JPS58193329A - Method for operating aluminum refining blast furnace - Google Patents

Method for operating aluminum refining blast furnace

Info

Publication number
JPS58193329A
JPS58193329A JP7565182A JP7565182A JPS58193329A JP S58193329 A JPS58193329 A JP S58193329A JP 7565182 A JP7565182 A JP 7565182A JP 7565182 A JP7565182 A JP 7565182A JP S58193329 A JPS58193329 A JP S58193329A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
stock material
temp
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7565182A
Other languages
Japanese (ja)
Other versions
JPS619373B2 (en
Inventor
Masayuki Tokiya
土器屋 正之
Masao Fujishige
昌生 藤重
Seiichi Ujiie
氏家 誠一
Harumi Yokogawa
横川 晴美
Akihiro Motoe
本江 秋弘
Tetsuya Kameyama
亀山 哲也
Kenzo Fukuda
福田 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7565182A priority Critical patent/JPS58193329A/en
Publication of JPS58193329A publication Critical patent/JPS58193329A/en
Publication of JPS619373B2 publication Critical patent/JPS619373B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prepare Al in excellent productivity, in preparing molten Al by reacting an alumina-containing stock material with a carbonaceous reducing agent in a blast furnace, by controlling the temp. in the uppermost part of the stock material packing layer in the blast furnace to a specific temp. range to prevent the blocking accident of the furnace. CONSTITUTION:An Al2O3-containing stock material such as bauxite and a carbonaceous reducing agent such as coke or coal are mixed to be charged into a blast furnace while oxygen is blown thereinto from the lower part thereof and Al2O3 is reduced with carbon by using the combustion heat of the carbon materials to prepare molten Al. At this time, the temp. in the uppermost part of a stock material packing layer is measured by a thermocouple 7 and the supply amount of an oxygen gas, the ratio of the Al2O3 stock material and the reducing agent and the height of the stock material packing layer are adjusted so as to adjust the temp. within a range of a critical operation temp. or more generating the clogging of the blast furnace by volatile Al2O, Al and SiO or more - 300 deg.C. The lowering of the yield of the stock material resulting from the clogging of the blast furnace or volatilization loss due to a high temp. is not generated and stable operation can be carried out.

Description

【発明の詳細な説明】 本発明は、アルミニウム製錬溶鉱炉の操作方法に関する
ものである。アルミニウムは、鉄に次ぐ基礎的金属素材
であり、その需要は年々高率で増加しつつある。しかる
に近年、世界的規模におけるエネルギーコストの上昇に
よシ、我国のような電力コストの高い地域におけるアル
ミニウム製造は、極めて困難化し、産業構造上極めて重
大な障害を招きつつある。加うるに、今後世界的に予想
従来の製錬法である、バイヤー・ホール・エル−法は、
■ボーキ゛サイトからのアルミナ抽出工程であるバイヤ
一工程で長時間の抽出、結晶化を行うために、生産性が
低く、設備費において高コストを招いておシ、さらに、
■電解工程であるホール・エル一工程は、電解法である
ためにスケールメリートがなく生産性が低く1、設備費
が嵩む、多量の電力を必要とするなどの工業的欠点があ
り、しかも技術的改良レベルもすでに極限に近く、抜本
的革新的製錬法の出現が要請されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating an aluminum smelting blast furnace. Aluminum is a basic metal material second only to iron, and its demand is increasing at a high rate every year. However, in recent years, due to the rise in energy costs on a global scale, it has become extremely difficult to manufacture aluminum in regions like Japan where electricity costs are high, causing extremely serious obstacles to the industrial structure. In addition, the Bayer-Hall L. method, which is a conventional smelting method expected to be used worldwide in the future,
■The process of extracting alumina from bokehsite requires a long extraction and crystallization process, resulting in low productivity and high equipment costs.
■The whole-el process, which is an electrolytic process, has industrial disadvantages such as no scale merging and low productivity1, high equipment costs, and the need for a large amount of electricity. The level of technological improvement is already near its limit, and the emergence of radically innovative smelting methods is required.

