JPS58193500A - Charged particle spin rotator - Google Patents

Charged particle spin rotator

Info

Publication number
JPS58193500A
JPS58193500A JP7524382A JP7524382A JPS58193500A JP S58193500 A JPS58193500 A JP S58193500A JP 7524382 A JP7524382 A JP 7524382A JP 7524382 A JP7524382 A JP 7524382A JP S58193500 A JPS58193500 A JP S58193500A
Authority
JP
Japan
Prior art keywords
spin
magnetic field
electron
charged particle
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7524382A
Other languages
Japanese (ja)
Other versions
JPH0339280B2 (en
Inventor
和幸 小池
早川 和延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7524382A priority Critical patent/JPS58193500A/en
Publication of JPS58193500A publication Critical patent/JPS58193500A/en
Publication of JPH0339280B2 publication Critical patent/JPH0339280B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement Of Radiation (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、磁性体表面にあって、その磁気的性質を決定
する電子スピンの方向検出器に係り、特にスピン偏極1
次電子線のスピン回転に好適な荷電粒子スピン回転装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron spin direction detector that is located on the surface of a magnetic material and determines its magnetic properties, and particularly relates to an electron spin direction detector that is located on the surface of a magnetic material and determines its magnetic properties.
The present invention relates to a charged particle spin rotation device suitable for spin rotation of secondary electron beams.

荷電粒子の走行軌道を変えずにスピンのみを回転する装
置としては、ウィーンフィルター(以下W、F、と略す
: P、E、cavanagh他SER。
As a device that rotates only the spin of charged particles without changing their running trajectory, there is a Wien filter (hereinafter abbreviated as W, F: P, E, cavanagh et al. SER).

VOZ8.NO2,P1105,1957.E、K15
ber。
VOZ8. NO2, P1105, 1957. E, K15
ber.

他Phys、 Rev、 BVO/18. NO5,P
22561978等参照)があるが、これらは特定の軸
の周りの回転しか与えることができない。
Other Phys, Rev, BVO/18. NO5,P
22561978, etc.), but these can only provide rotation around a specific axis.

以下この点について第1図により詳細に説明する。上記
W、F、は磁場を印加する1対のコイル1.2と、それ
に垂直な方向にt、*を印加する1対の電極3.4から
構成され、このW、F、に、上記電場及び磁場の双方に
垂直な方向から入射する電子5を、以下の原理によって
その軌道を変えずにスピン方向6のみを、磁場方向の軸
の判りに回転する。
This point will be explained in detail below with reference to FIG. The above W, F are composed of a pair of coils 1.2 that apply a magnetic field, and a pair of electrodes 3.4 that apply t, * in the direction perpendicular to the coils 1.2. Electrons 5 incident from a direction perpendicular to both the magnetic field and the spin direction 6 are rotated in accordance with the axis of the magnetic field direction without changing their orbits according to the following principle.

令弟2図に示すように、W、 F、内において紙面に垂
直で紙面に入る方向に磁場Bが印加されているとすると
、この磁場内に入射し次電子のスピンは磁場方向を軸と
して回転し、その回転角θは、電子が上記磁場に入射し
てからの時間をt1電子の電荷、質量をそれぞれe、m
とすると(1)式で表わされる。
As shown in Figure 2, if a magnetic field B is applied in W and F in the direction perpendicular to the plane of the paper and entering the plane of the paper, the spin of the next electron that enters this magnetic field is centered around the direction of the magnetic field. The rotation angle θ is the time taken by the electron after it enters the magnetic field, t1, and the charge and mass of the electron are e and m, respectively.
Then, it is expressed by equation (1).

elB+ θ= = 1    ・・・・・・・・・・・・・・・
 (1)ところが入射電子は磁場から、(2)式で示さ
れる口−レンツカFsを受けその軌道を変えてしまう・
Fm=eVXB    ・・・・・・・・・・・・ (
2)ここでVは電子の速度である。そこでこのFmを打
ち消すために E=−VXB     ・・・・・・・・・・・・ (
3)なる電場Eを印加すれば、このEから電子が受ける
力Fmは Fm=  evx13   ・・・・・・・・・・・・
 (4)とな9、全体として電子が受ける力HFm+F
m#0となって電子は軌道を変えない1区子のスピンは
電場からの影響を受けないから、結局W、 F。
elB+ θ= = 1 ・・・・・・・・・・・・・・・
(1) However, the incident electron receives the Kuchi-Lentzka Fs shown by equation (2) from the magnetic field and changes its orbit.
Fm=eVXB ・・・・・・・・・・・・ (
2) Here, V is the velocity of the electron. Therefore, in order to cancel this Fm, E=-VXB ・・・・・・・・・・・・ (
3) If an electric field E is applied, the force Fm that the electron receives from this E is Fm= evx13 ・・・・・・・・・・・・
(4) Tona 9, the force that the electron receives as a whole HFm+F
When m#0, the electron does not change its orbit.The spin of the first quartz is not affected by the electric field, so in the end it becomes W, F.

