JPS58193063A - Magnetic refrigerator - Google Patents
Magnetic refrigeratorInfo
- Publication number
- JPS58193063A JPS58193063A JP7516182A JP7516182A JPS58193063A JP S58193063 A JPS58193063 A JP S58193063A JP 7516182 A JP7516182 A JP 7516182A JP 7516182 A JP7516182 A JP 7516182A JP S58193063 A JPS58193063 A JP S58193063A
- Authority
- JP
- Japan
- Prior art keywords
- piston
- cooled
- heat
- working
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/002—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
- F25B2321/0021—Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
Landscapes
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の礪する技術分野〕
本発明は、磁iを10口しると発熱し、磁場を除去する
と吸熱する作業物質を利用した磁気冷凍機にI関する。DETAILED DESCRIPTION OF THE INVENTION [Technical field in which the invention pertains] The present invention relates to a magnetic refrigerator using a working substance that generates heat when a magnetic field is sipped 10 times and absorbs heat when the magnetic field is removed.
磁気冷凍機の1東埋は昔から知られているもので、ガド
リウム・ガリウム・ガーネット((N3GasOx 2
)(C)GG)等の希土類金属の化は物又は合金である
作業物質に磁場を加えると発熱し、磁場を取り去ると吸
熱するという現象を利用するものである。The magnetic refrigerator has been known for a long time.
) (C) GG) and other rare earth metals utilize the phenomenon that when a magnetic field is applied to a work material or alloy, it generates heat, and when the magnetic field is removed, it absorbs heat.
この磁気冷凍機の従来の具体的構成例として、第1図の
ようなものがある。4.2 Kの福度の液体ヘリウム(
1)が収納された容器(2)内に2個の幀−導コイル1
3)、14)を設ける。これらのコイルt:3+ 、
(4)を貫通するシリンダuりを設け、このシリンダ(
13内にピストン【5)を設置する。ピストン:6)は
31固のピストン部材(5a)、(5b)、(5c)を
胃し、谷ピストン部材(5a)、(5b)、(5c)の
間の2ケ所には、上述した作業物質+61 、 i力が
設置されている。ピストン15)のほぼ中央部+9)近
辺を1.8にのm&の超流動ヘリウムを発生させる被冷
却槽、Inで取り囲与、この被冷却槽1i1は、断熱材
αυでおおわれている。尚、/リンダIl′lJは21
11ilのS+を導コイル+3) 、 +4)の中間に
泣(虚する2個の支持体(13で支持されている。この
ように構成された冷凍機の動作は次のように行われる。An example of a conventional specific configuration of this magnetic refrigerator is shown in FIG. 4.2 Liquid helium with a degree of K (
1) are housed in a container (2) containing two coils 1.
3) and 14) are provided. These coils t:3+,
(4) A cylinder hole is provided that penetrates through the cylinder (
Install the piston [5] inside 13. Piston: 6) is a 31-piece piston member (5a), (5b), (5c). Matter +61, i-force is installed. The vicinity of the center +9) of the piston 15) is surrounded by a cooled tank, In, which generates superfluid helium of m& of 1.8, and this cooled tank 1i1 is covered with a heat insulating material αυ. Furthermore, /Linda Il'lJ is 21
It is supported by two supports (13) which conduct the S+ of 11ils between the coils (+3) and +4).
すは周囲の液体ヘリウム+1)に排熱烙れる。その後、
ピストン(5)を押し下げて作業物質(6)を被冷却慣
dQ内に導く。ここでは作a吻*+61は、超電導コイ
ル(3)から遠ざかっているので磁場θぶなくなり、作
画物質(6)の@度がドがり、被冷却1蕾(IIJ・り
の\す・ンムを冷却する。この時、ピストン、5)内の
1場の作業物質17)は他の超電導コイル14)内に立
1置して、磁場が加えられて発熱し、この熱が液体ヘリ
ウム・1)しζ排熱される。次にピストン・5)を上方
に引き上げて上記と同様の動作tl−禰り区す。このよ
うな動作を続けることにより被冷i4Jm IIJ内の
ヘリウム、は冷却され頓流動ヘリウムとなる。The exhaust heat heats up the surrounding liquid helium +1). after that,
The piston (5) is pushed down to guide the working material (6) into the cooled chamber dQ. Here, the proboscis *+61 is moving away from the superconducting coil (3), so the magnetic field θ is no longer strong, the temperature of the drawing substance (6) is lowered, and the cooled bud (IIJ, Rino\su, Nmu) is At this time, the working substance 17) in the piston 5) is placed vertically in another superconducting coil 14), and a magnetic field is applied to generate heat, and this heat is converted into liquid helium 1). The heat is then exhausted. Next, the piston 5) is pulled upward and the same operation as above is performed. By continuing this operation, the helium in the i4Jm IIJ to be cooled is cooled and becomes freely flowing helium.