従来、バイヤー・ホール・エル−法に内蔵するこれらの
欠点に対し、電炉還元法を始めとして多種類の代替製錬
法が研究されてきた。しかし、これらの方法は、従来法
に代替しうるだけの省エネルギー効果、低コスト化のい
ずれにも成功するに至っていない。これらの代替法の欠
点としては、の事項をあげることができる゛。
Conventionally, many types of alternative smelting methods, including the electric furnace reduction method, have been studied to address these drawbacks inherent in the Bayer-Hall-L method. However, these methods have not succeeded in achieving energy saving effects or cost reductions sufficient to replace conventional methods. The disadvantages of these alternative methods include:

近年にお、いては、前記した如き電力を用いるアルミニ
ウム製錬法における問題を克服する方法として、向流移
動床の熔鉱炉を用い、原料アルミナを、炭素材料により
還元する、熔鉱炉方式によるアルミニウム製錬法が検討
されるようになってきた。この方法の場合、溶鉱炉°内
に、原料アルミナと、燃料及び還元剤として作用する炭
素材料とを含有する充填層を形成させ、炉内において、
次の燃焼反応(1)と還元反応(2)とを同時に行わせ
る。
In recent years, as a method to overcome the problems of the above-mentioned aluminum smelting method using electric power, a smelt furnace method has been developed in which a countercurrent moving bed smelt furnace is used to reduce raw material alumina with a carbon material. Aluminum smelting methods using In this method, a packed bed containing raw material alumina and a carbon material that acts as a fuel and a reducing agent is formed in a blast furnace, and in the furnace,
The following combustion reaction (1) and reduction reaction (2) are performed simultaneously.

C十%02→200    (1) A/203+ 30→2AI!+300  (2)即ち
、(2)式によって示される酸化アルミニウム(アルミ
ナ)の還元を、(1)式によって示される炭素材料の酸
素燃焼熱を熱源として行わせる。また、熔鉱炉は向流移
動床式であり、下部から酸素ガスこのような熔鉱炉方式
により前記反応(])及び(2)を同時に行ってアルミ
ニウム製錬を行う場合、経済性及び操業性の上で解決す
べき技術問題が種々存在するが、殊に、揮発性アルミニ
ウム成分(A/20やAIりや、揮発性ケイ素成分(S
in)の発生 ]1とその凝縮によってひき起される熔
鉱炉の閉塞の問題がある。熔鉱炉の操作中に、炉内の条
件が変動したり、供給原料の組成が変動したシすると、
熔鉱炉の閉塞が起りやすく、そして、炉の閉塞が生じた
場合には操作を停止する必要があり、経済的に著しい損
失を受ける。
C10%02→200 (1) A/203+ 30→2AI! +300 (2) That is, the reduction of aluminum oxide (alumina) shown by equation (2) is performed using the oxygen combustion heat of the carbon material shown by equation (1) as a heat source. In addition, the smelt furnace is a countercurrent moving bed type, and when performing aluminum smelting by simultaneously performing the above reactions (]) and (2) in such a smelt furnace system, the economic efficiency and operational efficiency are reduced. There are various technical problems to be solved in terms of performance, but in particular, volatile aluminum components (A/20 and AI) and volatile silicon components (S
occurrence of in) ] 1 and its condensation causes blockage of the smelt furnace. During the operation of the melting furnace, if the conditions inside the furnace change or the composition of the feedstock changes,
Blockage of the smelt furnace is likely to occur, and in the event of furnace blockage, operations must be shut down, resulting in significant economic losses.

本発明者らは、このような炉の閉塞問題を解決すべく鋭
意研究を重ねた結果、炉内におけるアルミナ含有原料と
炭素材料を含む充填層の最上部温度には炉の閉塞に相関
する臨界操作温度があるこ成するに到った。
The inventors of the present invention have conducted extensive research to solve the problem of furnace blockage, and have found that the temperature at the top of the packed bed containing alumina-containing raw materials and carbon materials in the furnace has a critical temperature that is correlated with furnace blockage. The operating temperature reached a certain temperature.