を通過する電子はその軌道を変えずに、スピンの、  
みを、磁場方向の軸の闇りに回転することになる。
An electron passing through changes its spin without changing its orbit.
The magnetic field rotates around the axis in the direction of the magnetic field.

このW、 F、の場合、磁場強度IB+と電場強度IE
+を(3)式を満九すように変えることにより、(1)
式で示されるように回転角θを変えることはできるが、
磁場方向が固定されている几め回軸方向が固定され、3
次元空間内の任意の方向にスピンを回軸することができ
ない。
In the case of W and F, the magnetic field strength IB+ and the electric field strength IE
By changing + to make equation (3) complete nine, (1)
Although the rotation angle θ can be changed as shown in the formula,
The direction of the magnetic field is fixed, the direction of the rotational axis is fixed, and 3
It is not possible to rotate the spin in any direction in dimensional space.

本発明の目的は、スピン(IN極電子線のスピンを任意
の軸の周りに任意の角度だけ回転する装置を提供するこ
とにある。
An object of the present invention is to provide an apparatus that rotates the spin of an IN-pole electron beam by an arbitrary angle around an arbitrary axis.

ウィーンフィルタを用いた従来の電子スピン回転装置は
、特定方向に印加された磁場と平行な軸の明りにしかス
ピンを回軸することができなかった。そこで本発明では
電子軌道と垂直な任意の方向に任意強度の磁場を印加で
きるようにするとともに%電子軌道、磁場の双方に垂直
な電場を印加し、そのスピンを任意軸の周りに任意角度
だけ回転できるようにし友。
Conventional electron spin rotation devices using Wien filters could only rotate spins along an axis parallel to a magnetic field applied in a specific direction. Therefore, in the present invention, it is possible to apply a magnetic field of arbitrary strength in an arbitrary direction perpendicular to the electron orbit, and an electric field perpendicular to both the electron orbit and the magnetic field is applied, and the spin is changed by an arbitrary angle around an arbitrary axis. A friend that allows you to rotate.

以下、本発明の一実施例を第3図により説明する0本発
明による装置はそれぞれX及びX方向の磁場を印加する
2対のコイル7.8,9.10と、X及びX方向の電場
を印加する2対の平行電極11.12.13.14から
構成され、両者とも、2対のそれぞれの強度を適当に組
み合せることによ’)% x Y平面内の任意の方向に
、任意の強度の磁場及び電場を発生することができる。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. It consists of two pairs of parallel electrodes 11, 12, 13, 14 that apply a can generate magnetic and electric fields of strength.

従って任意の方向の回転軸の司りに任意の角度だけスピ
ンを回転するためには、(1)式を満たす強度のFiI
i場を回転軸の方向に印加し、同時に(3)式を満す電
場を印加すればよい。
Therefore, in order to rotate the spin by an arbitrary angle around the rotation axis in an arbitrary direction, it is necessary to have an intensity FiI that satisfies equation (1).
It is sufficient to apply the i field in the direction of the rotation axis and simultaneously apply an electric field that satisfies equation (3).

以下具体例を示す、コイル9.10に0.94Aの電流
を流し、電極11.12.13.14にそれぞれ+7.
90V、−790V、OV、0V2)電位を与えると、
+Z方向がIKeVのエネルギーをもって入射した電子
のスピン方向を+Z方向から906y軸の周りに回転さ
せX方向に変えることができた。
A specific example will be shown below. A current of 0.94 A is applied to the coils 9 and 10, and +7.
When applying a potential of 90V, -790V, OV, 0V2),
The spin direction of incident electrons with an energy of IKeV in the +Z direction could be changed from the +Z direction to the X direction by rotating around the 906y axis.

またコイル7.8に0.66A、コイル9.10に0.
66 Aの電流を流し、電極11,14,12゜13に
それぞれ+550V、 +550V、 −550V、−
550Vの電位を与えると、+Z方向からIKeVのエ
ネルギーをもって入射した電子のスピン方向を+Z方向
から90°y′軸の周りに回転させ X/方向に変える
ことができ九。
Also, 0.66A to coil 7.8 and 0.6A to coil 9.10.
A current of 66 A was applied to electrodes 11, 14, and 12°13 at +550 V, +550 V, -550 V, and -, respectively.
When a potential of 550V is applied, the spin direction of electrons incident from the +Z direction with an energy of IKeV can be rotated around the y' axis by 90 degrees from the +Z direction and changed to the X/direction9.