以上のような構成の磁気冷凍機にPいては、被冷却41
tlGにて21園の超−4コイル13) 、 (4)の
磁場分布が零となるようにするだめの2個の超−導コイ
ル+3) 、 +4)の励磁制μsと2個の超電導コイ
ル’J) 、 141の配置の設定は非虐にむrかしか
った。−にピストン・5)に役(Itさルた作業物質6
l−7)と−シ導コイル+3) 、 +4)との間Kw
Jく吸引力をつり廿わせて、ピストン15)に働く力を
最小にすることも非常に困難で冷凍効率の低下をきたし
ていた。In the magnetic refrigerator P having the above configuration, the to be cooled 41
At tlG, the two superconducting coils +3) and +4) excitation control μs and two superconducting coils to make the magnetic field distribution of 21 super-4 coils 13) and (4) zero 'J), 141's placement was cruelly difficult. - to the piston 5) to the working material 6
Kw between l-7) and -shi conducting coil +3), +4)
It is also very difficult to minimize the force acting on the piston 15 by increasing the suction force, resulting in a decrease in refrigeration efficiency.
本発明の目的は、上記の欠点を除去し、冷凍効率の良い
磁気冷4に機を提供することにある。An object of the present invention is to eliminate the above-mentioned drawbacks and provide a magnetic cooler 4 with good refrigeration efficiency.
本発明の磁気冷凍機は次のようKm成されている。 The magnetic refrigerator of the present invention is constructed as follows.
液体ヘリウム等の冷媒を収納する容器内に、1つの超電
導コイル中にに通してピストンを設け、このピストンの
超電導コイルをはさんだ両端部にシリンダを介して被冷
却槽をそれぞれ設電し、ピストンの2ケ所に作業物質を
設け、このピストンを移動させて一方の作業物質が超電
導コイル中に位1するとき、西方の作業物質は被冷却槽
内に位置するようにピストンの2ケ所の作業物質を配置
する。そしてこの磁気冷凍機の動作は一方の作業物質が
一′鑞導コイル中に位置するとき、磁場が印加されて発
熱し、この熱を液体ヘリウム等の冷媒に排出し、この排
熱後ピストンtsaして一方の被冷却槽にこの一方の作
4物賞を位置させてam場を除去すると吸熱作用が動く
のでこの一方の作業物質は被冷却槽内を冷却する。この
時、他方の作業物質は超電導コイル中で磁場が目j加さ
れて発熱作用し、上記の一方の作業物質が再び超電導コ
イル中に位置するようにピストンが移動されると、上記
の他方の作業物質は他の被冷却槽内に位置して吸熱作用
によりこの他の被冷却槽内を冷却する。A piston is installed in a container that stores a refrigerant such as liquid helium, passed through one superconducting coil, and a cooled tank is installed at both ends of the piston with the superconducting coil sandwiched in between through cylinders. When the piston is moved and one of the working materials is placed in the superconducting coil, the working material on the west side is placed in the cooling tank. Place. The operation of this magnetic refrigerator is such that when one of the working materials is located in the 1' soldering coil, a magnetic field is applied and heat is generated.This heat is discharged to a refrigerant such as liquid helium, and after this heat is discharged, the piston tsa Then, when one of the working materials is placed in one of the tanks to be cooled and the AM field is removed, the endothermic action is activated, so this one working substance cools the inside of the tank to be cooled. At this time, a magnetic field is applied to the other working substance in the superconducting coil, causing heat generation, and when the piston is moved so that the above-mentioned one working substance is located in the superconducting coil again, the above-mentioned other working substance The work substance is located in another tank to be cooled and cools the inside of this tank by endothermic action.