即ち、本発明によれば、溶鉱炉内にアルミナ含有原料と
炭素材料とを含む充填層を形成させると共に、該炉内に
おいて、炭素材料の酸素ガスによる燃焼反応と、該燃焼
熱を用い、炭素材料によシアルミナを還元する反応とを
同時に行わせるようにしたアルミニウム製錬溶鉱炉にお
いて、該充填層の最上部温度を操作情報として検出する
と共に、この情報に基づき、 (a)  酸素ガスの供給量、 (b)  アルミナ含有原料と炭素材料の比率、(C)
  充填層の高さ のいずれか一つ又は二つ以上を変化させて、該充填層の
最上部温度を臨界操作温度以下にならないように保持す
ることを特徴とするアルミニウム製錬溶鉱炉の操作方法
が提供される。
That is, according to the present invention, a packed bed containing an alumina-containing raw material and a carbon material is formed in a blast furnace, and in the furnace, a combustion reaction of the carbon material with oxygen gas and the combustion heat are used to burn the carbon material. In an aluminum smelting and blasting furnace in which a reaction to reduce sialumina is simultaneously carried out, the temperature at the top of the packed bed is detected as operational information, and based on this information, (a) the amount of oxygen gas supplied; (b) Ratio of alumina-containing raw material to carbon material, (C)
A method of operating an aluminum smelting blast furnace, which comprises changing one or more of the heights of the packed bed to maintain the temperature at the top of the packed bed so as not to fall below the critical operating temperature. provided.

ルメルークロメル、銅−コンスタンタン白金−白金ロシ
ウム、タングステン−タングステンレニウム等の熱電対
が用いられる。これらの熱電対は、通常、炉壁周辺部に
上下に一定間隔を置いて挿入設置され、また、必要に応
じ、炉中心部にも挿入設置される。
Thermocouples such as lumerule chromel, copper-constantan platinum-platinum rosium, and tungsten-tungsten rhenium are used. These thermocouples are usually inserted into the periphery of the furnace wall at regular intervals up and down, and if necessary, inserted into the center of the furnace.

本発明は、このようにして検知された充填最上部の温度
情報に基づき、 (a)  酸素供給量、 (b)  アルミナ含有原料と炭素材料の比率、(C)
充填層の高さ、 のいずれか一つ又は二つ以上を変化させて、充填層の最
上部温度が臨界操作温度以下にならないように保持す。
The present invention is based on temperature information at the top of the filling detected in this way, and determines (a) oxygen supply amount, (b) ratio of alumina-containing raw material to carbon material, (C)
The height of the packed bed is maintained so that the temperature at the top of the packed bed does not fall below the critical operating temperature by changing one or more of the following:

この場合、酸素供給量は酸素ガスの流量又は濃度を調節
することによって行うことができる。この場合、酸素ガ
スには重油や微粉炭を料と炭素材料の供給量を調節する
ことによって行うことができる。
In this case, the amount of oxygen supplied can be controlled by adjusting the flow rate or concentration of oxygen gas. In this case, this can be done by adjusting the supply amount of the oxygen gas such as heavy oil or pulverized coal and the carbon material.

臨界操作温度は、炉の規模や形状、及び供給原料中のア
ルミナ含量などによって異なり、一義的に定めることが
できないが、°・操作開始に際し、あらかじめ簡単な操
作実験により定めることができる。即ち、前記したよう
な項目(a) l (b) 、 (c)の少なくとも1
種を変動させると共に、充填層最上部を観察し、閉塞現
象が開始する温度を測定し、この温度を操作臨界温度と
する。従って、本発明における臨界操作温度は、所定の
熔鉱炉を用いてアルミニウム製錬操作を行う場合に、炉
内に形成された供給原料の充填層の最上部が閉塞を生じ
ない温度の最小温度と定義される。本発明では、充填層
の最上部温度を自動的に検知しながら、その充填層の最
上部温度を、炉の操作中、常にその臨界操えないように
する。充填層の最上部温度が余りにも高くなると、炉の
閉塞の問題は解消されるものの、アルミニウム収率に対
する所要炭素材料比が高くなり、経済性が低下するので
好ましくない。
The critical operating temperature varies depending on the scale and shape of the furnace, the alumina content in the feedstock, etc., and cannot be determined unambiguously, but it can be determined in advance through simple operating experiments at the start of operation. That is, at least one of the items (a), (b), and (c) as described above.
While varying the species, the top of the packed bed is observed to measure the temperature at which the clogging phenomenon begins, and this temperature is taken as the critical temperature for operation. Therefore, the critical operating temperature in the present invention is the minimum temperature at which the top of the packed bed of feedstock formed in the furnace does not cause blockage when performing an aluminum smelting operation using a predetermined melting furnace. is defined as In the present invention, while automatically detecting the temperature at the top of the packed bed, the temperature at the top of the packed bed cannot be constantly manipulated to its critical value during operation of the furnace. If the temperature at the top of the packed bed becomes too high, although the problem of furnace clogging is solved, the ratio of required carbon material to aluminum yield becomes high, which is undesirable because economic efficiency decreases.

