right side of 8. A pattern 19 is formed all over the periphery of the pattern 18 in a similar manner. The X-Y stage 6 is mounted on the 92
Accurate positioning is performed by the laser length measuring device 4 using the axis mirror 50 surface as a reference.

パターン18の用囲に含まれるパターン16の投影位置
は縮小レンズ3の像歪により変化するが、パターン19
の中央に位置するパターン17の投     l影位置
は2軸ミラー5の平坦度だけに依存して配列されていく
ことになる。一般に、2軸ミラー5の平坦度は0.06
μm(λ/10)以下とされている几め、この量は像の
歪量を測定する際には無視してよい。したがって、像の
形状に歪がなければ、パターン16.17の投影像から
読み取れる重ね合わせ誤差は零となるが、像歪があると
合わせ誤差が生じ、その誤差を測定することにより像の
形状を正確に求めることができる。
Although the projection position of the pattern 16 included in the range of the pattern 18 changes due to the image distortion of the reduction lens 3, the pattern 19
The projection positions of the pattern 17 located at the center of the pattern 17 are arranged depending only on the flatness of the two-axis mirror 5. Generally, the flatness of the biaxial mirror 5 is 0.06
This amount, which is considered to be less than μm (λ/10), can be ignored when measuring the amount of image distortion. Therefore, if there is no distortion in the shape of the image, the overlay error that can be read from the projected images of patterns 16 and 17 will be zero, but if there is image distortion, an overlay error will occur, and by measuring that error, the shape of the image can be determined. can be determined accurately.

例えば、重ね合わせ誤差測定用パターンは、微小な寸法
差を測定できるもので、公知のノギスなどに使用されて
いる主尺争幅尺の組合わせの応用でよい。
For example, the overlay error measurement pattern can measure minute dimensional differences, and may be an application of a combination of main scale and width scale used in known calipers.

第5図において、パターン16の間隔tの咳を小さくシ
、パターン16を密に配置すれば、僧形状をより正確に
求めることができる。逆にtの値を大きくとり、パター
ン16を、例えば、レティクル15の四隅にのみ配置す
れば、その位置での歪量が測定できる。更に、パターン
16をレティクル15の周辺部ばかりでなく、内側にも
適宜配置させることにより、投影像全体の歪分布を測定
することも可能である。
In FIG. 5, if the spacing t of the patterns 16 is made small and the patterns 16 are arranged closely, the shape of the monk can be determined more accurately. Conversely, if the value of t is set large and the pattern 16 is placed, for example, only at the four corners of the reticle 15, the amount of distortion at that position can be measured. Furthermore, by appropriately arranging the pattern 16 not only on the periphery of the reticle 15 but also on the inside, it is also possible to measure the distortion distribution of the entire projected image.

さて、上述の第1の実施例では、像形状測定の際の誤差
要因としてX−Yステージ6の停止位置誤差が含まれる
。そこで、以下に示す第2の実施例では、X−Yステー
ジ6の停止位置誤差に起因する備形状測定誤差を補正し
、より正確に像形状を求めるようにした。すなわち、レ
ティクル15の中央部に、第5図に示すitのパターン
17のかわりに第7図に示すような距離tをおいて配置
された3つのバターy20a、20b、20cよりなる
パターン群を設けた。
Now, in the first embodiment described above, the stop position error of the X-Y stage 6 is included as an error factor during image shape measurement. Therefore, in the second embodiment described below, the shape measurement error caused by the stop position error of the X-Y stage 6 is corrected to more accurately determine the image shape. That is, in the center of the reticle 15, instead of the IT pattern 17 shown in FIG. 5, a pattern group consisting of three butters 20a, 20b, and 20c arranged at a distance t as shown in FIG. 7 is provided. Ta.

ここでパターン20b、20Cはパターン16、るるい
はパターン20aと組合わせ念と!!に合わせ誤差が測
定できるようにした。
Here, patterns 20b and 20C are combined with pattern 16 and pattern 20a! ! The error can be measured accordingly.