このようにして2つの被冷却槽内が冷却され、これらの
被冷却槽内にヘリウムが収納されていれば超流動ヘリウ
ムが発生する。In this way, the two tanks to be cooled are cooled, and if helium is stored in these tanks, superfluid helium is generated.
本発明に係る磁気冷凍機を用いれば冷凍効率が向上し、
かつ2つの被冷却槽を同時VC冷却できる等の優れた効
果を奏する。Using the magnetic refrigerator according to the present invention improves refrigeration efficiency,
Moreover, excellent effects such as simultaneous VC cooling of two tanks to be cooled are achieved.
第2図に本発明の実施料を示−1,尚、41図と同じ構
成のものは1司−符号を11シて1細は6略する。FIG. 2 shows the cost for implementing the present invention. For those having the same structure as in FIG.
4.2にの液体ヘリウム等の冷媒を収納した8器+2)
に冷媒tl)が満たされており、この容器12)内に超
電導コイル(3)を収納し、このMA鑞導コイル13)
をに通するピストン(5)は3つの部材< 5 a)、
(5b)、(5c >で構成されている。このピストン
15)には超4導コイル(3)をはさんで両端部にシリ
ンダ(12a)、(12b)を斤して被冷却物であるヘ
リウム等が収納される被冷却fll (10a)、(1
0b)がそれぞれ設(′lされている。4. 8 containers containing refrigerant such as liquid helium in 2 + 2)
A superconducting coil (3) is stored in this container 12), and this MA superconducting coil 13) is filled with a refrigerant tl).
The piston (5) passing through the three members < 5 a),
(5b) and (5c) This piston 15) has a super 4-conducting coil (3) sandwiched between them, and cylinders (12a) and (12b) are placed at both ends to serve as objects to be cooled. Helium etc. are stored in the cooled flll (10a), (1
0b) are respectively set ('l).
作業物質(6a)はピストン部材(5C)とピストン部
材(5b)との間に、作業vJ質(6b)はピストン部
材(5b)と(5a)の間にそれぞれ埋設されて、作業
物!(6a)が超電導コイル(3)中に位1するときは
、作業物質(6b)は被冷却槽(10b)内に位置する
ようにし、ピストン(5)をシリンダ(12a) 、
(12b)内で移動−さrて作業物質(6a)が被塗4
1僧(10a)内に位置するときは作業*[(6b)は
i!A成導コイル(3)中に位置するように作業物質(
6m)、(6b)をピストン・5)内にそれぞれl3i
l!置する。The work material (6a) is buried between the piston member (5C) and the piston member (5b), the work material (6b) is buried between the piston members (5b) and (5a), and the work material! When (6a) is placed in the superconducting coil (3), the working substance (6b) is placed in the cooled tank (10b), and the piston (5) is placed in the cylinder (12a),
(12b) - then the working material (6a) is coated 4
When located within 1 monk (10a), work * [(6b) is i! The working substance (
6m) and (6b) into the piston 5) respectively l3i
l! place
尚、被冷却’41 (10a)、(10b)は断熱材(
13a)。In addition, the cooled '41 (10a) and (10b) are made of heat insulating material (
13a).
(13b)で構成され容器12)内の冷媒Ll)と断熱
され、又、シリンダ(12a) 、 (12b)とピス
トン(5)の隙間を小さくすることにより4間からの熱
の流入を防いでいる。又、シリンダ(12a)、(12
b)には第1図に記載されている支持材が記載さt上で
いないが、何で髪待材されてもかまわない。(13b) and is insulated from the refrigerant Ll) in the container 12), and by reducing the gap between the cylinders (12a), (12b) and the piston (5), it is possible to prevent heat from flowing between the cylinders (12a), (12b) and the piston (5). There is. Also, cylinders (12a), (12
b) does not include the support material shown in FIG. 1, but any hair support material may be used.
次に動作:(ついて説明する。Next operation: (I will explain about it.