従って、本発明の場合、充填層の最上部温度は、臨界操
作温度以上、臨界操作温度+300℃以下、    i
殊に200℃以下の範囲に保持するのがよい。一般的に
は、この臨界操作温度は、650〜8oo℃の範囲にあ
る。
Therefore, in the case of the present invention, the temperature at the top of the packed bed is above the critical operating temperature and below the critical operating temperature +300°C, i
In particular, it is preferable to maintain the temperature within a range of 200°C or lower. Generally, this critical operating temperature is in the range of 650-80°C.

次に本発明を図面によシ説明する。Next, the present invention will be explained with reference to the drawings.

図面において、1は向流式溶鉱炉を示し、この熔鉱炉に
対しては、ライン2から、所定の割合で配合されたアル
ミナ含有原料と炭素材料を含む団鉱が供給量調節装置1
1(例えばベル型ホッパーやパルプ)を介して供給され
、また、ライン3からは、供給量調節装置(例えばベル
型ホッパーや間隔を置いて設けられた熱電対を示す。炉
内低部には、酸素ガスが流量調節装置(例えばパルプ)
6を介して供給される。アルミナの還元生成物は、溶融
液として、ライン9から抜出され、一方、燃焼ガスは、
炉の上部からライン8を通って抜出される。10は燃料
としての炭素材料と、アルミナを含む団鉱と酸素ガスの
供給量制御装置であり、熱電対7と、団鉱供給量調節装
置11と、燃料供給量調節装置4と酸素ガス流量調節装
置6とに連絡し、充填層の最上部の温度を、臨界操作温
度以上で臨界操作温度+3(10℃の温度を越えないよ
うに、団鉱及び/又は炭素材料の装荷量と酸素ガスの供
給量が制御される。
In the drawing, reference numeral 1 indicates a countercurrent type blast furnace, and to this melt furnace, briquette containing alumina-containing raw material and carbon material mixed in a predetermined ratio is supplied from line 2 to a supply amount adjusting device 1.
1 (e.g., a bell-shaped hopper or pulp), and from line 3 a feed rate regulating device (e.g., a bell-shaped hopper or a thermocouple placed at intervals). , oxygen gas flow regulating device (e.g. pulp)
6. The alumina reduction product is withdrawn as a melt through line 9, while the combustion gases are
It is extracted from the top of the furnace through line 8. Reference numeral 10 denotes a supply amount control device for carbon material as a fuel, briquette containing alumina, and oxygen gas, including a thermocouple 7, a briquette supply amount adjustment device 11, a fuel supply amount adjustment device 4, and an oxygen gas flow rate adjustment device. The temperature at the top of the packed bed should be controlled by the amount of briquette and/or carbon material loaded and the amount of oxygen gas so that the temperature at the top of the packed bed does not exceed the critical operating temperature +3 (10°C). The amount of supply is controlled.