このレティクル15のパターンを第2図に示したように
ウェーハ7上に一度投影し、第8図に示すパターン23
を形成する。図中、パターン21は合わせ誤差測定用の
第2のパターン16の投影像である。次に、第1の実施
例と同様の手段により、X−Yステージ6をt/10ず
つ定寸送りしながら露光をくり返し、パターン24を形
成していく。このとき、レティクル15の中央部に設は
几パターン20a、20b、20Cは投影されてパター
ン22m、22b、22Cを形成し、第8図に示すよう
に、X−Yステージ6をX方向へ定寸送りする場合には
、パターン21とパターン22bとの組合わせにより第
1の実施例と全く同様の僧形状測定が行なえる。同様に
、パターン24を次々に形成する際に、パターン22為
と次に形成されるパターン24中に含まれるパターン2
2Cとが重なるため、これよりパターン24相互の位置
関係が測定できる。X−Yステージ6をX方向へ定寸送
りする場合には、パターン21と22Cとより像形状が
、パターン22aと22bとよ!IIX−Yステージ6
の停止位置の相互関係が測定できる。測定される僧形状
にパターン24の相対位置関係すなわちX−Yステージ
6の停止位置誤差を補正することにより、より正確に投
影像の形状を得ることができる。第1の実施例と全く同
様に投影像の歪分布を測定することも可能である。
The pattern of this reticle 15 is once projected onto the wafer 7 as shown in FIG. 2, and the pattern 23 shown in FIG.
form. In the figure, pattern 21 is a projected image of second pattern 16 for measuring alignment error. Next, using the same means as in the first embodiment, the pattern 24 is formed by repeating exposure while moving the X-Y stage 6 by a fixed distance of t/10. At this time, the patterns 20a, 20b, and 20C set in the center of the reticle 15 are projected to form patterns 22m, 22b, and 22C, and as shown in FIG. 8, the X-Y stage 6 is set in the X direction. In the case of one-step feeding, the combination of the pattern 21 and the pattern 22b makes it possible to measure the shape of a monk in exactly the same way as in the first embodiment. Similarly, when forming patterns 24 one after another, the patterns 22 and 2 included in the pattern 24 to be formed next are
2C, the mutual positional relationship of the patterns 24 can be measured from this. When the X-Y stage 6 is fed by a fixed distance in the X direction, the image shape from patterns 21 and 22C becomes patterns 22a and 22b! IIX-Y stage 6
It is possible to measure the interrelationship of the stopping positions of the By correcting the relative positional relationship of the pattern 24 to the measured monk shape, that is, the error in the stop position of the XY stage 6, the shape of the projected image can be obtained more accurately. It is also possible to measure the distortion distribution of the projected image in exactly the same way as in the first embodiment.

以上のごとく本発明によるホトマスク(レティクル)に
よれば、投影レンズを通してウェーハ上に形成される投
影像の形状、あるいは歪分布を2軸ミラ一面を基準とし
て正確に測定することができる。
As described above, according to the photomask (reticle) according to the present invention, the shape or distortion distribution of a projected image formed on a wafer through a projection lens can be accurately measured with one surface of a two-axis mirror as a reference.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の像歪測定用レティクルの概略図、第2図
は縮小投影篇光装置の概略図、第3図は従来の像歪測定
を示す図、第4図は従来法では測定不可能な像歪を示す
図、第5図は本発明によるホトマスク(レティクル)の
概略図、第6図は本発明によるホトマスクを用いた像歪
測定を示す図、第7図は1蒙歪とステージの位置誤差を
同時に求められる第2の実施例のホトマスク(レティク
ル)の第1パターンの概略図、第8図は本発明の第2の
実施例によるホトマスクを用い友像歪測定法を示した概
略図である。 2・・・レティクル、3・・・投影レンズ、4・・・レ
ーザ測長器、5・・・2軸ミラー、6・・・XφYステ
ージ、7・・・ウェーハ、9a、9b、toa、lQb
・−重ね合わせ眼差測定パターン、15・・・新たなパ
ターン配置を有するレティクル、16,17,20a。 20b、20C・・・重ね合わせ誤差測定用パターン。 た: 代理人 弁理士 博田利幸。 第10     第、。 ′v)5  図 1 第 2  図 第 7 口 第1頁の続き 0発 明 者 黒崎利栄 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 保坂純男 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内
Figure 1 is a schematic diagram of a conventional reticle for measuring image distortion, Figure 2 is a schematic diagram of a reduction projection optical device, Figure 3 is a diagram showing conventional image distortion measurement, and Figure 4 is a diagram showing that measurements cannot be made using the conventional method. 5 is a schematic diagram of a photomask (reticle) according to the present invention; FIG. 6 is a diagram illustrating image distortion measurement using a photomask according to the present invention; FIG. 7 is a diagram showing 1 Mon distortion and a stage. A schematic diagram of the first pattern of a photomask (reticle) according to the second embodiment, in which the positional error of It is a diagram. 2... Reticle, 3... Projection lens, 4... Laser length measuring device, 5... 2-axis mirror, 6... XφY stage, 7... Wafer, 9a, 9b, toa, lQb
- Overlapping eye difference measurement pattern, 15... Reticle with new pattern arrangement, 16, 17, 20a. 20b, 20C...Patterns for measuring overlay error. Agent: Patent attorney Toshiyuki Hakata. 10th,. 'v) 5 Figure 1 Figure 2 Figure 7 Continued from page 1 0 Inventor Riei Kurosaki 1-280 Higashi Koigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory 0 Inventor Sumio Hosaka 1-280 Higashi Koigakubo, Kokubunji City Inside Hitachi, Ltd. Central Research Laboratory