作業物質(6a)が超電導コイル1,9中に位置すると
き、超電導コイル(3)のd場が作業物質(6a)に印
U[]され、作業物’Jt(6a)は発熱するが、この
熱を各器内の冷媒t1)例えば4.2にの液体ヘリウム
に排出し、作業物質(6a)は再び4.2Kに近傍に冷
却される。When the working material (6a) is located in the superconducting coils 1 and 9, the d field of the superconducting coil (3) is marked U[] on the working material (6a), and the working material 'Jt (6a) generates heat, but This heat is discharged to the coolant t1) in each vessel, for example, liquid helium at a temperature of 4.2K, and the working material (6a) is cooled again to around 4.2K.
次にピストン5)を移動させて乍粱m繊(6a)を被冷
却槽(10a)に導くと、作業物繊(6a)に印υ口さ
れていた磁場は除却され、/F、巣物實(6a)は吸熱
作用をし、被冷却槽(10a)内の被冷却拗列えはヘリ
ウムを冷却する。この時、他の作業物質(6b)は−1
導コイル(3)中で磁場が印加され、この作業物質(6
b)も上記と同様に発熱し、この熱を冷媒(1)内に排
出する。作峡物質(6a)の吸熱作用が終rすると、再
びピストン・、5)をシリンダ(12m)、(12b)
内で移動させて作業物質(6a)を超電導コイル(3)
中に、作業物質(6b)を被冷却槽(10b)内に位置
させると、上記と同様に、作業物質(6a)は発熱して
冷媒(1)でろる4、2にの液体ヘリウムに排熱し、作
業物質(6b)は吸熱して被冷却槽(10b)内の被冷
却物でおるヘリウムを冷却する。Next, when the piston 5) is moved to guide the textile (6a) to the cooling tank (10a), the magnetic field that has been imprinted on the work textile (6a) is removed, The material (6a) has an endothermic effect, and the array of cooled objects in the cooled tank (10a) cools the helium. At this time, the other working substance (6b) is -1
A magnetic field is applied in the conducting coil (3) and this working material (6
b) also generates heat in the same way as above and discharges this heat into the refrigerant (1). When the endothermic action of the isthmus substance (6a) ends, the piston 5) is moved again to the cylinders (12m) and (12b).
The working material (6a) is moved within the superconducting coil (3).
When the working substance (6b) is placed in the cooled tank (10b), the working substance (6a) generates heat and is drained into liquid helium in 4 and 2, which is filtered by the refrigerant (1). The working material (6b) absorbs heat and cools the helium that is the object to be cooled in the cooling tank (10b).
以上の動作を繰り返すことにより、被冷却槽(10a)
、(10b)内の被冷却物であるヘリウムは冷却されて
超流動ヘリウムとなる。By repeating the above operations, the cooled tank (10a)
, (10b) is cooled to become superfluid helium.
コノように超電導コイル(3)が一つなので、例えば2
つの超電導コイルが存在する場合のような超電導コイル
相互間の作用による磁場の分布寺を考慮する必要がなく
、ピストン・5)に慟〈力は頓電導コイル(3)からの
み表ので従来のようなピストンと2つの超<4コイルと
の力のつり甘いを最小にするような惜菫も必要でなくな
る、っSince there is only one superconducting coil (3) like Kono, for example 2
There is no need to consider the distribution of the magnetic field due to the interaction between the superconducting coils, which is the case when two superconducting coils are present, and the force exerted on the piston (5) is only from the non-conducting coil (3), unlike the conventional method. It is no longer necessary to minimize the force imbalance between the large piston and the two super<4 coils.