前記のようにして溶鉱炉操作を行って、アルミナ含有原
料を高温下で還元する時には、炉の閉塞の問題は生じず
、充填層Fは、円滑に下方向に移層の最上部とは、炉壁
に接触する供給原料の充填層の表面の位置から下方向に
測定して、50m以内にある充填層の部分をいう。
When the blast furnace is operated as described above to reduce alumina-containing raw materials at high temperatures, the problem of furnace blockage does not occur, and the packed bed F is smoothly moved downward. The part of the packed bed that is within 50 m, measured downward from the position of the surface of the packed bed of feedstock in contact with the wall.

本発明において用いるアルミナ含有原料は、電解法と異
なり、広範囲の原料を採用することができ、アルミナ含
量の高いボーキサイトやアルミナ含量の低いバンド頁岩
などの粘土鉱物、フライアッシュ、ボトムアッシュなど
も原料として用いることができる。前記反応(2)のア
ルミナの還元反応は、2100℃という高温を必要とす
るが、この還元温度は、原料中に鉄分やケイ素成分を添
加することによって、還元温度を1900℃程度まで引
き下げることが可能になる。本発明者らは、原料中の鉄
含量について種々検討を行ったところ、原料中の鉄成分
量を増加させることは、前記還元温度の低下と共に、下
記反応式(3) 、 (4)によって代表さSiO2+
 0−+SiO+OO(4)揮発成分の発生を効果的に
抑制するには、鉄成分の比率は原料中のアルミニウム及
びケイ素成分に対して、一定比率以上であることが望ま
しく、原子比で、Fe/At!は1/7以上、Fe/S
iば1以上、より好ましくは、l”e/Afは1/4以
上、Fe/Siは2以上であることが判明した。
Unlike the electrolytic method, the alumina-containing raw material used in the present invention can be from a wide range of raw materials, including clay minerals such as bauxite with high alumina content and banded shale with low alumina content, fly ash, and bottom ash. Can be used. The reduction reaction of alumina in reaction (2) requires a high temperature of 2100°C, but this reduction temperature can be lowered to about 1900°C by adding iron and silicon components to the raw materials. It becomes possible. The present inventors conducted various studies on the iron content in the raw materials, and found that increasing the iron content in the raw materials, together with lowering the reduction temperature, is represented by the following reaction formulas (3) and (4). SiO2+
0-+SiO+OO (4) In order to effectively suppress the generation of volatile components, it is desirable that the ratio of the iron component be at least a certain ratio with respect to the aluminum and silicon components in the raw material, and the atomic ratio is Fe/ At! is 1/7 or more, Fe/S
It has been found that i is 1 or more, more preferably l''e/Af is 1/4 or more, and Fe/Si is 2 or more.

本発明においてアルミナに対する還元剤とじては、炭素
材料が用いられるが、この炭素材料は、石炭やコークス
等の炭素それ自体の他、A、1403+8iC! 、 
FeC等のカーバイドも適用することができる。
In the present invention, a carbon material is used as a reducing agent for alumina, and this carbon material may include carbon itself such as coal or coke, or A, 1403+8iC! ,
Carbide such as FeC can also be applied.

この炭素材料は、通常、アルミナ含有原料と混合物の形
で炉内に供給されるが、この場合、その形状は、粉末状
、ペレット状、団鉱状などの任意の形状を採用すること
ができる。
This carbon material is usually supplied into the furnace in the form of a mixture with an alumina-containing raw material, but in this case, its shape can be any shape such as powder, pellet, or briquette. .

本発明において燃料として用いる炭素材料は、料と還元
用炭素材料とを一つの団鉱にし、これと燃料用の炭素材
料とを交互又は混合物の形で充填することができる。
In the carbon material used as a fuel in the present invention, the material and the carbon material for reduction can be made into one briquette, and this and the carbon material for fuel can be filled alternately or in the form of a mixture.