Claims (1)

【特許請求の範囲】[Claims] !、縮小投影露光装置に使用するホトマスクにおいて、
上記ホトマスク中に、投影される領域の周辺部あるいは
内側に第1のパターンを多数設け、かつ、上記第1のパ
ターンと組合わせることにより重ね合わせ誤差を測定で
きる第2のパタンを少なくとも1個設け、上記第1のパ
ターン上に上記第2のパターンを重ねて露光することに
より、投影像の形状あるいは歪分布を測定するようにし
たことを特徴とするホトマスク。
! , in a photomask used in a reduction projection exposure device,
A large number of first patterns are provided in the periphery or inside of the projected area in the photomask, and at least one second pattern is provided that can measure the overlay error by combining with the first pattern. . A photomask characterized in that the shape or distortion distribution of a projected image is measured by exposing the second pattern over the first pattern.
JP57075278A 1982-05-07 1982-05-07 Photomask Pending JPS58193545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57075278A JPS58193545A (en) 1982-05-07 1982-05-07 Photomask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57075278A JPS58193545A (en) 1982-05-07 1982-05-07 Photomask

Publications (1)

Publication Number Publication Date
JPS58193545A true JPS58193545A (en) 1983-11-11

Family

ID=13571598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57075278A Pending JPS58193545A (en) 1982-05-07 1982-05-07 Photomask

Country Status (1)

Country Link
JP (1) JPS58193545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238836A (en) * 1984-05-11 1985-11-27 Nippon Kogaku Kk <Nikon> Method for detecting pattern and projecting optical device using said method
JPS6370418A (en) * 1986-09-11 1988-03-30 Canon Inc Semiconductor exposure device
JPH08314118A (en) * 1995-05-15 1996-11-29 Nec Corp Mask having pattern for detecting unequal illuminance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238836A (en) * 1984-05-11 1985-11-27 Nippon Kogaku Kk <Nikon> Method for detecting pattern and projecting optical device using said method
JPH0640539B2 (en) * 1984-05-11 1994-05-25 株式会社ニコン Pattern detection method and projection optical apparatus using the method
JPS6370418A (en) * 1986-09-11 1988-03-30 Canon Inc Semiconductor exposure device
JPH08314118A (en) * 1995-05-15 1996-11-29 Nec Corp Mask having pattern for detecting unequal illuminance

Similar Documents

Publication Publication Date Title
US5521036A (en) Positioning method and apparatus
US6677601B2 (en) Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
JP3927774B2 (en) Measuring method and projection exposure apparatus using the same
US5532091A (en) Aligning method
KR100317100B1 (en) Mask pattern for alignment
CN111324004A (en) Mask and overlay error measuring method
JPH08288193A (en) Aligning method
JP3870153B2 (en) Measuring method of optical characteristics
TWI526791B (en) Exposure apparatus and device fabrication method
JPH10284377A (en) Exposure method and manufacture of device using the same
JPH08227839A (en) Method for measuring curvature of moving mirror
JPS58193545A (en) Photomask
JP3259190B2 (en) Distortion inspection method for projection optical system
JP3427113B2 (en) Stage accuracy evaluation method
JP2696962B2 (en) Line width measurement method and exposure apparatus inspection method using the method
JPH0230112A (en) Measurement of exposure condition
JP2003309066A (en) Measuring method for aberration of projection optical system
JP3344426B2 (en) Measurement method and device manufacturing method
JP2010147109A (en) Evaluation method, exposure device and device manufacturing method
JP3259341B2 (en) Alignment method, exposure method using the alignment method, and device manufacturing method using the exposure method
JPH11135421A (en) Method for measuring imaging characteristics of projection optical system, and projection aligner
JPH07219243A (en) Evaluating method for exposure device
JPH09330862A (en) Method for adjusting aligner
JPH0684753A (en) Exposing method
JPH07283110A (en) Scanning aligner