第1図は従来の磁気冷凍機の構成を示す断面図、第2図
は本発明に係る磁気冷凍機の構成を示す断ckJ図であ
る。
11)・・・冷媒、(2)・g器、(3)・ffi電導
コイル、+5)・・・ピストン、(6a)、(6b)・
・・作業物質、(10a)、(10b)−・・被冷却槽
、(12a)、(12b) 、−、シリンダ。
代理人 弁理士 41」 近 ぎ 佑(よか1名)
第1図FIG. 1 is a cross-sectional view showing the structure of a conventional magnetic refrigerator, and FIG. 2 is a cross-sectional view showing the structure of a magnetic refrigerator according to the present invention. 11)...Refrigerant, (2)・G unit, (3)・FFI conductive coil, +5)・Piston, (6a), (6b)・
...Working substance, (10a), (10b)--Cooled tank, (12a), (12b),-, cylinder. Agent Patent Attorney 41” Yu Chikagi (1 person) Figure 1
Claims (1)
通してピストンを設け、このピストンの削紀Mi成導コ
イルを1dさんだ両端部にシリンダを介して被冷却槽を
それぞれ設置し、剪記二゛ストンの2ケ所に作業物質を
それぞれ設け、前記ピストンを移動させて一方のAft
記作業物藏がHiT紀幀44コイル中に位置するとき、
他方の前記作業物質は−11記被冷却槽内に位1−Fる
ように前記ピストンの2ケ所に作業物質を配電してなる
ことを特徴とする磁気冷凍機。A piston is provided in a container that stores the refrigerant, penetrating into one Mi-forming coil, and cooling tanks are installed at both ends of the piston with the Mi-forming coil being sandwiched by 1 d via cylinders, respectively. Work materials are provided at two locations on the two shearing pistons, and the piston is moved to
When the workpiece is located in the HiT Kibori 44 coil,
A magnetic refrigerator characterized in that the working substance is electrically distributed to two locations on the piston so that the other working substance is located in the tank to be cooled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7516182A JPS58193063A (en) | 1982-05-07 | 1982-05-07 | Magnetic refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7516182A JPS58193063A (en) | 1982-05-07 | 1982-05-07 | Magnetic refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58193063A true JPS58193063A (en) | 1983-11-10 |
JPH0152668B2 JPH0152668B2 (en) | 1989-11-09 |
Family
ID=13568197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7516182A Granted JPS58193063A (en) | 1982-05-07 | 1982-05-07 | Magnetic refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58193063A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8448452B2 (en) * | 2006-07-10 | 2013-05-28 | Daewoo Electronics Corporation | Shuttle type magnetic refrigerator |
-
1982
- 1982-05-07 JP JP7516182A patent/JPS58193063A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0152668B2 (en) | 1989-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dong et al. | An on-board 2G HTS magnets system with cooling-power-free and persistent-current operation for ultrahigh speed superconducting maglevs | |
JPH042868B2 (en) | ||
JPS58193063A (en) | Magnetic refrigerator | |
JPH11219814A (en) | Superconducting magnet and method for precooling the same | |
US3765186A (en) | Method and apparatus for producing super-low temperatures | |
Harrison et al. | Damping effects and flux kinetics in a type II superconducting disk | |
Wilson | Some basic problems of superconducting magnet design | |
Ishibashi et al. | Thermal stability of high current density magnets | |
Purcell et al. | Superconducting magnet for the 15 foot NAL bubble chamber | |
STEWART et al. | The Design and Construction of a Large Superconducting Magnet | |
Chandratilleke et al. | Development of loop heat pipes for cryogenic applications | |
JP3864596B2 (en) | Current limiting system | |
Keilin et al. | Superconductor stability against heat pulses in saturated and pressurized superfluid helium | |
Warren | Measurements of heat transfer to helium II at atmospheric pressure in a confined geometry | |
JPS6025202A (en) | Superconductive electromagnet apparatus | |
Frederking | Cooling of Superconducting Devices: Advances in Heat Transfer for Magnet Stability Improvements | |
Stekly | Superconducting coils | |
Landwehr | Problems connected with the generation of continuous magnetic fields above 15 Tesla | |
Wurz | High‐Field Superconducting Magnet | |
Pierce et al. | Power transformer with two-phase cooling. Final report | |
JPH02154953A (en) | Insulated demagnetizing cooling device and insulated demagnetizing cooling method | |
JPS5966176A (en) | Superconductive device | |
Eckels | Superconductor stability and helium heat transfer: the minimum propagating zone relationship in design | |
JPS63299181A (en) | Superconducting apparatus | |
JPH09113048A (en) | Cryotemperature apparatus |