次に、本発明を実施例によりさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例                  1)炉壁
に上下10crn間隔で温度測定用の熱電対を設置し、
炉壁下部に(底部から206nの位置)3本の水冷式酸
素ランスを設け1.炉底部付近に湯道を備えた反応炉(
1在径40crnx高さ100crn)に、先ず木炭を
充填して点火し、この点火後、酸素ランスより、酸素ガ
スを1804/分(全酸素ガス量)の流速で供給し、炉
内を予熱する。次に、高炉コークスを、ホッパーにより
炉内に供給し、燃焼させ、高温に加熱する。
Example 1) Thermocouples for temperature measurement were installed on the furnace wall at intervals of 10 crn above and below,
Three water-cooled oxygen lances are installed at the bottom of the furnace wall (at a position 206n from the bottom).1. A reactor with a runner near the bottom of the furnace (
1 (diameter: 40crn x height: 100crn) is first filled with charcoal and ignited, and after this ignition, oxygen gas is supplied from the oxygen lance at a flow rate of 1804/min (total oxygen gas amount) to preheat the inside of the furnace. . Next, blast furnace coke is fed into the furnace by a hopper, burned, and heated to a high temperature.

次に、この炉内に、ボーキサイト70(重量)〜7 r
trm )を充填する。また、このボーキサイトの還元
においては、充填層最上部の温度はこの団鉱コークスの
供給量により調節した。その結果、充填層最上部の温度
に関し、温度が750℃以下になると、最上部に柔い凝
縮層が形成され、さらに650℃以下になると、この凝
縮層の生長が速やかになる。この凝縮層は放置すると非
常に硬いものに変化するが、最上部温度が800℃を越
えるようになると、このような凝縮層の生成現象が見ら
れなくなることが観察された。従って、この熔鉱炉の場
合、その臨界操作温度は約Boo℃であることが確認さ
れた。
Next, in this furnace, bauxite 70 (weight) ~ 7 r
trm). In addition, in the reduction of bauxite, the temperature at the top of the packed bed was adjusted by the amount of briquette coke supplied. As a result, when the temperature at the top of the packed bed becomes 750° C. or less, a soft condensed layer is formed at the top, and when the temperature becomes 650° C. or less, the growth of this condensed layer becomes rapid. This condensed layer becomes extremely hard if left to stand, but it was observed that when the temperature at the top exceeded 800° C., the phenomenon of formation of such a condensed layer was no longer observed. Therefore, in the case of this melt furnace, its critical operating temperature was confirmed to be approximately Boo°C.

熔鉱炉の操作を、前記したように、燃料用のコークスと
ボーキサイト団鉱を間けつ的に供給すると共に、その際
の供給量を調節することにより、充填層の最上部温度を
約800℃に保持し、そして、匂の団鉱と約c+oKg
の高炉コークスを、10時間にわたって炉内に供給する
ことによって、粗合金6V4を得ることができた。
As described above, the melting furnace is operated by intermittent feeding of coke and bauxite briquette for fuel and adjusting the amount of feed at that time to maintain the temperature at the top of the packed bed at about 800°C. and about c+oKg with the odor briquette
By supplying the blast furnace coke into the furnace for 10 hours, crude alloy 6V4 could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面上本発明を実施する場合の溶鉱炉系の説明図である
。 1・・・熔鉱炉、2・・・アルミナ団鉱供給ライン、3
・・・炭素材料供給ライン、4r 6.11・・・供給
量調節装置纜、6・・・酸素ガス供給ライン、7・・・
熱体対、8・・・燃焼ガス排出ライン、9・・・アルミ
ニウム合金排出ライン。 特許出願人 工業技術院長 石 坂 誠 −図    
FIG. 2 is an explanatory diagram of a blast furnace system when implementing the present invention. 1... Molten smelt furnace, 2... Alumina briquette supply line, 3
...Carbon material supply line, 4r 6.11...Supply amount adjustment device line, 6...Oxygen gas supply line, 7...
Heating body pair, 8... Combustion gas discharge line, 9... Aluminum alloy discharge line. Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Figure
surface

Claims (1)