本発明に、よれば電子線のスピンを3次源空間内の任意
の方向に向けることができるので、これを1次電子線と
して磁性体表面に照射し、散乱強度を調べることにより
、磁性体表面の磁気的性質を決定する電子スピンの状態
を調べることができ、表面磁性の研究に威力を発揮する
According to the present invention, the spin of the electron beam can be directed to any direction within the tertiary source space, so by irradiating the surface of the magnetic material with this as a primary electron beam and examining the scattering intensity, The state of electron spin, which determines the magnetic properties of a surface, can be investigated, making it a powerful tool for researching surface magnetism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のウィーンフィルタの見取り図、M2図は
第1図の正面図、第3図は本発明による荷電粒子スピン
回転装置の見取り図である。 1.2・・・コイル、3.4・・・電極、5・・・電子
、6・・・スピンの方向、7,8,9.10・・・コイ
ル、11.  。 12.13,14・・・電極。 ’jIiillZ 第 3(2]
FIG. 1 is a sketch of a conventional Wien filter, FIG. M2 is a front view of FIG. 1, and FIG. 3 is a sketch of a charged particle spin rotation device according to the present invention. 1.2...Coil, 3.4...Electrode, 5...Electron, 6...Spin direction, 7,8,9.10...Coil, 11. . 12.13,14... Electrode. 'jIiillZ 3rd (2)

Claims (1)

【特許請求の範囲】[Claims] 1、荷電粒子の走行軌道に対して、該軌道と垂直な平面
上の任意の方向から任意の強度を有する磁場を印加する
手段と、上記軌道と上記磁場の方向との双方に垂直で、
上記磁場強度と一定の関係にある強度を有する電場を印
加する手段とを有することを特徴とする荷電粒子スピン
回転装置。
1. A means for applying a magnetic field having an arbitrary intensity to a running trajectory of a charged particle from an arbitrary direction on a plane perpendicular to the trajectory, and perpendicular to both the trajectory and the direction of the magnetic field,
A charged particle spin rotation device comprising: means for applying an electric field having an intensity having a constant relationship with the magnetic field intensity.
JP7524382A 1982-05-07 1982-05-07 Charged particle spin rotator Granted JPS58193500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7524382A JPS58193500A (en) 1982-05-07 1982-05-07 Charged particle spin rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7524382A JPS58193500A (en) 1982-05-07 1982-05-07 Charged particle spin rotator

Publications (2)

Publication Number Publication Date
JPS58193500A true JPS58193500A (en) 1983-11-11
JPH0339280B2 JPH0339280B2 (en) 1991-06-13

Family

ID=13570584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7524382A Granted JPS58193500A (en) 1982-05-07 1982-05-07 Charged particle spin rotator

Country Status (1)

Country Link
JP (1) JPS58193500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251525A (en) * 2007-03-05 2008-10-16 Hitachi Ltd Charged particle spin polarimeter, microscope, and photoelectron spectroscopy device
WO2012173007A1 (en) * 2011-06-17 2012-12-20 サンユー電子株式会社 Spin rotation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251525A (en) * 2007-03-05 2008-10-16 Hitachi Ltd Charged particle spin polarimeter, microscope, and photoelectron spectroscopy device
WO2012173007A1 (en) * 2011-06-17 2012-12-20 サンユー電子株式会社 Spin rotation device
JP2013004342A (en) * 2011-06-17 2013-01-07 Sanyu Electron Co Ltd Spin rotation device
CN103597570A (en) * 2011-06-17 2014-02-19 三友电子株式会社 Spin rotation device
CN103597570B (en) * 2011-06-17 2016-02-17 三友电子株式会社 spin rotation device
US9466454B2 (en) 2011-06-17 2016-10-11 Sanyu Denshi Co., Ltd. Spin rotation device

Also Published As

Publication number Publication date
JPH0339280B2 (en) 1991-06-13

Similar Documents

Publication Publication Date Title
JP2013004342A (en) Spin rotation device
JPS58193500A (en) Charged particle spin rotator
Karasev et al. Magnetic tops in dusty plasmas
Coggeshall The paths of ions and electrons in non-uniform crossed electric and magnetic fields
Salimullah et al. Modification of the shielding and wake potentials in a streaming dusty magnetoplasma
Kumar et al. Properties of a cylindrical Penning trap with conical endcap openings
Grzelakowski A novel imaging energy filter for cathode lens electron microscopy
JPS62501040A (en) Mass spectrometer with magnetic trap
JPS60189147A (en) Deflector for beam of charged particle or like
Afanasiev Vector solutions of the Laplace equation and the influence of helicity on Aharonov-Bohm scattering
Lu et al. Multichannel quantum-defect theory of perturbed Rydberg atoms in external fields
JP2856518B2 (en) Ex-B type energy filter
Nakatani et al. Application of atomic stereomicroscope to surface science
JPH01133027A (en) Optical parts
JPS60242363A (en) Flaw detecting device of magnetic powder
Holstein The Aharonov-Bohm effect and variations
JPWO2015019491A1 (en) Charged particle beam generator, charged particle beam device, sample processing method and sample observation method
Ruedenauer Focusing properties of magnetic sectors of the wedge type. Part II
Szilágyi ELECTRON MOTION IN A STATIONARY AXIALLY SYMMETRIC MAGNETIC FIELD VARYING LINEARLY ALONG THE AXIS
JPH0554853A (en) Wiener filter
Bahl The magnetic properties of antiferromagnetic nanoparticles: NiO and αFe2O3
JPS58169857A (en) Charged particle filter
Zhang et al. Dust cluster spin in complex (dusty) plasmas
SU884004A1 (en) Device for adjusting quadrupole magnetic lenses
WO2024068600A1 (en) Quantum computing arrangement and quantum computer