【特許請求の範囲】[Claims] (1)溶鉱炉内にアルミナ含有原料と炭素材料とを含む
充填層を形成させると共に、該炉内において、炭素材料
の酸素ガスによる燃焼反応と、該燃焼熱を用い、炭素材
料によりアルミナを還元する反応とを同時に行わせるよ
うにしたアルミ(b)  アルミナ含有原料と炭素材料
の比率、(C)  充填層の高さ、 のいずれか一つ又は二つ以よを変化させて、該充填層の
最上部温度が本文で定義する臨界操作温度以下にならな
いように保持することを特徴とするアルミニウム製錬溶
鉱炉の操作方法。
(1) A packed bed containing an alumina-containing raw material and a carbon material is formed in a blast furnace, and in the furnace, alumina is reduced by the carbon material using a combustion reaction of the carbon material with oxygen gas and the combustion heat. (b) The ratio of the alumina-containing raw material to the carbon material, and (C) the height of the packed bed, by changing one or more of the following: A method of operating an aluminum smelting blast furnace, characterized by maintaining the temperature at the top so that it does not fall below a critical operating temperature defined in the text.
JP7565182A 1982-05-04 1982-05-04 Method for operating aluminum refining blast furnace Granted JPS58193329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7565182A JPS58193329A (en) 1982-05-04 1982-05-04 Method for operating aluminum refining blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7565182A JPS58193329A (en) 1982-05-04 1982-05-04 Method for operating aluminum refining blast furnace

Publications (2)

Publication Number Publication Date
JPS58193329A true JPS58193329A (en) 1983-11-11
JPS619373B2 JPS619373B2 (en) 1986-03-22

Family

ID=13582358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7565182A Granted JPS58193329A (en) 1982-05-04 1982-05-04 Method for operating aluminum refining blast furnace

Country Status (1)

Country Link
JP (1) JPS58193329A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138515A (en) * 1989-10-24 1991-06-12 Mitsubishi Electric Corp Traffic information display device
JP2004510663A (en) * 2000-10-04 2004-04-08 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Apparatus and method for feeding package material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138515A (en) * 1989-10-24 1991-06-12 Mitsubishi Electric Corp Traffic information display device
JP2004510663A (en) * 2000-10-04 2004-04-08 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Apparatus and method for feeding package material
JP4755387B2 (en) * 2000-10-04 2011-08-24 テトラ ラバル ホールデイングス エ フイナンス ソシエテ アノニム Apparatus and method for feeding package material

Also Published As

Publication number Publication date
JPS619373B2 (en) 1986-03-22

Similar Documents

Publication Publication Date Title
SU1118292A3 (en) Method of obtaining molten cast iron or steel semiproduct from iron-containing material and device for effecting same
FI68389B (en) SAETT ATT FRAMSTAELLA KISEL UR POWDER FORMIGT KISELDIOXIDHALTIGT MATERIAL
SE457265B (en) PROCEDURE AND ESTABLISHMENT FOR PREPARATION OF THANKS
EP0184405B1 (en) Processes and apparatus for the smelting reduction of ores
CA1107940A (en) Process for the preparation of silicon or ferrosilicon
JPS6055574B2 (en) Method for recovering nonvolatile metals from metal oxide-containing dust
US2755178A (en) Electric smelting process for production of silicon-aluminum alloys
JPS59170226A (en) Manufacture of aluminum alloy by carbon heat direct reduction and reactor therefor
EP0026780A4 (en) Manufacture of steel from iron ores.
ZA200506454B (en) An improved smelting process for the production ofiron
US4756748A (en) Processes for the smelting reduction of smeltable materials
JPS6045684B2 (en) Method and apparatus for producing liquid iron from iron oxide
US4445934A (en) Method of manufacturing aluminum by using blast furnace
NO132586B (en)
JPS58193329A (en) Method for operating aluminum refining blast furnace
JPS59162235A (en) Carbon thermal reduction for manufacturing aluminum alloy
JPS6144707A (en) Method and device for manufacturing calciumcarbonate
WO2015042691A1 (en) Smelting apparatus and method of using the same
JP4077533B2 (en) Metal melting method
JPS6352098B2 (en)
JPH06108132A (en) Cylindrical furnace and production of molten iron using this furnace
US2823983A (en) Process for the production of metallic silicon
RU2086656C1 (en) Method and apparatus for carbothermal reduction of aluminium oxides in high-temperature blast furnace
JP2666396B2 (en) Hot metal production method
JP2897362B2 (en) Hot metal production method